Mat 3GT Exam January 2003

Solutions

Problem 1

Solution 1: Apply the Extreme value theorem [Thm 27.4] to the identity map $X \rightarrow X$.
Solution 2: Copy the last two paragraphs on p. 174.

Problem 2

(1) Solution 1: [Ex 30.4] For each n there is by compactness a finite set $A_{n} \subset X$ such that all points in X are within distance $1 / n$ from A_{n}. Then $A=\bigcup A_{n}$ is a countable dense subset for $d(x, A) \leq d\left(x, A_{n}\right) \leq 1 / n$ for all $x \in X$ and all $n \geq 1$.
Solution 2: A careful inspection of pp. 191-192 and [Ex 30.5] reveals (no, that isn't very well written) the following theorem:

Theorem 0.1. Let X be a metrizable space. Then
X is $2 n d$ countable $\Leftrightarrow X$ has a countable dense subset $\Leftrightarrow X$ is Lindelöf
In our case, X is metrizable and compact, so it is metrizable and Lindelöf, so it has a countable dense subset.
(2) For any metric, there is a bounded metric giving the same topology [Thm 20.1].
(3) If $f(x)=f(y)$, the continuous [Ex 20.3] functions $z \rightarrow d(x, z)$ and $z \rightarrow d(y, z)$ agree on the dense subspace A, so they agree on X [Ex 18.13, Ex 31.5]. In particular they have the same value at the point x, so $d(x, y)=d(x, x)=0$, so $x=y$. We have shown that f is injective.
The map f is continuous because each coordinate, $x \rightarrow d(x, a)$, is continuous [Thm 19.6, Ex 20.3].

The continuous bijection $f: X \rightarrow f(X)$ is a homeomorphism because X is compact and $[0,1]^{A}$ is Hausdorff [Thm 26.6, Thm 19.4, Thm 31.2].
The image $f(X)$ is closed because it is a compact subspace of a Hausdorff space [Thm 26.3, Thm 26.5].
(4) A countable product of metrizable spaces is metrizable [Thm 20.5], any product of compact spaces is compact [Thm 37.3]; in particular, $[0,1]^{\omega}$ is compact and metrizable. Any subspace of a metrizable space is metrizable [Ex 21.1], any closed subspace of a compact space is compact [Thm 26.2]; in particular, any closed subspace of $[0,1]^{\omega}$ is metrizable and compact.

Problem 3

(1) The extension f^{\bullet} is continuous at all points of X (where it agrees with the continuous map f). The only problem is continuity at $\infty \in X$. This explains the first step in the following argument:
f^{\bullet} is continuous $\Leftrightarrow f^{\bullet}$ is continuous at $\infty \in X$
\Leftrightarrow For any neighborhood $V \subset Y$ of ∞ there is a neighborhood $U \subset X$ of ∞ such that $U \subset f^{-1}(V)$
\Leftrightarrow For any compact $K \subset Y$ there is a compact $L \subset X$ such that $X-L \subset f^{-1}(Y-K)$
\Leftrightarrow For any compact $K \subset Y$ there is a compact $L \subset X$ such that $f^{-1}(K) \subset L$
\Leftrightarrow For any compact $K \subset Y, f^{-1}(K)$ is compact
For the final step, note that if $f^{-1}(K) \subset L$ then $f^{-1}(K)$ is compact [Thm 26.2] as a closed subspace [Thm 26.3] of a compact space.
(2) The map g^{\bullet} is not continuous for $g^{-1}\left(S^{1}\right)=\mathbf{R}$ is not compact [Example 1,p. 164].
Problem 4
(1) The saturation $p^{-1} p(A)=A \cup(-A)$ of any open (resp. closed) subspace $A \subset S^{2}$ is open (resp. closed) because $x \rightarrow-x$ is a homeomorphism of S^{2}. (To see that p is closed one may also note that any continuous map of a compact space into a Hausdorff space is closed [Ex 26.6].)
(2) Solution 1: The map $p: S^{2} \rightarrow P^{2}$ is perfect, S^{2} is 2 nd countable (in fact a manifold), and perfect maps preserve 2nd countability [Ex 31.7(d)].
Solution 2: Let $\left\{B_{n}\right\}$ be a countable basis for S^{2}. Since p is open, $p\left(B_{n}\right)$ is open for all n; indeed $\left\{p\left(B_{n}\right)\right\}$ is a countable basis for P^{2}.
(3) Solution 1: The map $p: S^{2} \rightarrow P^{2}$ is perfect, S^{2} is Hausdorff (in fact a manifold), and perfect maps preserve the Hausdorff property [Ex 31.7(a)].
Solution 2: The map $p: S^{2} \rightarrow P^{2}$ is a closed quotient map, S^{2} is normal (in fact a manifold), and closed quotient maps preserve normality [Ex 31.6].
Solution 3: It is also possible to give a simple ad hoc argument for this particular map.
(4) Solution 1: The restriction $q=p \mid U: U \rightarrow p(U)$ is bijective because $U \cap-U=\emptyset$; it is continuous because it is the restriction of a continuous map [Thm 18.2]; it is open because it is the restriction of an open map to an open subspace [Ex 22.5]; so it is a homeomorphism.
Solution 2: The restriction $q=p \mid U: U \rightarrow p(U)$ is bijective because $U \cap-U=\emptyset$; it is also a quotient map since U is open [Thm 22.1]; a bijective quotient map is a homeomorphism (either directly from the definition or because there exists a continuous map $f: p(U) \rightarrow U$ such that $f \circ q$ is the identity on U [Thm 22.2] so that $q^{-1}=f$ is continuous).
(5) $P^{2}-p(U)=S^{1}$.

Conclusion: P^{2} is a compact manifold [Thm 60.3], $P^{2}=S^{1} \cup B((0,0), 1)$ where S^{1} is the circle and $B((0,0), 1)$ the open unit ball in \mathbf{R}^{2}.

