Solutions to the August 2005 exam

Problem 1

(1) $u^{-1}(B) \subset(0,1) \subset[0,1]$ is open in $[0,1]$ (by continuity), $(0,1)$, and \mathbf{R} (since $(0,1)$ is open in \mathbf{R}). Any open and bounded subset of \mathbf{R} is the union of at most countably many disjoint open intervals. (Open subsets of the locally path-connected space \mathbf{R} have open pathcomponents. The open, path-connected, bounded subsets of \mathbf{R} are open intervals. Each of these disjoint open intervals contains a rational number so there are at most countably many of them.)
(2) $u^{-1}(0,0)$ is a closed subset of the compact space $[0,1]$ so it is itself compact. It is covered by the open intervals $\left(a_{i}, b_{i}\right)$. By compactness, it is covered by finitely many of them.
(3) By continuity of $u, u\left(a_{i}\right) \in u\left(\left[a_{i}, b_{i}\right]\right)=u\left(\overline{\left(a_{i}, b_{i}\right)}\right) \subset \overline{u\left(a_{i}, b_{i}\right)} \subset \bar{B}$. As the intervals are disjoint, $a_{i} \notin u^{-1}(B)$, so $u\left(a_{i}\right) \notin B$. Thus $u\left(a_{i}\right)$ is in $\bar{B}-B$. Similarly for the other end-point, b_{i}.

Problem 2

The point $O=(0,0,0)$ has the property that any neighborhood contains a connected neighborhood U such that $U-\{O\}$ has three components. Only the four listed points have this property. Thus any self-homeomorphism of Δ must permute the four points. Any such permutation can be realized by an affine automorphism of \mathbf{R}^{3}.

Problem 3

(1) The Heine-Borel theorem says that S^{1} and W are compact Hausdorff spaces since they are closed and bounded subspaces of \mathbf{R}^{2}.
(2) The curve $S^{1}-\{0 \times 1\}$ has a parameterization of the form $c_{2}:(0,1) \rightarrow \mathbf{R}^{2}$ where c_{2} is a homeomorphism. Similarly, the curve $W-[-1,1]$ has a parameterization of the form $c_{1}:(0,1) \rightarrow \mathbf{R}^{2}$ where c_{1} is a homeomorphism. The maps c_{1} and c_{2} can be more or less explicit. The images of c_{1} and c_{2} are clearly dense in W and S^{1}, respectively.
(3) Define $q: W \rightarrow S^{1}$ by $q c_{1}(t)=c_{2}(t)$ for all $t \in \mathbf{R}$ and $q\left(W-c_{1}(\mathbf{R})\right)=S^{1}-c_{2}(\mathbf{R})$. The map q is continuous as we showed in (General Toplogy, Thm 21.3) or since the pre-image of the intersection of S^{1} with any open ball in \mathbf{R}^{2} is open in W. (Consider separately the open subsets of S^{1} containing the point at infinity and those not containing the point at infinity.) The map q is a closed quotient map by the Closed map Lemma (General Toplogy, Lemma 18.8). Since q sends $[-1,1]$ to a point in S^{1} there is a factorization $\bar{q}: W /[-1,1] \rightarrow S^{1}$ which is again a quotient map (General Topology, Thm 14.15) and, in fact, a homeomorphism as it is bijective (General Topology, Cor 14.9).
(4) Suppose that s_{2} exists. Then s_{2} is injective and, by the Closed map Lemma, an embedding of the compact space S^{1} into the Hausdorff space R. This contradicts the non-existence of such embeddings.
(5) Suppose that s_{1} exists. Then $s_{1}([-1,1]) \subset e^{-1}(1 \times 0)=\mathbf{Z}$. By conectedness, $s_{1}([-1,1])$ is a point. Thus s_{1} factors through $W /[-1,1]=S^{1}$ to give a map s_{2} as in the previous question. Since the map s_{2} does not exits, nor does s_{1}.

