Munkres §32

Ex. 32.1. Let Y be a closed subspace of the normal space X. Then Y is Hausdorff [Thm 17.11]. Let A and B be disjoint closed subspaces of Y. Since A and B are closed also in X, they can be separated in X by disjoint open sets U and V. Then $Y \cap U$ and $V \cap Y$ are open sets in Y separating A and B.
Ex. 32.3. Look at [Thm 29.2] and [Lemma 31.1]. By [Ex 33.7], locally compact Hausdorff spaces are even completely regular.

Ex. 32.4. Let A and B be disjoint closed subsets of a regular Lindelöf space. We proceed as in the proof of [Thm 32.1]. Each point $a \in A$ has an open neighborhood U_{a} with closure \bar{U}_{a} disjoint from B. Applying the Lindelöf property to the open covering $\left\{U_{a}\right\}_{a \in A} \cup\{X-A\}$ we get a countable open covering $\left\{U_{i}\right\}_{i \in \mathbf{Z}_{+}}$of A such that the closure of each U_{i} is disjoint from B. Similarly, there is a countable open covering $\left\{V_{i}\right\}_{i \in \mathbf{Z}_{+}}$of B such that the closure of each V_{i} is disjoint from A. Now the open set $\bigcup U_{i}$ contains A and $\bigcup V_{i}$ contains B but these two sets are not necessarily disjoint. If we put $U_{1}^{\prime}=U_{1}-\overline{V_{1}}, U_{2}^{\prime}=U_{2}-\overline{V_{1}}-\overline{V_{2}}, \ldots, U_{i}^{\prime}=U_{i}-\overline{V_{1}}-\cdots-\overline{V_{i}}, \ldots$ we subtract no points from A so that the open sets $\left\{U_{i}^{\prime}\right\}$ still form an open covering of A. Similarly, the open sets $\left\{V_{i}^{\prime}\right\}$, where $V_{i}^{\prime}=V_{i}-\overline{U_{1}}-\cdots-\overline{U_{i}}$, cover B. Moreover, the open sets $\bigcup U_{i}^{\prime}$ and $\cup V_{i}^{\prime}$ are disjoint for U_{i}^{\prime} is disjoint from $V_{1} \cup \cdots \cup V_{i}$ and V_{i}^{\prime} is disjoint from $U_{1} \cup \cdots \cup U_{i}$.
Ex. 32.5. \mathbf{R}^{ω} (in product topology) is metrizable [Thm 20.5], in particular normal [Thm 32.2]. \mathbf{R}^{ω} in the uniform topology is, by its very definition [Definition p. 124], metrizable, hence normal.
Ex. 32.6. Let X be completely normal and let A and B be separated subspaces of X; this means that $A \cap \bar{B}=\emptyset=\bar{A} \cap B$. Note that A and B are contained in the open subspace $X-(\bar{A} \cap \bar{B})=(X-\bar{A}) \cup(X-\bar{B})$ where their closures are disjoint. (The closure of A in $X-(\bar{A} \cap \bar{B})$ is $\bar{A}-\bar{B}$ [Thm 17.4].) The subspace $X-(\bar{A} \cap \bar{B})$ is normal so it contains disjoint open subsets $U \supset A$ and $V \supset B$. Since U and V are open in an open subspace, they are open [Lemma 16.2].

Conversely, suppose that X satisfies the condition (and is a T_{1}-space). Let Y be any subspace of X and A and B two disjoint closed subspaces of Y. Since $\bar{A} \cap Y$ and $\bar{B} \cap Y$ are disjoint [Thm 17.4], $\bar{A} \cap B=\bar{A} \cap(Y \cap B)=(\bar{A} \cap Y) \cap(B \cap Y)=\emptyset$, and, similarly, $A \cap \bar{B}=\emptyset$. By assumption, A and B can then be separated by disjoint open sets. If we also assume that X is T_{1} then it follows that Y is normal.

References

