Solutions to the January 2005 exam

Problem 1

- (1) \Longrightarrow (2): Since f is continuous $f^{-1}(B^{\circ}) \subset f^{-1}(B)^{\circ}$ [2, 18.1] [1, 13.3]. The other inclusion, $f^{-1}(B)^{\circ} \subset f^{-1}(B^{\circ})$, equivalent to $f(f^{-1}(B)^{\circ}) \subset B^{\circ}$, follows because $f(f^{-1}(B)^{\circ})$ is open and contained in $f(f^{-1}(B)) \subset B$.
- $(2) \Longrightarrow (3): X f^{-1}(\overline{B}) = f^{-1}(Y \overline{B}) = f^{-1}((Y B)^{\circ}) \stackrel{(2)}{=} f^{-1}(Y B)^{\circ} = (X f^{-1}(B))^{\circ} = X \overline{f^{-1}(B)} \text{ so that } f^{-1}(\overline{B}) = \overline{f^{-1}(B)} \text{ for all } B \subset Y.$
- $(3) \Longrightarrow (2): X f^{-1}(B)^{\circ} = \overline{X f^{-1}(B)} = \overline{f^{-1}(Y B)} \stackrel{(3)}{=} f^{-1}(\overline{Y B}) = f^{-1}(Y B^{\circ}) = X f^{-1}(B^{\circ}) \text{ so that } f^{-1}(B^{\circ}) = f^{-1}(B)^{\circ} \text{ for all } B \subset Y.$ $(2) \Longrightarrow (1): \text{ The inclusion } f^{-1}(B^{\circ}) \subset f^{-1}(B)^{\circ}, \text{ valid for all } B \subset Y, \text{ tells us that } f \text{ is continuous.}$
- (2) \Longrightarrow (1): The inclusion $f^{-1}(B^{\circ}) \subset f^{-1}(B)^{\circ}$, valid for all $B \subset Y$, tells us that f is continuous. Since $A^{\circ} \subset f^{-1}f(A)^{\circ} \stackrel{(2)}{=} f^{-1}(f(A)^{\circ})$, we have $f(A^{\circ}) \subset f(A)^{\circ}$ for all $A \subset X$. In particular, $f(A) = f(A^{\circ}) \subset f(A)^{\circ} \subset f(A)$, ie $f(A) = f(A)^{\circ}$, when A is open. Thus f is open.

Problem 2

- (1) $\operatorname{Ext}(A)$ is open because it is the complement of the closed set \overline{A} . Bd A is closed because it is the intersection of two closed sets.
- (2) $X (\operatorname{Int}(A) \cup \operatorname{Ext}(A)) = (X \operatorname{Int}(A)) \cap \overline{A} = \overline{X A} \cap \overline{A} = \operatorname{Bd}(A)$ where $\operatorname{Int}(A) \cap \operatorname{Ext}(A) \subset A \cap (X \overline{A}) \subset A \cap (X A) = \emptyset$.
- (3) Assume that $u(I) \cap \text{Bd}(A) = \emptyset$. Then $[0,1] = u^{-1}(\text{Int } A) \cup u^{-1}(\text{Ext } A)$ is a union of two disjoint open nonempty sets, contradicting connectedness $[2, \S 23]$ [1, 16.2] of the unit interval [2, 24.2] [1, 17.3].

Problem 3

- (1) Consider the straight line $L_n \subset I \times I$ between the points $\frac{1}{n+1} \times 1$ and $\frac{1}{n} \times 1$ of $I \times \{0\} \cup A \times I$. The image $R(L_n)$ is a connected subspace [1, 16.3] of $I \times \{0\} \cup A \times I$ containing the two end-points of L_n . Since $I \times \{0\} \cup A \times I$ with the point $P_n = \frac{1}{2} \left(\frac{1}{n+1} + \frac{1}{n} \right) \times 0$ removed is not connected, $R(L_n)$ contains P_n .
- (2) The sequence $t_n \times 1$ converges to 0×1 and the image sequence $R(t_n \times 1) = P_n$ converges to $0 \times 0 \neq 0 \times 1 = R(0 \times 1)$ contradicting continuity of R [1, 15.12].

Alternative solution: Assume that the map R exists. Then R is a quotient map because it is a map from a compact space onto a Hausdorff space [1, 18.8]. But $I \times \{0\} \cup A \times I$ is not locally connected [1, 17.17] so it can not be the quotient space of the locally connected space $I \times I$.

Problem 4

- (1) $T \cap X_n$ is closed for all n because it is a finite set in a Hausdorff space. Since the topology on X is coherent with the filtration, T is closed. The same argument applies to any subspace of T. Since any subspace of T is closed, T has the discrete topology.
- (2) Closed, discrete subspaces of compact spaces are finite [1, 18.13].
- (3) Since T is finite there is an N such that $C \cap (X_{n+1} X_n) = \emptyset$ for all $n \geq N$. This means that $C \subset X_N$.

References

- [1] Jesper M. Møller, General topology, http://www.math.ku.dk/ moller/e03/3gt/notes/gtnotes.dvi.
- [2] James R. Munkres, Topology. Second edition, Prentice-Hall Inc., Englewood Cliffs, N.J., 2000. MR 57 #4063