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Munkres §35

Ex. 35.3. Let X be a metrizable topological space.
(i) ⇒ (ii): (We prove the contrapositive.) Let d be any metric on X and ϕ : X → R be an

unbounded real-valued function on X. Then d(x, y) = d(x, y) + |ϕ(x) − ϕ(y)| is an unbounded
metric on X that induces the same topology as d since

Bd(x, ε) ⊂ Bd(x, ε) ⊂ Bd(x, δ)

for any ε > 0 and any δ > 0 such that δ < 1
2ε and d(x, y) < δ ⇒ |ϕ(x)− ϕ(y)| < 1

2ε.
(ii) ⇒ (iii): (We prove the contrapositive.) Let X be a normal space that is not limit point

compact. Then there exists a closed infinite subset A ⊂ X [Thm 17.6]. Let f : X → R be the
extension [Thm 35.1] of any surjection A → Z+. Then f is unbounded.

(iii) ⇒ (i): Any limit point compact metrizable space is compact [Thm 28.2]; any metric on X
is continuous [Ex 20.3], hence bounded [Thm 26.5].

Ex. 35.4. Let Z be a topological space and Y ⊂ Z a subspace. Y is a retract of Z if the identity
map on Y extends continuously to Z, i.e. if there exists a continuous map r : Z → Y such that

Y � _

��

Y

Z

r

??~~~~~~~

commutes.

(a). Y = {z ∈ Z | r(z) = z} is closed if Z is Hausdorff [Ex. 31.5].

(b). Any retract of R2 is connected [Thm 23.5] but A is not connected.

(c). The continuous map r(x) = x/|x| is a retraction of the punctured plane R2 − {0} onto the
circle S1 ⊂ R2 − {0}.

Ex. 35.5. A space Y has the UEP if the diagram

(1) A
f //

� _

��

Y

X
f

>>

has a solution for any closed subspace A of a normal space X.

(a). Another way of formulating the Tietze extension theorem [Thm 35.1] is: [0, 1], [0, 1), and
(0, 1) ' R have the UEP. By the universal property of product spaces [Thm 19.6], map(A,

∏
Xα) =∏

map(A,Xα), any product of spaces with the UEP has the UEP.

(b). Any retract Y of a UEP space Z is a UEP space for in the situation

A� _

��

f // Y �� // Z
roo

X
f
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the continuous map rf : X → Y extends f : A → Y .
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0.1. Ex. 35.6. Let Y be a normal space. We say that Y is an absolute retract if for any imbedding

Y � � i //Z of Y into a closed subspace of a normal space Z there is a map r : Z → Y such that

Y
� � i // Z

r
��

Y

commutes, i.e. such that ri is the identity on Y .

(a). Any space Y with the UEP is an absolute retract: Apply (1) with input Z Y?
_oo Y .

(b). If Y is compact: Y has the UEP ⇔ Y is an absolute retract. (Cf. [Ex 35.8])
The compact Hausdorff spaces are precisely the spaces that are homeomorphic to a closed subspace
of [0, 1]J for some set J [Thm 34.3, Thm 37.3]. Therefore any compact Hausdorff space that is also
an absolute retract is a retract of the UEP space [0, 1]J , hence is itself a UEP space [Ex 31.5.(b)].

Ex. 35.7.

(a). The space C ⊂ R2 is a closed subspace of the normal space R2 homeomorphic to [0,∞). The
Tietze theorem (small variation of [Thm 35.1.(b)]) says that [0,∞) has the UEP. Therefore [0,∞)
is an absolute retract [Ex 35.6] and C is retract of R2. The continuous map r : R2 → C given by

r(x) =

{
|x| cos log |x| × log |x| sin log |x| x 6= 0× 0
0× 0 x = 0× 0

is a retraction of R2 onto the logarithmic spiral C.

(b). The space K ⊂ R3 is a closed subspace of the normal space R3 homeomorphic to R. The
Tietze theorem says that R has the UEP. Therefore R is an absolute retract [Ex 35.6] and K is
a retract of R3; I can’t find an explicit retraction R3 → K, though.

