Munkres §33

Ex. 33.1 (Morten Poulsen). Let $r \in[0,1]$. Recall from the proof of the Urysohn lemma that if $p<q$ then $\bar{U}_{p} \subset U_{q}$. Furthermore, recall that $U_{q}=\emptyset$ if $q<0$ and $U_{p}=X$ if $p>1$.
Claim 1. $f^{-1}(\{r\})=\bigcap_{p>r} U_{p}-\bigcup_{q<r} U_{q}, p, q \in \mathbf{Q}$.
Proof. By the construction of $f: X \rightarrow[0,1]$,

$$
\bigcap_{p>0} U_{p}-\bigcup_{q<0} U_{q}=\bigcap_{p>0} U_{p}=f^{-1}(\{0\})
$$

and

$$
\bigcap_{p>1} U_{p}-\bigcup_{q<1} U_{q}=X-\bigcup_{q<1} U_{q}=f^{-1}(\{1\}) .
$$

Now assume $r \in(0,1)$.
$" \subset "$: Let $x \in f^{-1}(\{r\})$, i.e. $f(x)=r=\inf \left\{p \mid x \in U_{p}\right\}$. Note that $x \notin \bigcup_{q<r} U_{q}$, since $f(x)=r$. Suppose there exists $t>r, t \in \mathbf{Q}$, such that $x \notin U_{t}$. Since $f(x)=r$, there exists $s \in \mathbf{Q}$ such that $r \leq s<t$ and $x \in U_{s}$. Now $x \in U_{s} \subset \bar{U}_{s} \subset U_{t}$, contradiction. It follows that $x \in \bigcap_{p>r} U_{p}-\bigcup_{q<r} U_{q}$.
$" \supset ":$ Let $x \in \bigcap_{p>r} U_{p}-\bigcup_{q<r} U_{q}$. Note that $f(x) \leq r$, since $x \in \bigcap_{p>r} U_{p}$. Suppose $f(x)<r$, i.e. there exists $t<r$ such that $x \in U_{t} \subset \bigcup_{q<r} U_{q}$, contradiction. It follows that $x \in f^{-1}(\{r\})$.

Ex. 33.4 (Morten Poulsen).

Theorem 2. Let X be normal. There exists a continuous function $f: X \rightarrow[0,1]$ such that $f(x)=0$ for $x \in A$, and $f(x)>0$ for $x \notin A$, if and only if A is a closed G_{δ} set in X.

Proof. Suppose $A=f^{-1}(\{0\})$. Since

$$
A=f^{-1}(\{0\})=f^{-1}\left(\bigcap_{n \in \mathbf{Z}_{+}}[0,1 / n)\right)=\bigcap_{n \in \mathbf{Z}_{+}} f^{-1}([0,1 / n))
$$

it follows that A is a closed G_{δ} set.
Conversely suppose A is a closed G_{δ} set, i.e. $A=\bigcap_{n \in \mathbf{Z}_{+}} U_{n}, U_{n}$ open. Then $X-U_{n}$ and A are closed and disjoint for all n. By Urysohn's lemma there exists a continuous function $f_{n}: X \rightarrow[0,1]$, such that $f_{n}(A)=\{0\}$ and $f_{n}\left(X-U_{n}\right)=\{1\}$.

Now define $f: X \rightarrow[0,1]$ by

$$
f(x)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} f_{i}(x)
$$

Clearly f is well-defined. Furthermore f is continuous, by theorem 21.6, since the sequence of continuous functions $\left(\sum_{i=1}^{n} \frac{1}{2^{i}} f_{i}(x)\right)_{n \in \mathbf{Z}_{+}}$converges uniformly to f, since

$$
\left|\sum_{i=1}^{\infty} \frac{1}{2^{i}} f_{i}(x)-\sum_{i=1}^{n} \frac{1}{2^{i}} f_{i}(x)\right|=\sum_{i=n+1}^{\infty} \frac{1}{2^{i}} f_{i}(x) \leq \sum_{i=n+1}^{\infty} \frac{1}{2^{i}} \rightarrow 0
$$

for $n \rightarrow \infty$.
Clearly $f(x)=0$ for $x \in A$. Furthermore note that if $x \notin A$ then $x \in X-U_{n}$ for some n, hence $f(x) \geq \frac{1}{2^{n}} f_{n}(x)=\frac{1}{2^{n}}>0$.

