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Munkres §30

Ex. 30.3 (Morten Poulsen). Let X be second-countable and let A be an uncountable subset
of X. Suppose only countably many points of A are limit points of A and let A0 ⊂ A be the
countable set of limit points.

For each x ∈ A−A0 there exists a basis element Ux such that x ∈ Ux and Ux∩A = {x}. Hence
if a and b are distinct points of A − A0 then Ua 6= Ub, since Ua ∩ A = {a} 6= {b} = Ub ∩ A. It
follows that there uncountably many basis elements, contradicting that X is second-countable.

Note that it also follows that the set of points of A that are not limit points of A are countable.

Ex. 30.4 (Morten Poulsen).

Theorem 1. Every compact metrizable space is second-countable.

Proof. Let X be a compact metrizable space, and let d be a metric on X that induces the topology
on X.

For each n ∈ Z+ let An be an open covering of X with 1/n-balls. By compactness of X there
exists a finite subcovering An.

Now B =
⋃

n∈Z+
An is countable, being a countable union of finite sets.

B is a basis: Let U be an open set in X and x ∈ U . By definition of the metric topology there
exists ε > 0 such that Bd(x, ε) ⊂ U . Choose N ∈ Z+ such that 2/N < ε. Since AN covers X
there exists Bd(y, 1/N) containing x. If z ∈ Bd(y, 1/N) then

d(x, z) ≤ d(x, y) + d(y, z) ≤ 1/N + 1/N = 2/N < ε,

i.e. z ∈ Bd(x, ε), hence Bd(y, 1/N) ⊂ Bd(x, ε) ⊂ U . It follows that B is a basis. �

Ex. 30.5. Let X be a metrizable topological space.
Suppose that X has a countable dense subset A. The collection {B(a, r) | a ∈ A, r ∈ Q+} of

balls centered at points in A and with a rational radius is a countable basis for the topology: It
suffices to show that for any y ∈ B(x, ε) there are a ∈ A and r ∈ Q+ such that y ∈ B(a, r) ⊂
B(x, ε). Let r be a positive rational number such that 2r < ε−d(x, y) and let a ∈ A∩B(y, r). Then
y ∈ B(a, r), of course, and B(a, r) ⊂ B(x, ε) for if d(a, z) < r then d(x, z) ≤ d(x, y) + d(y, z) ≤
d(x, y) + d(y, a) + d(a, z) < d(x, y) + 2r < ε.

Suppose that X is Lindelöf. For each positive rational number r, let Ar be a countable subset
of X such that X =

⋃
a∈Ar

B(a, r). Then A =
⋃

r∈Q+
Ar is a dense countable subset: Any open

ball B(x, ε) contains a point of Ar when 0 < r < ε, r ∈ Q.
We now have an extended version of Thm 30.3:

Theorem 2. Let X be a topological space. Then

X has a countable dense subset X is 2nd countableks +3

��

X is Lindelöf

X is 1st countable

If X is metrizable, the three conditions of the top line equivalent.

Ex. 30.6. R` has a countable dense subset and is not 2nd countable. According to [Ex 30.5]
such a space is not metrizable.

The ordered square I2
o is compact and not second countable. Any basis for the topology has

uncountably many members because there are uncountably many disjoint open sets (x× 0, x× 1),
x ∈ I, and each of them contains a basis open set. (Alternatively, note that I2

o contains the
uncountable discrete subspace {x × 1

2 | x ∈ I} so it can not be second countable by [Example
2 p 190].) According to [Ex 30.4] or [30.5(b)] a compact space with no countable basis is not
metrizable.
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Ex. 30.7. (Open ordinal space and closed ordinal space) Sets of the form (α, β), −∞ ≤ α < β ≤
+∞, form bases for the topologies on the open ordinal space SΩ = [0,Ω) and the closed ordinal
space SΩ = [0,Ω] [§14, Thm 16.4]. The sets (α, β] = (α, β + 1) = [α + 1, β] are closed and open.
Let n denote the nth immediate successor of the first element, 0.

[0,Ω) is first countable: {0} = [0, 1) is open so clearly [0,Ω) is first countable at the point
0. For any other element, α > 0, we can use the collection of neighborhoods of the form
(β, α] for β < α.

[0,Ω) does not have a countable dense subset: The complement of any countable sub-
set contains [Thm 10.3] an interval of the form (α, Ω) (which is nonempty, even uncountable
[Lemma 10.2]).

[0,Ω) is not second countable: If it were, there would be a countable dense subset [Thm
30.3].

[0,Ω) is not Lindelöf: The open covering consisting of the sets [0, α), α < Ω, does not
contain a countable subcovering.

[0,Ω] is not first countable at Ω: This is a consequence of [Lemma 21.2] in that Ω is a
limit point of [0,Ω) but not the limit point of any sequence in [0,Ω) for all such sequences
are bounded [Example 3, p. 181].

[0,Ω] does not have a dense countable subset: for the same reason as for [0,Ω).
[0,Ω] is not second countable: It is not even first countable.
[0,Ω] is Lindelöf: It is even compact [Thm 27.1].

SΩ = [0,Ω) is limit point compact but not compact [Example 2, p. 179] so it can not be
metrizable [Thm 28.2]. SΩ is first countable and limit point compact so it is also sequentially
compact [Thm 28.2].

