1st December 2004

Munkres §30

Ex. 30.3 (Morten Poulsen). Let X be second-countable and let A be an uncountable subset of X. Suppose only countably many points of A are limit points of A and let $A_0 \subset A$ be the countable set of limit points.

For each $x \in A - A_0$ there exists a basis element U_x such that $x \in U_x$ and $U_x \cap A = \{x\}$. Hence if a and b are distinct points of $A - A_0$ then $U_a \neq U_b$, since $U_a \cap A = \{a\} \neq \{b\} = U_b \cap A$. It follows that there uncountably many basis elements, contradicting that X is second-countable.

Note that it also follows that the set of points of A that are not limit points of A are countable.

Ex. 30.4 (Morten Poulsen).

Theorem 1. Every compact metrizable space is second-countable.

Proof. Let X be a compact metrizable space, and let d be a metric on X that induces the topology on X.

For each $n \in \mathbb{Z}_+$ let \mathcal{A}^n be an open covering of X with 1/n-balls. By compactness of X there exists a finite subcovering \mathcal{A}_n .

Now $\mathcal{B} = \bigcup_{n \in \mathbb{Z}_+} \mathcal{A}_n$ is countable, being a countable union of finite sets.

 \mathcal{B} is a basis: Let U be an open set in X and $x \in U$. By definition of the metric topology there exists $\varepsilon > 0$ such that $B_d(x,\varepsilon) \subset U$. Choose $N \in \mathbb{Z}_+$ such that $2/N < \varepsilon$. Since \mathcal{A}_N covers X there exists $B_d(y, 1/N)$ containing x. If $z \in B_d(y, 1/N)$ then

$$d(x, z) \le d(x, y) + d(y, z) \le 1/N + 1/N = 2/N < \varepsilon,$$

i.e. $z \in B_d(x, \varepsilon)$, hence $B_d(y, 1/N) \subset B_d(x, \varepsilon) \subset U$. It follows that \mathcal{B} is a basis.

Ex. 30.5. Let X be a metrizable topological space.

Suppose that X has a countable dense subset A. The collection $\{B(a,r) \mid a \in A, r \in \mathbf{Q}_+\}$ of balls centered at points in A and with a rational radius is a countable basis for the topology: It suffices to show that for any $y \in B(x,\varepsilon)$ there are $a \in A$ and $r \in \mathbf{Q}_+$ such that $y \in B(a,r) \subset B(x,\varepsilon)$. Let r be a positive rational number such that $2r < \varepsilon - d(x,y)$ and let $a \in A \cap B(y,r)$. Then $y \in B(a,r)$, of course, and $B(a,r) \subset B(x,\varepsilon)$ for if d(a,z) < r then $d(x,z) \leq d(x,y) + d(y,z) \leq d(x,y) + d(y,z) < d(x,y) < d(x,y$

Suppose that X is Lindelöf. For each positive rational number r, let A_r be a countable subset of X such that $X = \bigcup_{a \in A_r} B(a, r)$. Then $A = \bigcup_{r \in \mathbf{Q}_+} A_r$ is a dense countable subset: Any open ball $B(x, \varepsilon)$ contains a point of A_r when $0 < r < \varepsilon$, $r \in \mathbf{Q}$.

We now have an extended version of Thm 30.3:

Theorem 2. Let X be a topological space. Then

X has a countable dense subset
$$\iff$$
 X is 2nd countable \implies X is Lindelöf
 X is 1st countable

If X is metrizable, the three conditions of the top line equivalent.

Ex. 30.6. \mathbf{R}_{ℓ} has a countable dense subset and is not 2nd countable. According to [Ex 30.5] such a space is not metrizable.

The ordered square I_o^2 is compact and not second countable. Any basis for the topology has uncountably many members because there are uncountably many disjoint open sets $(x \times 0, x \times 1)$, $x \in I$, and each of them contains a basis open set. (Alternatively, note that I_o^2 contains the uncountable discrete subspace $\{x \times \frac{1}{2} \mid x \in I\}$ so it can not be second countable by [Example 2 p 190].) According to [Ex 30.4] or [30.5(b)] a compact space with no countable basis is not metrizable. **Ex. 30.7.** (Open ordinal space and closed ordinal space) Sets of the form $(\alpha, \beta), -\infty \leq \alpha < \beta \leq +\infty$, form bases for the topologies on the *open ordinal space* $S_{\Omega} = [0, \Omega)$ and the *closed ordinal space* $\overline{S}_{\Omega} = [0, \Omega]$ [§14, Thm 16.4]. The sets $(\alpha, \beta] = (\alpha, \beta + 1) = [\alpha + 1, \beta]$ are closed and open. Let *n* denote the *n*th immediate successor of the first element, 0.

