## Solutions to the January 2005 exam

## Problem 1

$(1) \Longrightarrow(2)$ : Since $f$ is continuous $f^{-1}\left(B^{\circ}\right) \subset f^{-1}(B)^{\circ}[2,18.1][1,13.3]$. The other inclusion, $f^{-1}(B)^{\circ} \subset f^{-1}\left(B^{\circ}\right)$, equivalent to $f\left(f^{-1}(B)^{\circ}\right) \subset B^{\circ}$, follows because $f\left(f^{-1}(B)^{\circ}\right)$ is open and contained in $\left.f\left(f^{-1}(B)\right)\right) \subset B$.
$(2) \Longrightarrow(3): X-f^{-1}(\bar{B})=f^{-1}(Y-\bar{B})=f^{-1}\left((Y-B)^{\circ}\right) \stackrel{(2)}{=} f^{-1}(Y-B)^{\circ}=\left(X-f^{-1}(B)\right)^{\circ}=$ $X-\overline{f^{-1}(B)}$ so that $f^{-1}(\bar{B})=\overline{f^{-1}(B)}$ for all $B \subset Y$.
$(3) \Longrightarrow(2): X-f^{-1}(B)^{\circ}=\overline{X-f^{-1}(B)}=\overline{f^{-1}(Y-B)} \stackrel{(3)}{=} f^{-1}(\overline{Y-B})=f^{-1}\left(Y-B^{\circ}\right)=$ $X-f^{-1}\left(B^{\circ}\right)$ so that $f^{-1}\left(B^{\circ}\right)=f^{-1}(B)^{\circ}$ for all $B \subset Y$.
$(2) \Longrightarrow(1)$ : The inclusion $f^{-1}\left(B^{\circ}\right) \subset f^{-1}(B)^{\circ}$, valid for all $B \subset Y$, tells us that $f$ is continuous. Since $A^{\circ} \subset f^{-1} f(A)^{\circ} \stackrel{(2)}{=} f^{-1}\left(f(A)^{\circ}\right)$, we have $f\left(A^{\circ}\right) \subset f(A)^{\circ}$ for all $A \subset X$. In particular, $f(A)=f\left(A^{\circ}\right) \subset f(A)^{\circ} \subset f(A)$, ie $f(A)=f(A)^{\circ}$, when $A$ is open. Thus $f$ is open.

## Problem 2

(1) $\operatorname{Ext}(A)$ is open because it is the complement of the closed set $\bar{A} . \operatorname{Bd} A$ is closed because it is the intersection of two closed sets.
(2) $X-(\operatorname{Int}(A) \cup \operatorname{Ext}(A))=(X-\operatorname{Int}(A)) \cap \bar{A}=\overline{X-A} \cap \bar{A}=\operatorname{Bd}(A)$ where $\operatorname{Int}(A) \cap \operatorname{Ext}(A) \subset$ $A \cap(X-\bar{A}) \subset A \cap(X-A)=\emptyset$.
(3) Assume that $u(I) \cap \operatorname{Bd}(A)=\emptyset$. Then $[0,1]=u^{-1}(\operatorname{Int} A) \cup u^{-1}(\operatorname{Ext} A)$ is a union of two disjoint open nonempty sets, contradicting connectedness $[2, \S 23][1,16.2]$ of the unit interval [2, 24.2] [1, 17.3].

## Problem 3

(1) Consider the straight line $L_{n} \subset I \times I$ between the points $\frac{1}{n+1} \times 1$ and $\frac{1}{n} \times 1$ of $I \times\{0\} \cup A \times I$. The image $R\left(L_{n}\right)$ is a connected subspace [1, 16.3] of $I \times\{0\} \cup A \times I$ containing the two end-points of $L_{n}$. Since $I \times\{0\} \cup A \times I$ with the point $P_{n}=\frac{1}{2}\left(\frac{1}{n+1}+\frac{1}{n}\right) \times 0$ removed is not connected, $R\left(L_{n}\right)$ contains $P_{n}$.
(2) The sequence $t_{n} \times 1$ converges to $0 \times 1$ and the image sequence $R\left(t_{n} \times 1\right)=P_{n}$ converges to $0 \times 0 \neq 0 \times 1=R(0 \times 1)$ contradicting continuity of $R[1,15.12]$.
Alternative solution: Assume that the map $R$ exists. Then $R$ is a quotient map because it is a map from a compact space onto a Hausdorff space [1, 18.8]. But $I \times\{0\} \cup A \times I$ is not locally connected $[1,17.17]$ so it can not be the quotient space of the locally connected space $I \times I$.

## Problem 4

(1) $T \cap X_{n}$ is closed for all $n$ because it is a finite set in a Hausdorff space. Since the topology on $X$ is coherent with the filtration, $T$ is closed. The same argument applies to any subspace of $T$. Since any subspace of $T$ is closed, $T$ has the discrete topology.
(2) Closed, discrete subspaces of compact spaces are finite [1, 18.13].
(3) Since $T$ is finite there is an $N$ such that $C \cap\left(X_{n+1}-X_{n}\right)=\emptyset$ for all $n \geq N$. This means that $C \subset X_{N}$.

## References

[1] Jesper M. Møller, General topology, http://www.math.ku.dk/ moller/e03/3gt/notes/gtnotes.dvi.
[2] James R. Munkres, Topology. Second edition, Prentice-Hall Inc., Englewood Cliffs, N.J., 2000. MR 57 \#4063

