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Munkres §31

Ex. 31.1 (Morten Poulsen). Let a and b be distinct points of X. Note that X is Hausdorff,
since X is regular. Thus there exists disjoint open sets A and B such that a ∈ A and b ∈ B. By
lemma 31.1(a) there exists open sets U and V such that

a ∈ U ⊂ U ⊂ A and b ∈ V ⊂ V ⊂ B.

Clearly U ∩ V = ∅.

Ex. 31.2 (Morten Poulsen). Let A and B be disjoint closed subsets of X. Since X normal
there exists disjoint open sets U0 and U1 such that A ⊂ U0 and B ⊂ U1. By lemma 31.1(b) there
exists open sets V0 and V1 such that

A ⊂ V0 ⊂ V0 ⊂ U0 and B ⊂ V1 ⊂ V1 ⊂ U1

Clearly U ∩ V = ∅.

Ex. 31.3 (Morten Poulsen).

Theorem 1. Every order topology is regular.

Proof. Let X be an ordered set. Let x ∈ X and let U be a neighborhood of x, may assume
U = (a, b), −∞ ≤ a < b ≤ ∞. Set A = (a, x) and B = (x, b). Using the criterion for regularity in
lemma 31.1(b) there are four cases:

(1) If u ∈ A and v ∈ B then x ∈ (u, v) ⊂ (u, v) ⊂ [u, v] ⊂ (a, b).
(2) If A = B = ∅ then (a, b) = {x} is open and closed, since X Hausdorff, c.f. Ex. 17.10.
(3) If A = ∅ and v ∈ B then x ∈ (a, v) ⊂= [x, v) ⊂ [x, v) ⊂ [x, v] ⊂ (a, b).
(4) If u ∈ A and B = ∅ then x ∈ (u, b) ⊂ (u, x] ⊂ (u, x] ⊂ [u, x] ⊂ (a, b).

Thus X is regular. �

Ex. 31.5. The diagonal ∆ ⊂ Y ×Y is closed as Y is Hausdorff [Ex 17.13]. The map (f, g) : X →
Y × Y is continuous [Thm 18.4, Thm 19.6] so

{x ∈ X | f(x) = g(x)} = (f, g)−1(∆)

is closed.

Ex. 31.6. Let p : X → Y be closed continuous surjective map. Then X normal ⇒ Y normal.
For this exercise and the next we shall use the following lemma from [Ex 26.12].

Lemma 2. Let p : X → Y be a closed map.

(1) If p−1(y) ⊂ U where U is an open subspace of X, then p−1(W ) ⊂ U for some neighborhood
W ⊂ Y of y.

(2) If p−1(B) ⊂ U for some subspace B of Y and some open subspace U of X, then p−1(W ) ⊂
U for some neighborhood W ⊂ Y of B.

Proof. Note that

p−1(W ) ⊂ U ⇔
[
p(x) ∈ W ⇒ x ∈ U

]
⇔

[
x 6∈ U ⇒ p(x) 6∈ W

]
⇔ p(X − U) ⊂ Y −W

⇔ p(X − U) ∩W = ∅

(1) The point y does not belong to the closed set p(X − U). Therefore a whole neighborhood
W ⊂ Y of y is disjoint from p(X − U), i.e. p−1(W ) ⊂ U .
(2) Each point y ∈ B has a neighborhood Wy such that p−1(Wy) ⊂ U . The union W =

⋃
Wy is

then a neighborhood of B with p−1(W ) ⊂ U . �
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Since points are closed in X and p is closed, all points in p(X) are closed. All fibres p−1(y) ⊂ X
are therefore also closed. Let y1 and y2 be two distinct points in Y . Since X is normal we
can separate the disjoint closed sets p−1(y1) and p−1(y1) by disjoint neighborhoods U1 and U2.
Using Lemma 2.(1), choose neighborhoods W1 of y1 and W2 of y2 such that p−1(W1) ⊂ U1 and
p−1(W2) ⊂ U2. Then W1 and W2 are disjoint. Thus Y is Hausdorff.

Essentially the same argument, but now using Lemma 2.(2), shows that we can separate disjoint
closed sets in Y by disjoint open sets. Thus Y is normal.

Alternatively, see [Lemma 73.3].
Example: If X is normal and A ⊂ X is closed, then the quotient space X/A is normal.

Ex. 31.7. Let p : X → Y be closed continuous surjective map such that p−1(y) is compact for
each y ∈ Y (a perfect map).