- $[0, \Omega)$ is first countable: $\{0\} = [0, 1)$ is open so clearly $[0, \Omega)$ is first countable at the point 0. For any other element, $\alpha > 0$, we can use the collection of neighborhoods of the form $(\beta, \alpha]$ for $\beta < \alpha$.
- $[0, \Omega)$ does not have a countable dense subset: The complement of any countable subset contains [Thm 10.3] an interval of the form (α, Ω) (which is nonempty, even uncountable [Lemma 10.2]).
- $[0, \Omega)$ is not second countable: If it were, there would be a countable dense subset [Thm 30.3].
- $[0, \Omega)$ is not Lindelöf: The open covering consisting of the sets $[0, \alpha)$, $\alpha < \Omega$, does not contain a countable subcovering.
- $[0, \Omega]$ is not first countable at Ω : This is a consequence of [Lemma 21.2] in that Ω is a limit point of $[0, \Omega)$ but not the limit point of any sequence in $[0, \Omega)$ for all such sequences are bounded [Example 3, p. 181].
- $[0,\Omega]$ does not have a dense countable subset: for the same reason as for $[0,\Omega)$.
- $[0, \Omega]$ is not second countable: It is not even first countable.
- $[0, \Omega]$ is Lindelöf: It is even compact [Thm 27.1].

 $S_{\Omega} = [0, \Omega)$ is limit point compact but not compact [Example 2, p. 179] so it can not be metrizable [Thm 28.2]. S_{Ω} is first countable and limit point compact so it is also sequentially compact [Thm 28.2].

 $\overline{S}_{\Omega} = [0, \Omega]$ is not metrizable since it is not first countable.

Ex. 30.9. A space X is Lindelöf if and only if any collection of closed subsets of X with empty intersection contains a countable subcollection with empty intersection. Since closed subsets of closed subsets are closed, it follows immediately that closed subspaces of Lindelöf spaces are Lindelöf.

The anti-diagonal $L \subset \mathbf{R}_{\ell} \times \mathbf{R}_{\ell}$ is a closed discrete uncountable subspace [Example 4 p 193]. Thus the closed subset L does not have a countable dense subset even though $\mathbf{R}_{\ell} \times \mathbf{R}_{\ell}$ has a countable dense subset.

Ex. 30.12. Let $f: X \to Y$ be an open continuous map.

Let \mathcal{B} be a neighborhood basis at the point $x \in X$. Let $f(\mathcal{B})$ be the collection of images $f(B) \subset f(X)$ of members B of the collection \mathcal{B} . The sets in $f(\mathcal{B})$ are open in Y, and hence also in f(X), since f is an open map. Let f(x) be a point in f(X). Any neighborhood of f(x) has the form $V \cap f(X)$ for some neighborhood $V \subset Y$ of f(x). Since $p^{-1}(V)$ is a neighborhood of x there is a set B in the collection \mathcal{B} such that $x \in B \subset f^{-1}(V)$. Then $x \in f(B) \subset V \cap f(X)$. This shows that $f(\mathcal{B})$ is a neighborhood basis at $f(x) \in f(X)$.

Let \mathcal{B} be a basis for the topology on X. Let $f(\mathcal{B})$ be the collection of images $f(B) \subset f(X)$ of members B of the collection \mathcal{B} . The sets in $f(\mathcal{B})$ are open in Y, and hence also in f(X), since f is an open map. Since \mathcal{B} ia a covering of X, $f(\mathcal{B})$ is a covering of f(X). Suppose that $f(x) \in f(B_1) \cap f(B_2)$ where $x \in X$ and B_1, B_2 are basis sets. Choose a basis set B_3 such that $x \in B_3 \subset f^{-1}(f(B_1) \cap f(B_2))$. Then $f(x) \in f(B_3) \subset f(B_1) \cap f(B_2)$. This shows that $f(\mathcal{B})$ is a basis for a topology $\mathcal{T}_{f(\mathcal{B})}$ on f(X). This topology is coarser than the topology on f(X) since the basis elements are open in f(X). Conversely, let $f(x) \in V \cap f(X)$ where V is open in Y. Choose a basis element B such that $x \in B \subset f^{-1}(V)$. Then $f(x) \in f(B) \subset V \cap f(X)$. This shows that all open subsets of f(X) are in $\mathcal{T}_{f(\mathcal{B})}$. We conclude that $f(\mathcal{B})$ is a basis for the topology on f(X).

