Mat 3GT Exam January 2003

Solutions

Problem 1

Solution 1: Apply the Extreme value theorem [Thm 27.4] to the identity map $X \to X$.

Solution 2: Copy the last two paragraphs on p. 174.

Problem 2

(1) Solution 1: [Ex 30.4] For each *n* there is by compactness a finite set $A_n \subset X$ such that all points in *X* are within distance 1/n from A_n . Then $A = \bigcup A_n$ is a countable dense subset for $d(x, A) \leq d(x, A_n) \leq 1/n$ for all $x \in X$ and all $n \geq 1$. Solution 2: A careful inspection of pp. 191–192 and [Ex 30.5] reveals (no, that isn't very well written) the following theorem:

Theorem 0.1. Let X be a metrizable space. Then

X is 2nd countable \Leftrightarrow X has a countable dense subset \Leftrightarrow X is Lindelöf

In our case, X is metrizable and compact, so it is metrizable and Lindelöf, so it has a countable dense subset.

(2) For any metric, there is a bounded metric giving the same topology [Thm 20.1]. (3) If f(x) = f(y), the continuous [Ex 20.3] functions $z \to d(x, z)$ and $z \to d(y, z)$ agree on the dense subspace A, so they agree on X [Ex 18.13, Ex 31.5]. In particular they have the same value at the point x, so d(x, y) = d(x, x) = 0, so x = y. We have shown that f is injective.

The map f is continuous because each coordinate, $x \to d(x, a)$, is continuous [Thm 19.6, Ex 20.3].

The continuous bijection $f: X \to f(X)$ is a homeomorphism because X is compact and $[0, 1]^A$ is Hausdorff [Thm 26.6, Thm 19.4, Thm 31.2].

The image f(X) is closed because it is a compact subspace of a Hausdorff space [Thm 26.3, Thm 26.5].

(4) A countable product of metrizable spaces is metrizable [Thm 20.5], any product of compact spaces is compact [Thm 37.3]; in particular, $[0, 1]^{\omega}$ is compact and metrizable. Any subspace of a metrizable space is metrizable [Ex 21.1], any closed subspace of a compact space is compact [Thm 26.2]; in particular, any closed subspace of $[0, 1]^{\omega}$ is metrizable and compact.

Problem 3

(1) The extension f^{\bullet} is continuous at all points of X (where it agrees with the continuous map f). The only problem is continuity at $\infty \in X$. This explains the first step in the following argument:

 f^{\bullet} is continuous $\Leftrightarrow f^{\bullet}$ is continuous at $\infty \in X$

 \Leftrightarrow For any neighborhood $V \subset Y$ of ∞ there is a neighborhood $U \subset X$ of ∞ such that $U \subset f^{-1}(V)$

 \Leftrightarrow For any compact $K \subset Y$ there is a compact $L \subset X$ such that $X - L \subset f^{-1}(Y - K)$

 \Leftrightarrow For any compact $K \subset Y$ there is a compact $L \subset X$ such that $f^{-1}(K) \subset L$

 \Leftrightarrow For any compact $K \subset Y$, $f^{-1}(K)$ is compact

For the final step, note that if $f^{-1}(K) \subset L$ then $f^{-1}(K)$ is compact [Thm 26.2] as a closed subspace [Thm 26.3] of a compact space.

(2) The map g^{\bullet} is not continuous for $g^{-1}(S^1) = \mathbf{R}$ is not compact [Example 1,p. 164].

Problem 4

(1) The saturation $p^{-1}p(A) = A \cup (-A)$ of any open (resp. closed) subspace $A \subset S^2$ is open (resp. closed) because $x \to -x$ is a homeomorphism of S^2 . (To see that p is closed one may also note that any continuous map of a compact space into a Hausdorff space is closed [Ex 26.6].)

(2) Solution 1: The map $p: S^2 \to P^2$ is perfect, S^2 is 2nd countable (in fact a manifold), and perfect maps preserve 2nd countability [Ex 31.7(d)].

Solution 2: Let $\{B_n\}$ be a countable basis for S^2 . Since p is open, $p(B_n)$ is open for all n; indeed $\{p(B_n)\}$ is a countable basis for P^2 .

(3) Solution 1: The map $p: S^2 \to P^2$ is perfect, S^2 is Hausdorff (in fact a manifold), and perfect maps preserve the Hausdorff property [Ex 31.7(a)].

Solution 2: The map $p: S^2 \to P^2$ is a closed quotient map, S^2 is normal (in fact a manifold), and closed quotient maps preserve normality [Ex 31.6].

Solution 3: It is also possible to give a simple ad hoc argument for this particular map.

(4) Solution 1: The restriction $q = p|U: U \to p(U)$ is bijective because $U \cap -U = \emptyset$; it is continuous because it is the restriction of a continuous map [Thm 18.2]; it is open because it is the restriction of an open map to an open subspace [Ex 22.5]; so it is a homeomorphism.

Solution 2: The restriction $q = p|U: U \to p(U)$ is bijective because $U \cap -U = \emptyset$; it is also a quotient map since U is open [Thm 22.1]; a bijective quotient map is a homeomorphism (either directly from the definition or because there exists a continuous map $f: p(U) \to U$ such that $f \circ q$ is the identity on U [Thm 22.2] so that $q^{-1} = f$ is continuous).

(5)
$$P^2 - p(U) = S^1$$
.

Conclusion: P^2 is a compact manifold [Thm 60.3], $P^2 = S^1 \cup B((0,0),1)$ where S^1 is the circle and B((0,0),1) the open unit ball in \mathbb{R}^2 .