(a). X Hausdorff ⇒ Y Hausdorff.
Let y1 and y2 be two distinct points in Y . By an upgraded version [Ex 26.5] of [Lemma 26.4] we
can separate the two disjoint compact subspaces p−1(y1) and p−1(y2) by disjoint open subspaces
U1 ⊃ p−1(y1) and U2 ⊃ p−1(y2) of the Hausdorff space X. Choose (Lemma 2) open sets W1 3 y1

and W2 3 y2 such that p−1(W1) ⊂ U1 and p−1(W2) ⊂ U2. Then W1 and W2 are disjoint. This
shows that Y is Hausdorff as well.

(b). X regular ⇒ Y regular.
Y is Hausdorff by (a). Let C ⊂ Y be a closed subspace and y ∈ Y a point outside C. It is enough
to separate the compact fibre p−1(y) ⊂ X and the closed set p−1(C) ⊂ X by disjoint open set.
(Lemma 2 will provide open sets in Y separating y and C.) Each x ∈ p−1(y) can be separated by
disjoint open sets from p−1(C) since X is regular. Using compactness of p−1(y) we obtain (as in
the proof [Thm 26.3]) disjoint open sets U ⊃ p−1(y) and V ⊃ p−1(C) as required.

(c). X locally compact ⇒ Y locally compact [1, 3.7.21].
Using compactness of p−1(y) and local compactness of X we construct an open subspace U ⊂ X
and a compact subspace C ⊂ X such that p−1(y) ⊂ U ⊂ C. In the process we need to know
that a finite union of compact subspaces is compact [Ex 26.3]. By Lemma 2, there is an open set
W 3 y such that p−1(y) ⊂ p−1(W ) ⊂ U ⊂ C. Then y ∈ W ⊂ p(C) where p(C) is compact [Thm
26.5]. Thus Y is locally compact.

(d). X 2nd countable ⇒ Y 2nd countable.
Let {Bj}j∈Z+ be countable basis for X. For each finite subset J ⊂ Z+, let UJ ⊂ X be the union of
all open sets of the form p−1(W ) with open W ⊂ Y and p−1(W ) ⊂

⋃
j∈J Bj . There are countably

many open sets UJ . The image p(UJ) is a union of open sets in Y , hence open. Let now V ⊂ Y
be any open subspace. The inverse image p−1(V ) =

⋃
y∈V p−1(y) is a union of fibres. Since each

fibre p−1(y) is compact, it can be covered by a finite union
⋃

j∈J(y) Bj of basis sets contained in
p−1(V ). By Lemma 2, there is an open set W ⊂ Y such that p−1(y) ⊂ p−1(W ) ⊂

⋃
j∈J(y) Bj .

Taking the union of all these open sets W , we get p−1(y) ⊂ UJ(y) ⊂
⋃

j∈J(y) Bj ⊂ p−1(V ). We
now have p−1(V ) =

⋃
y∈V UJ(y) so that V = pp−1(V ) =

⋃
y∈V p(UJ(y)) is a union of sets from the

countable collection {p(UJ)} of open sets. Thus Y is 2nd countable.
Example: If Y is compact, then the projection map π2 : X × Y → Y is perfect. (Show that

π2 is closed!)

Ex. 31.8. It is enough to show that p : X → G\X is a perfect map [Ex 31.6, Ex 31.7]. We show
that

(1) The saturation GA of any closed subspace A ⊂ X is closed. (The map p is closed.)
(2) The orbit Gx of any point x ∈ X is compact. (The fibres p−1(Gx) = Gx are compact.)

(1) Let y ∈ X be any point outside GA =
⋃

g∈G gA. For any g ∈ G, g−1y is outside the closed set
A ⊂ X. By continuity of the action G×X → X,

U−1
g Vg ⊂ X −A
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for open sets G ⊃ Ug 3 g and X ⊂ Vg 3 y. The compact space G can be covered by finitely
many of the open sets Ug, say G = U1 ∪ · · · ∪Un. Let V = V1 ∩ · · · ∩ Vn be the intersection of the
corresponding neighborhoods of y. Then

G−1V =
⋃
i

U−1
i V ⊂

⋃
i

U−1
i Vi ⊂ X −A

so y ∈ V ⊂ G(X −A) = X −GA.
(2) The orbit Gx of a point x ∈ X is compact because [Thm 26.5] it is the image of the compact
space G under the continuous map G → X : g → gx.

References

[1] Ryszard Engelking, General topology, second ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag,

Berlin, 1989, Translated from the Polish by the author. MR 91c:54001


	Ex. 31.1 (Morten Poulsen)
	Ex. 31.2 (Morten Poulsen)
	Ex. 31.3 (Morten Poulsen)
	Ex. 31.5
	Ex. 31.6
	Ex. 31.7
	Ex. 31.8
	References