We conclude that continuous open maps preserve 1st and 2nd countability.

Ex. 30.13. Let D be a countable dense subset and \mathcal{U} a collection of open disjoint subsets. Pick a member of D inside each of the open open sets in \mathcal{U} . This gives an injective map $\mathcal{U} \to D$. Since D is countable also \mathcal{U} is countable.

Ex. 30.16. For each natural number $k \in \mathbb{Z}_+$, let D_k be the set of all finite sequences

$$(I_1,\ldots,I_k,x_1,\ldots,x_k)$$

where $I_1, \ldots, I_k \subset I$ are disjoint closed subintervals of I with rational endpoints and $x_1, \ldots, x_k \in \mathbf{Q}$ are rational numbers. Since D_k is a subset of a countable set,

$$D_k \hookrightarrow (\overbrace{\mathbf{Q} \times \mathbf{Q}) \times \cdots \times (\mathbf{Q} \times \mathbf{Q})}^k \times \overbrace{\mathbf{Q} \times \cdots \times \mathbf{Q}}^k = \mathbf{Q}^{3k}$$

 D_k itself is countable [Cor 7.3]. Put $D = \bigcup_{k \in \mathbb{Z}_+} D_k$. As a countable union of countable sets, D is countable [Thm 7.5].

For each element $(I_1, \ldots, I_k, x_1, \ldots, x_k) \in D_k$, let $x(I_1, \ldots, I_k, x_1, \ldots, x_k) \in \mathbf{R}^I$ be the element given by

$$\pi_t x(I_1, \dots, I_k, x_1, \dots, x_k) = \begin{cases} x_j & t \in I_j \text{ for some } j \in \{1, \dots, k\} \\ 0 & t \notin I_1 \cup \dots \cup I_k \end{cases}$$

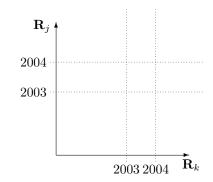
where $\pi_t \colon \mathbf{R}^I \to \mathbf{R}, t \in I$, is the projection map. This defines a map $x \colon D \to \mathbf{R}^I$.

(a). The basis open sets in \mathbf{R}^{I} are finite intersections $\bigcap_{j=1}^{k} \pi_{i_{j}}^{-1}(U_{i_{j}})$ where i_{1}, \ldots, i_{k} are k distinct points in I and $U_{i_{1}}, \ldots, U_{i_{k}}$ are k open subsets of **R**. Choose disjoint closed subintervals I_{j} such that $i_{j} \in I_{j}$ and choose $x_{j} \in U_{i_{j}} \cap \mathbf{Q}, j = 1, \ldots, k$. Then $x(I_{1}, \ldots, I_{k}, x_{1}, \ldots, x_{k}) \in \bigcap_{j=1}^{k} \pi_{i_{j}}^{-1}(U_{i_{j}})$ for $\pi_{i_{j}}x(I_{1}, \ldots, I_{k}, x_{1}, \ldots, x_{k}) = x_{j} \in U_{i_{j}}$ for all $j = 1, \ldots, k$. This shows that any (basis) open set contains an element of x(D), ie that the countable set x(D) is dense in \mathbf{R}^{I} .

(b). Let D be a dense subset of \mathbb{R}^J for some set J. Let $f: J \to \mathcal{P}(D)$ be the map from the index set J to the power set $\mathcal{P}(D)$ of D given by $f(j) = D \cap \pi_j^{-1}(2003, 2004)$. Let j and k be two distinct points of J. Then $f(j) \neq f(k)$ for

$$f(j) - f(k) = \left(\pi_j^{-1}(2003, 2004) - \pi_k^{-1}(2003, 2004)\right) \cap D$$

 $\supset \left(\pi_j^{-1}(2003,2004) \cap \pi_k^{-1}(2002,2003)\right) \cap D \neq \emptyset$ since D is dense. This shows that f is injective. Thus card $J \leq \operatorname{card} \mathcal{P}(D)$.



References