1st December 2004
Munkres §31

Ex. 31.1 (Morten Poulsen). Let a and b be distinct points of X. Note that X is Hausdorff,
since X is regular. Thus there exists disjoint open sets A and B such that a € A and b € B. By
lemma 31.1(a) there exists open sets U and V such that

acUcUcCcAandbeV CcV CB.
Clearly UNV = 0.

Ex. 31.2 (Morten Poulsen). Let A and B be disjoint closed subsets of X. Since X normal
there exists disjoint open sets Uy and Uy such that A C Uy and B C U;. By lemma 31.1(b) there
exists open sets Vy and V; such that

AcVocVocUyjand BCc Vi CcV; CcU;y
Clearly UNV = 0.

Ex. 31.3 (Morten Poulsen).
Theorem 1. Every order topology is reqular.

Proof. Let X be an ordered set. Let x € X and let U be a neighborhood of z, may assume
U =(a,b), —00o <a<b<oo. Set A= (a,z) and B = (z,b). Using the criterion for regularity in
lemma 31.1(b) there are four cases:

(1) fue A and v € B then z € (u,v) C (u,v) C [u,v] C (a,b).

(2) If A= B =0 then (a,b) = {z} is open and closed, since X Hausdorff, c.f. Ex. 17.10.
(3) f A=0 and v € B then = € (a,v) C= [z,v) C [z,v) C [z,v] C (a,b).

(4) f u € A and B = 0 then z € (u,b) C (u,z] C (u,z] C [u,z] C (a,b).

Thus X is regular. O

Ex. 31.5. The diagonal A C Y x Y is closed as Y is Hausdorff [Ex 17.13]. The map (f,g) : X —
Y x Y is continuous [Thm 18.4, Thm 19.6] so

{reX | flz)=g(@)}=(f9)7" (D)

is closed.

Ex. 31.6. Let p: X — Y be closed continuous surjective map. Then X normal = Y normal.
For this exercise and the next we shall use the following lemma from [Ex 26.12].

Lemma 2. Let p: X — Y be a closed map.

(1) Ifp~Y(y) C U where U is an open subspace of X, then p~t(W) C U for some neighborhood
W CY ofy.

(2) If p~1(B) C U for some subspace B of Y and some open subspace U of X, then p~t(W) C
U for some neighborhood W CY of B.

Proof. Note that

p I W)CUs pla)eW=z€eU]le [z¢U=pla)¢W]epX-U)CY-W
SpX-U)NW =10

(1) The point y does not belong to the closed set p(X — U). Therefore a whole neighborhood

W CY of y is disjoint from p(X — U), i.e. p~ (W) C U.

(2) Each point y € B has a neighborhood W, such that p~!(W,) C U. The union W = |JW,, is

then a neighborhood of B with p~!(W) C U. O
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Since points are closed in X and p is closed, all points in p(X) are closed. All fibres p~t(y) C X
are therefore also closed. Let y; and yo be two distinct points in Y. Since X is normal we
can separate the disjoint closed sets p~!(y;) and p~!(y;) by disjoint neighborhoods U; and Us.
Using Lemma 2.(1), choose neighborhoods W of y; and Wa of ya such that p~1(W;) C U; and
p~1(W3) C Us. Then Wy and Wy are disjoint. Thus Y is Hausdorff.

Essentially the same argument, but now using Lemma 2.(2), shows that we can separate disjoint
closed sets in Y by disjoint open sets. Thus Y is normal.

Alternatively, see [Lemma 73.3].

Example: If X is normal and A C X is closed, then the quotient space X/A is normal.

Ex. 31.7. Let p: X — Y be closed continuous surjective map such that p~!(y) is compact for
each y € Y (a perfect map).

(a). X Hausdorff = Y Hausdorff.
Let y; and ys be two distinet points in Y. By an upgraded version [Ex 26.5] of [Lemma 26.4] we
can separate the two disjoint compact subspaces p~!(y1) and p~!(y2) by disjoint open subspaces
U; D p~Y(y1) and Uy D p~t(ya) of the Hausdorff space X. Choose (Lemma 2) open sets W1 3 y;
and Wy 3 yo such that p=*(W;) C Uy and p~*(Ws) C Us. Then Wi and Wy are disjoint. This
shows that Y is Hausdorff as well.

(b). X regular = Y regular.

Y is Hausdorff by (a). Let C C Y be a closed subspace and y € Y a point outside C. It is enough
to separate the compact fibre p~!(y) C X and the closed set p~1(C') C X by disjoint open set.
(Lemma 2 will provide open sets in Y separating y and C.) Each z € p~!(y) can be separated by
disjoint open sets from p~1(C) since X is regular. Using compactness of p~1(y) we obtain (as in
the proof [Thm 26.3]) disjoint open sets U D p~*(y) and V D p~1(C) as required.

(¢). X locally compact = Y locally compact [1, 3.7.21].

Using compactness of p~!(y) and local compactness of X we construct an open subspace U C X
and a compact subspace C C X such that p~!(y) € U C C. In the process we need to know
that a finite union of compact subspaces is compact [Ex 26.3]. By Lemma 2, there is an open set
W > y such that p~!(y) Cp~ (W) Cc U C C. Then y € W C p(C) where p(C) is compact [Thm
26.5]. Thus Y is locally compact.

(d). X 2nd countable = Y 2nd countable.
Let {B;}jez. be countable basis for X. For each finite subset J C Z,, let U; C X be the union of
all open sets of the form p~!(W) with open W C Y and p~}(W) C Ujes Bj- There are countably
many open sets Ujy. The image p(Uy) is a union of open sets in Y, hence open. Let now V C Y
be any open subspace. The inverse image p~1(V) = Uyevp’l(y) is a union of fibres. Since each
fibre p~1(y) is compact, it can be covered by a finite union J s Bi of basis sets contained in
p~1(V). By Lemma 2, there is an open set W C Y such that p~1(y) C p~ (W) C Ujerw) Bi-
Taking the union of all these open sets W, we get p~!(y) C Usy) C UjeJ(y) B; Cc p7 (V). We
now have p~' (V') = U, cy Usy) so that V = pp~ (V) = U,y P(Us(y)) is a union of sets from the
countable collection {p(U;s)} of open sets. Thus Y is 2nd countable.

Example: If Y is compact, then the projection map mo: X x Y — Y is perfect. (Show that
7o is closed!)

Ex. 31.8. Tt is enough to show that p: X — G\X is a perfect map [Ex 31.6, Ex 31.7]. We show

that

(1) The saturation GA of any closed subspace A C X is closed. (The map p is closed.)
(2) The orbit Gz of any point € X is compact. (The fibres p~!(Gz) = Gx are compact.)

(1) Let y € X be any point outside GA = UgEG gA. For any g € G, g~ 'y is outside the closed set
A C X. By continuity of the action G x X — X

U 'VacX—A



for open sets G D U, > g and X C V; > y. The compact space G can be covered by finitely
many of the open sets Uy, say G = U1 U---UU,. Let V =V, N---NV, be the intersection of the
corresponding neighborhoods of y. Then

¢clv=JutvclJuivicx -4

soyeVCcGX-A)=X-GA.
(2) The orbit Gz of a point z € X is compact because [Thm 26.5] it is the image of the compact
space G under the continuous map G — X: g — gz.
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