## Solutions to the June 2003 exam

## Problem 1

(1) Let 0 be the smallest element of $S_{\Omega}$ and $n$, the $n$th iterated immediate successor of 0 . It is possible to construct such a sequence since all elements but the largest in a well-ordered set has an immediate successor [Ex 10.2.(a)]. (The uncountable ordered set $S_{\Omega}$ has no largest element since any section of it is countable while $S_{\omega}$ itself is uncountable.) Then $0<1<2<\cdots<n-1<n<\cdots$ so the well-ordered subset $\left\{n \mid n \in \mathbf{Z}_{+}\right\} \subset S_{\Omega}$ has the order type of $\mathbf{Z}_{+}$. (This means that $h: \mathbf{Z}_{+} \rightarrow S_{\Omega}$ is recursively defined by $h(n)=$ $\min \left(S_{\Omega}-\{h(1), \ldots, h(n-1)\}\right)[$ Thm 8.4].)
(2) Put $\omega=\sup \mathbf{Z}_{+}$, the least upper bound of $\mathbf{Z}_{+}$in the well-ordered set $S_{\Omega}$ [Ex 10.1]. None of the elements of $\mathbf{Z}_{+}$are immediate predecessors of $\omega$, so an immediate predecessor of $\omega$ would be an upper bound for $\mathbf{Z}_{+}$, smaller than the least upper bound; cf. [Ex 24.12.(c)]. (Also the smallest element 0 of $S_{\Omega}$ has no immediate predecessor for it has no predecessors at all!)

## Problem 2

$$
\begin{array}{r}
\partial(A \times B) \stackrel{\text { def }}{=} \overline{A \times B} \cap \overline{(X \times Y)-(A \times B)} \stackrel{\text { Hint }}{=} \overline{A \times B} \cap \overline{(X-A) \times Y \cup X \times(Y-B)} \\
\stackrel{[\operatorname{Ex} 19.9]}{=}(\bar{A} \times \bar{B}) \cap(\overline{X-A} \times Y \cup X \times \overline{Y-B}) \stackrel{[\operatorname{Ex} 1.2]}{=}((\bar{A} \cap \overline{X-A}) \times(\bar{B} \cap Y)) \cup((\bar{A} \cap X) \times(\bar{B} \cap \overline{Y-B})) \\
\quad \begin{array}{r}
\text { def } \\
= \\
(\partial A \times \bar{B}) \cup(\bar{A} \times \partial B)
\end{array}
\end{array}
$$

## Problem 3

(1) [Ex 24.2] We must show that $g(x)=0$ for some $x$. If $g(x)=0$ for all $x$, then there is nothing to prove. If not, $g$ assumes both positive and negative values because $g(-x)=-g(x)$. Since $S^{1}$ is connected [Thm 23.5], $g$ also takes the value 0 at some point [Thm 24.3].
(2) It is not possible to imbed $S^{1}$ in $\mathbf{R}$ for there do not exist injective continuous maps $S^{1} \hookrightarrow \mathbf{R}$.

Comment: The Borsuk-Ulam theorem says that for any continuous map $f: S^{n} \rightarrow \mathbf{R}^{n}, n \geq 1$, there is a point $x \in S^{n}$ such that $f(x)=f(-x)$.
Problem 4 [Ex 38.7] [2, 1]
(1) Let $F: \beta(X) \rightarrow\{0,1\}$ be the extension [Thm 38.4] of the continuous function $f: X \rightarrow\{0,1\}$ given by $f(A)=0$ and $f(X-A)=1$. Then $\bar{A} \subset F^{-1}(0)$ and $\overline{X-A} \subset F^{-1}(1)$ so these two subsets are disjoint; in other words $\overline{X-A} \subset \beta(X)-\bar{A}$.
(2) The inclusions

$$
\beta(X)-\bar{A} \stackrel{\text { def }}{=} \bar{X}-\bar{A} \stackrel{[E x 17.8]}{\subset} \overline{X-A} \stackrel{(1)}{\subset} \beta(X)-\bar{A}
$$

tell us that $\beta(X)-\bar{A}=\overline{X-A}$. In particular, $\bar{A}$ is open (and closed).
(3) Since $U \cap X$ is a subset of $U$, it is clear that $\overline{U \cap X} \subset \bar{U}$ [Ex 17.6.(a)]. Conversely, let $x$ be a point in $\bar{U}$ and $V$ any neighborhood of $x$. Then $V \cap U \neq \emptyset$ is nonempty for $x$ lies in the closure of $U$, and hence $(V \cap U) \cap X=V \cap(U \cap X) \neq \emptyset$ is also nonempty as $X$ is dense. Thus every neighborhood $V$ of $x$ intersects $U \cap X$ nontrivially. This means that $x \in \overline{U \cap X}$. We conclude that $\overline{U \cap X}=\bar{U}$. From (2) (with $A=U \cap X$ ) we see that $\bar{U}$ is open (and closed).
(4) Let $Y$ be any subset of $\beta(X)$ contaning at least two distinct points, $x$ and $y$. We shall show that $Y$ is not connected. Let $U \subset \beta(X)$ be an open set such that $x \in U$ and $y \notin \bar{U}$; such an open set $U$ exists because $\beta(X)$ is Hausdorff [Definition, p. 237]. Then $Y=(Y \cap \bar{U}) \cup(Y-\bar{U})$ is a separation of $Y$, so $Y$ is not connected.

## References

[1] Russell C. Walker, The Stone-Čech compactification, Springer-Verlag, New York, 1974, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83. MR 52 \#1595
[2] Nancy M. Warren, Properties of Stone-Čech compactifications of discrete spaces, Proc. Amer. Math. Soc. 33 (1972), 599-606. MR 45 \#1123

