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Solutions

Problem 1
Solution 1: Apply the Extreme value theorem [Thm 27.4] to the identity map
X → X.
Solution 2: Copy the last two paragraphs on p. 174.
Problem 2
(1) Solution 1: [Ex 30.4] For each n there is by compactness a finite set An ⊂ X
such that all points in X are within distance 1/n from An. Then A =

⋃
An is a

countable dense subset for d(x,A) ≤ d(x,An) ≤ 1/n for all x ∈ X and all n ≥ 1.
Solution 2: A careful inspection of pp. 191–192 and [Ex 30.5] reveals (no, that isn’t
very well written) the following theorem:

Theorem 0.1. Let X be a metrizable space. Then

X is 2nd countable⇔ X has a countable dense subset⇔ X is Lindelöf

In our case, X is metrizable and compact, so it is metrizable and Lindelöf, so it has
a countable dense subset.
(2) For any metric, there is a bounded metric giving the same topology [Thm 20.1].
(3) If f(x) = f(y), the continuous [Ex 20.3] functions z → d(x, z) and z → d(y, z)
agree on the dense subspace A, so they agree on X [Ex 18.13, Ex 31.5]. In particu-
lar they have the same value at the point x, so d(x, y) = d(x, x) = 0, so x = y. We
have shown that f is injective.
The map f is continuous because each coordinate, x→ d(x, a), is continuous [Thm
19.6, Ex 20.3].
The continuous bijection f : X → f(X) is a homeomorphism because X is compact
and [0, 1]A is Hausdorff [Thm 26.6, Thm 19.4, Thm 31.2].
The image f(X) is closed because it is a compact subspace of a Hausdorff space
[Thm 26.3, Thm 26.5].
(4) A countable product of metrizable spaces is metrizable [Thm 20.5], any prod-
uct of compact spaces is compact [Thm 37.3]; in particular, [0, 1]ω is compact and
metrizable. Any subspace of a metrizable space is metrizable [Ex 21.1], any closed
subspace of a compact space is compact [Thm 26.2]; in particular, any closed sub-
space of [0, 1]ω is metrizable and compact.
Problem 3
(1) The extension f• is continuous at all points of X (where it agrees with the
continuous map f). The only problem is continuity at ∞ ∈ X. This explains the
first step in the following argument:

f• is continuous ⇔ f• is continuous at ∞ ∈ X
⇔ For any neighborhood V ⊂ Y of ∞ there is a neighborhood U ⊂ X of ∞ such that U ⊂ f−1(V )

⇔ For any compact K ⊂ Y there is a compact L ⊂ X such that X − L ⊂ f−1(Y −K)

⇔ For any compact K ⊂ Y there is a compact L ⊂ X such that f−1(K) ⊂ L
⇔ For any compact K ⊂ Y , f−1(K) is compact

For the final step, note that if f−1(K) ⊂ L then f−1(K) is compact [Thm 26.2] as
a closed subspace [Thm 26.3] of a compact space.
(2) The map g• is not continuous for g−1(S1) = R is not compact [Example 1,p.
164].
Problem 4



2

(1) The saturation p−1p(A) = A∪(−A) of any open (resp. closed) subspace A ⊂ S2

is open (resp. closed) because x → −x is a homeomorphism of S2. (To see that
p is closed one may also note that any continuous map of a compact space into a
Hausdorff space is closed [Ex 26.6].)
(2) Solution 1: The map p : S2 → P 2 is perfect, S2 is 2nd countable (in fact a
manifold), and perfect maps preserve 2nd countability [Ex 31.7(d)].
Solution 2: Let {Bn} be a countable basis for S2. Since p is open, p(Bn) is open
for all n; indeed {p(Bn)} is a countable basis for P 2.
(3) Solution 1: The map p : S2 → P 2 is perfect, S2 is Hausdorff (in fact a manifold),
and perfect maps preserve the Hausdorff property [Ex 31.7(a)].
Solution 2: The map p : S2 → P 2 is a closed quotient map, S2 is normal (in fact a
manifold), and closed quotient maps preserve normality [Ex 31.6].
Solution 3: It is also possible to give a simple ad hoc argument for this particular
map.
(4) Solution 1: The restriction q = p|U : U → p(U) is bijective because U ∩−U = ∅;
it is continuous because it is the restriction of a continuous map [Thm 18.2]; it is
open because it is the restriction of an open map to an open subspace [Ex 22.5]; so
it is a homeomorphism.
Solution 2: The restriction q = p|U : U → p(U) is bijective because U ∩ −U = ∅;
it is also a quotient map since U is open [Thm 22.1]; a bijective quotient map
is a homeomorphism (either directly from the definition or because there exists a
continuous map f : p(U)→ U such that f ◦ q is the identity on U [Thm 22.2] so
that q−1 = f is continuous).
(5) P 2 − p(U) = S1.
Conclusion: P 2 is a compact manifold [Thm 60.3], P 2 = S1 ∪ B((0, 0), 1) where
S1 is the circle and B((0, 0), 1) the open unit ball in R2.


