9th June 2005

Munkres §33

Ex. 33.1 (Morten Poulsen). Let $r \in [0, 1]$. Recall from the proof of the Urysohn lemma that if p < q then $\overline{U}_p \subset U_q$. Furthermore, recall that $U_q = \emptyset$ if q < 0 and $U_p = X$ if p > 1.

Claim 1. $f^{-1}(\lbrace r \rbrace) = \bigcap_{p > r} U_p - \bigcup_{q < r} U_q, \ p, q \in \mathbf{Q}.$

Proof. By the construction of $f: X \to [0, 1]$,

$$\bigcap_{p>0} U_p - \bigcup_{q<0} U_q = \bigcap_{p>0} U_p = f^{-1}(\{0\})$$

and

$$\bigcap_{p>1} U_p - \bigcup_{q<1} U_q = X - \bigcup_{q<1} U_q = f^{-1}(\{1\}).$$

Now assume $r \in (0, 1)$.

"C": Let $x \in f^{-1}(\{r\})$, i.e. $f(x) = r = \inf\{p \mid x \in U_p\}$. Note that $x \notin \bigcup_{q < r} U_q$, since f(x) = r. Suppose there exists t > r, $t \in \mathbf{Q}$, such that $x \notin U_t$. Since f(x) = r, there exists $s \in \mathbf{Q}$ such that $r \leq s < t$ and $x \in U_s$. Now $x \in U_s \subset \overline{U}_s \subset U_t$, contradiction. It follows that $x \in \bigcap_{p > r} U_p - \bigcup_{q < r} U_q$.

"⊃": Let $x \in \bigcap_{p>r} U_p - \bigcup_{q < r} U_q$. Note that $f(x) \le r$, since $x \in \bigcap_{p>r} U_p$. Suppose f(x) < r, i.e. there exists t < r such that $x \in U_t \subset \bigcup_{q < r} U_q$, contradiction. It follows that $x \in f^{-1}(\{r\})$. \Box

Ex. 33.4 (Morten Poulsen).

Theorem 2. Let X be normal. There exists a continuous function $f : X \to [0,1]$ such that f(x) = 0 for $x \in A$, and f(x) > 0 for $x \notin A$, if and only if A is a closed G_{δ} set in X.

Proof. Suppose $A = f^{-1}(\{0\})$. Since

$$A = f^{-1}(\{0\}) = f^{-1}(\bigcap_{n \in \mathbf{Z}_+} [0, 1/n]) = \bigcap_{n \in \mathbf{Z}_+} f^{-1}([0, 1/n])$$

it follows that A is a closed G_{δ} set.

Conversely suppose A is a closed G_{δ} set, i.e. $A = \bigcap_{n \in \mathbb{Z}_+} U_n$, U_n open. Then $X - U_n$ and A are closed and disjoint for all n. By Urysohn's lemma there exists a continuous function $f_n : X \to [0, 1]$, such that $f_n(A) = \{0\}$ and $f_n(X - U_n) = \{1\}$.

Now define $f: X \to [0, 1]$ by

$$f(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} f_i(x).$$

Clearly f is well-defined. Furthermore f is continuous, by theorem 21.6, since the sequence of continuous functions $\left(\sum_{i=1}^{n} \frac{1}{2^{i}} f_{i}(x)\right)_{n \in \mathbf{Z}_{+}}$ converges uniformly to f, since

$$\left|\sum_{i=1}^{\infty} \frac{1}{2^{i}} f_{i}(x) - \sum_{i=1}^{n} \frac{1}{2^{i}} f_{i}(x)\right| = \sum_{i=n+1}^{\infty} \frac{1}{2^{i}} f_{i}(x) \le \sum_{i=n+1}^{\infty} \frac{1}{2^{i}} \to 0$$

for $n \to \infty$.

Clearly f(x) = 0 for $x \in A$. Furthermore note that if $x \notin A$ then $x \in X - U_n$ for some n, hence $f(x) \ge \frac{1}{2^n} f_n(x) = \frac{1}{2^n} > 0$.

Ex. 33.5 (Morten Poulsen).

Theorem 3 (Strong form of the Urysohn lemma). Let X be a normal space. There is a continuous function $f: X \to [0, 1]$ such that f(x) = 0 for $x \in A$, and f(x) = 1 for $x \in B$, and 0 < f(x) < 1 otherwise, if and only if A and B are disjoint closed G_{δ} sets in X.

 $\mathbf{2}$

Proof. Suppose $f: X \to [0,1]$ is a continuous function. Then clearly $A = f^{-1}(\{0\})$ and $B = f^{-1}(\{1\})$ are disjoint. Since

$$A = f^{-1}(\{0\}) = f^{-1}(\bigcap_{n \in \mathbf{Z}_+} [0, 1/n)) = \bigcap_{n \in \mathbf{Z}_+} f^{-1}([0, 1/n))$$

and

$$B = f^{-1}(\{1\}) = f^{-1}(\bigcap_{n \in \mathbf{Z}_+} (1 - 1/n, 1]) = \bigcap_{n \in \mathbf{Z}_+} f^{-1}((1 - 1/n, 1])$$

it follows that A and B are disjoint closed G_{δ} sets in X.

Conversely suppose A and B are disjoint closed G_{δ} sets in X. By ex. 33.4 there exists continuous functions $f_A: X \to [0,1]$ and $f_B: X \to [0,1]$, such that $f_A^{-1}(\{0\}) = A$ and $f_B^{-1}(\{0\}) = B$. Now the function $f: X \to [0,1]$ defined by

$$f(x) = \frac{f_A(x)}{f_A(x) + f_B(x)}$$

is well-defined and clearly continuous. Furthermore $f^{-1}(\{0\}) = A$ and $f^{-1}(\{1\}) = B$, since $f(x) = 0 \Leftrightarrow f_A(x) = 0 \Leftrightarrow x \in A$

and

$$f(x) = 1 \Leftrightarrow f_A(x) = f_A(x) + f_B(x) \Leftrightarrow f_B(x) = 0 \Leftrightarrow x \in B.$$

Ex. 33.7. For any topological space X we have the following implications:

X is locally compact Hausdorff

 $\stackrel{\operatorname{Cor}\,29.4}{\Rightarrow}X$ is an open subspace of a compact Hausdorff space

 $\stackrel{\text{Thm 32.2}}{\Rightarrow} X \text{ is a subspace of a normal space}$

 $\stackrel{\rm Thm \ 33.1}{\Rightarrow} X$ is a subspace of a completely regular space

 $\stackrel{\rm Thm \ 33.2}{\Rightarrow} X \text{ is completely regular}$

Ex. 33.8. Using complete regularity of X and compactness of A, we see that there is a continuous real-valued function $g: X \to [0, 1]$ such that $g(a) < \frac{1}{2}$ for all $a \in A$ and $g(B) = \{1\}$. (There are finitely many continuous functions $g_1, \ldots, g_k: X \to [0, 1]$ such that $A \subset \bigcup \{g_i < \frac{1}{2}\}$ and $g_i(B) = 1$ for all *i*. Put $g = \frac{1}{k} \sum g_i$.) The continuous [Ex 18.8] function $f = 2 \max\{0, g - \frac{1}{2}\}$ maps X into the unit interval, $g(A) = \{0\}$, and $g(B) = \{1\}$.

References