Ex. 35.8. (Adjunction spaces [1, p 93] [2, Chp I, Exercise B, p 56]) Let X and Y be two disjoint
topological spaces and f : A → Y a continuous map defined on a closed subspace A of X. Define
X ∪f Y to be the quotient of X ∪ Y by the smallest equivalence relation such that a ∈ A and
f(a) ∈ Y are equivalent for all points a ∈ A. (To picture this, tie an elastic band from each point
a of A to its image f(a) in Y and let go!) The equivalence classes, [y] = f−1(y) ∪ {y} for y ∈ Y
and [x] = {x} for x ∈ X−A, are represented by points in Y or in X−A. Let p : X ∪ Y → X ∪f Y
be the quotient map; pX the restriction of p to X and pY the restriction of p to Y .

The adjunction space X ∪f Y fits into a commutative diagram

A� _

i

��

f // Y

pY

��
X pX

// X ∪f Y

called a push-out diagram because of this universal property: If X → Z and Y → Z are continuous
maps that agree on A then there is [Thm 22.2] a unique continuous map X ∪f Y → Z such that
the diagram

(2) A� _

i

��

f // Y

pY

��

��

X pX

//

,,

X ∪f Y
∃!
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commutes. (This is just the universal property for quotient spaces in this particular situation.)
Here are the main properties of adjunction spaces.

Lemma 1. Let p : X ∪ Y → X ∪f Y be the quotient map.
(1) The quotient map p embeds Y into a closed subspace of X ∪f Y . (We therefore identify Y

with its image pY (Y ) in the adjunction space.)
(2) The quotient map p embeds X −A into the open subspace (X ∪f Y )−Y of the adjunction

space.
(3) If X and Y are normal, also the adjunction space X ∪f Y is normal.
(4) The projection map p : X ∪ Y → X ∪f Y is closed if (and only if [1, p 93]) f is closed.

Proof. (1) The map pY = p|Y : Y → X ∪f Y is closed for closed sets B ⊂ Y ⊂ X q Y have closed
saturations f−1(B)qB. Since pY is also injective it is an embedding.
(2) The map pX |X −A : X −A → (X ∪f Y open because the saturation of any (open) subset U
of X −A is U ∪ ∅ ⊂ X ∪ Y itself. Since pX |X −A is also injective it is an embedding.
(3) Points are closed in the quotient space X ∪f Y because the equivalence classes are closed in
X ∪ Y . Let C and D be two disjoint closed subspaces of X ∪f Y . We will show that there is a
continuous map X∪f Y → [0, 1] with value 0 on C and value 1 on D. Since Y is normal, there exists
[Thm 33.1] a Urysohn function g : Y → [0, 1] such that g(Y ∩C) = {0} and g(Y ∩D) = {1}. Since
X is normal, by the Tietze extension theorem [Thm 35.1], there is a continuous map X → [0, 1]
which is 0 on p−1

X (C), 1 on p−1
X (D), and is g ◦ f on A. By the universal property for adjunction

spaces (2), there is a map X ∪f Y → [0, 1] that is 0 on C and 1 on D. This shows that C and D
can be separated by a continuous function and that X ∪f Y is normal.
(4) Closed subsets of Y always have closed saturations as we saw in item (1). If f is closed then
also the saturation, B ∪ f−1f(A ∩ B) ∪ f(A ∩ B) ⊂ X ∪ Y , of a closed subset B ⊂ X is closed.
(Since closed quotient maps (surjective closed maps) preserve normality [Ex 31.6, Thm 73.3] this
gives an easy proof of (3) under the additional assumption that f : A → Y be a closed map.) �

The adjunction space is the disjoint union of a closed subspace homeomorphic to Y and an
open subspace homeomorphic to X −A.

Theorem 2. [2, Chp I, Exercise C, p 56] Let Y be a normal space. Then Y has the universal
extension property if and only if Y is an absolute retract.

Proof. One direction was proved already in Ex 35.6. For the other direction, suppose that the
normal space Y is an absolute retract. Let X be any normal space, A a closed subspace of X,
and f : A → Y a continuous map. Form the adjunction space Z = X ∪f Y . Then Z is normal (as
we have just seen) and Y is (homeomorphic) to a closed subspace of Z. Since Y is an absolute
retract, there is a retraction r : Z → Y of Z onto Y . These maps are shown in the commutative
diagram

A� _

i

��

f // Y

pY

�� GG
GG

GG
GG

GG

GG
GG

GG
GG

GG

X pX

// X ∪f Y
r

// Y

which says that r ◦ pX : X → Y is an extensiom of f : A → Y . This shows that Y has the universal
extension property. �
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