Ex. 33.5 (Morten Poulsen).

Theorem 3 (Strong form of the Urysohn lemma). Let X be a normal space. There is a continuous function $f: X \rightarrow[0,1]$ such that $f(x)=0$ for $x \in A$, and $f(x)=1$ for $x \in B$, and $0<f(x)<1$ otherwise, if and only if A and B are disjoint closed G_{δ} sets in X.

Proof. Suppose $f: X \rightarrow[0,1]$ is a continuous function. Then clearly $A=f^{-1}(\{0\})$ and $B=$ $f^{-1}(\{1\})$ are disjoint. Since

$$
A=f^{-1}(\{0\})=f^{-1}\left(\bigcap_{n \in \mathbf{Z}_{+}}[0,1 / n)\right)=\bigcap_{n \in \mathbf{Z}_{+}} f^{-1}([0,1 / n))
$$

and

$$
B=f^{-1}(\{1\})=f^{-1}\left(\bigcap_{n \in \mathbf{Z}_{+}}(1-1 / n, 1]\right)=\bigcap_{n \in \mathbf{Z}_{+}} f^{-1}((1-1 / n, 1])
$$

it follows that A and B are disjoint closed G_{δ} sets in X.
Conversely suppose A and B are disjoint closed G_{δ} sets in X. By ex. 33.4 there exists continuous functions $f_{A}: X \rightarrow[0,1]$ and $f_{B}: X \rightarrow[0,1]$, such that $f_{A}^{-1}(\{0\})=A$ and $f_{B}^{-1}(\{0\})=B$. Now the function $f: X \rightarrow[0,1]$ defined by

$$
f(x)=\frac{f_{A}(x)}{f_{A}(x)+f_{B}(x)}
$$

is well-defined and clearly continuous. Furthermore $f^{-1}(\{0\})=A$ and $f^{-1}(\{1\})=B$, since

$$
f(x)=0 \Leftrightarrow f_{A}(x)=0 \Leftrightarrow x \in A
$$

and

$$
f(x)=1 \Leftrightarrow f_{A}(x)=f_{A}(x)+f_{B}(x) \Leftrightarrow f_{B}(x)=0 \Leftrightarrow x \in B .
$$

Ex. 33.7. For any topological space X we have the following implications:
X is locally compact Hausdorff
$\stackrel{\text { Cor } 29.4}{\Rightarrow} X$ is an open subspace of a compact Hausdorff space
Thm $_{\Rightarrow}^{32.2} X$ is a subspace of a normal space
$\stackrel{\text { Thm }}{\Rightarrow}{ }^{33.1} X$ is a subspace of a completely regular space
$\stackrel{\text { Thm }}{\Rightarrow}{ }^{33.2} X$ is completely regular

Ex. 33.8. Using complete regularity of X and compactness of A, we see that there is a continuous real-valaued function $g: X \rightarrow[0,1]$ such that $g(a)<\frac{1}{2}$ for all $a \in A$ and $g(B)=\{1\}$. (There are finitely many continuous functions $g_{1}, \ldots, g_{k}: X \rightarrow[0,1]$ such that $A \subset \bigcup\left\{g_{i}<\frac{1}{2}\right\}$ and $g_{i}(B)=1$ for all i. Put $g=\frac{1}{k} \sum g_{i}$.) The continuous [Ex 18.8] function $f=2 \max \left\{0, g-\frac{1}{2}\right\}$ maps X into the unit interval, $g(A)=\{0\}$, and $g(B)=\{1\}$.

References