SΩ = [0,Ω] is not metrizable since it is not first countable.

Ex. 30.9. A space X is Lindelöf if and only if any collection of closed subsets of X with empty
intersection contains a countable subcollection with empty intersection. Since closed subsets of
closed subsets are closed, it follows immediately that closed subspaces of Lindelöf spaces are
Lindelöf.

The anti-diagonal L ⊂ R` ×R` is a closed discrete uncountable subspace [Example 4 p 193].
Thus the closed subset L does not have a countable dense subset even though R` × R` has a
countable dense subset.

Ex. 30.12. Let f : X → Y be an open continuous map.
Let B be a neighborhood basis at the point x ∈ X. Let f(B) be the collection of images

f(B) ⊂ f(X) of members B of the collection B. The sets in f(B) are open in Y , and hence also
in f(X), since f is an open map. Let f(x) be a point in f(X). Any neighborhood of f(x) has the
form V ∩ f(X) for some neighborhood V ⊂ Y of f(x). Since p−1(V ) is a neighborhood of x there
is a set B in the collection B such that x ∈ B ⊂ f−1(V ). Then x ∈ f(B) ⊂ V ∩ f(X). This shows
that f(B) is a neighborhood basis at f(x) ∈ f(X).

Let B be a basis for the topology on X. Let f(B) be the collection of images f(B) ⊂ f(X)
of members B of the collection B. The sets in f(B) are open in Y , and hence also in f(X),
since f is an open map. Since B ia a covering of X, f(B) is a covering of f(X). Suppose that
f(x) ∈ f(B1) ∩ f(B2) where x ∈ X and B1, B2 are basis sets. Choose a basis set B3 such that
x ∈ B3 ⊂ f−1(f(B1) ∩ f(B2)). Then f(x) ∈ f(B3) ⊂ f(B1) ∩ f(B2). This shows that f(B) is a
basis for a topology Tf(B) on f(X). This topology is coarser than the topology on f(X) since the
basis elements are open in f(X). Conversely, let f(x) ∈ V ∩ f(X) where V is open in Y . Choose
a basis element B such that x ∈ B ⊂ f−1(V ). Then f(x) ∈ f(B) ⊂ V ∩ f(X). This shows that
all open subsets of f(X) are in Tf(B). We conclude that f(B) is a basis for the topology on f(X).

We conclude that continuous open maps preserve 1st and 2nd countability.

Ex. 30.13. Let D be a countable dense subset and U a collection of open disjoint subsets. Pick
a member of D inside each of the open open sets in U . This gives an injective map U → D. Since
D is countable also U is countable.
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Ex. 30.16. For each natural number k ∈ Z+, let Dk be the set of all finite sequences

(I1, . . . , Ik, x1, . . . , xk)

where I1, . . . , Ik ⊂ I are disjoint closed subintervals of I with rational endpoints and x1, . . . , xk ∈ Q
are rational numbers. Since Dk is a subset of a countable set,

Dk ↪→ (

k︷ ︸︸ ︷
Q×Q)× · · · × (Q×Q)×

k︷ ︸︸ ︷
Q× · · · ×Q = Q3k,

Dk itself is countable [Cor 7.3]. Put D =
⋃

k∈Z+
Dk. As a countable union of countable sets, D

is countable [Thm 7.5].
For each element (I1, . . . , Ik, x1, . . . , xk) ∈ Dk, let x(I1, . . . , Ik, x1, . . . , xk) ∈ RI be the element

given by

πtx(I1, . . . , Ik, x1, . . . , xk) =

{
xj t ∈ Ij for some j ∈ {1, . . . , k}
0 t 6∈ I1 ∪ · · · ∪ Ik

where πt : RI → R, t ∈ I, is the projection map. This defines a map x : D → RI .

(a). The basis open sets in RI are finite intersections
⋂k

j=1 π−1
ij

(Uij ) where i1, . . . , ik are k distinct
points in I and Ui1 , . . . , Uik

are k open subsets of R. Choose disjoint closed subintervals Ij such
that ij ∈ Ij and choose xj ∈ Uij

∩Q, j = 1, . . . , k. Then x(I1, . . . , Ik, x1, . . . , xk) ∈
⋂k

j=1 π−1
ij

(Uij
)

for πij
x(I1, . . . , Ik, x1, . . . , xk) = xj ∈ Uij

for all j = 1, . . . , k. This shows that any (basis) open
set contains an element of x(D), ie that the countable set x(D) is dense in RI .

(b). Let D be a dense subset of RJ for some set J . Let f : J → P(D) be the map from the index
set J to the power set P(D) of D given by f(j) = D∩π−1

j (2003, 2004). Let j and k be two distinct
points of J . Then f(j) 6= f(k) for

f(j)− f(k) =
(
π−1

j (2003, 2004)− π−1
k (2003, 2004)

)
∩D

⊃
(
π−1

j (2003, 2004) ∩ π−1
k (2002, 2003)

)
∩D 6= ∅

since D is dense. This shows that f is injective. Thus card J ≤ card P(D).

-
Rk

Rj 6

2003 2004

2004
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