1st December 2004
Munkres §30

Ex. 30.3 (Morten Poulsen). Let X be second-countable and let A be an uncountable subset
of X. Suppose only countably many points of A are limit points of A and let Ag C A be the
countable set of limit points.

For each z € A — Ay there exists a basis element U, such that z € U, and U, N A = {«}. Hence
if @ and b are distinct points of A — Ay then U, # Uy, since U, NA = {a} £ {b} = U, NA. It
follows that there uncountably many basis elements, contradicting that X is second-countable.

Note that it also follows that the set of points of A that are not limit points of A are countable.

Ex. 30.4 (Morten Poulsen).
Theorem 1. Fvery compact metrizable space is second-countable.

Proof. Let X be a compact metrizable space, and let d be a metric on X that induces the topology
on X.

For each n € Z let A™ be an open covering of X with 1/n-balls. By compactness of X there
exists a finite subcovering A,,.

Now B = Un€Z+ A, is countable, being a countable union of finite sets.

B is a basis: Let U be an open set in X and x € U. By definition of the metric topology there
exists € > 0 such that Bg(z,e) C U. Choose N € Z, such that 2/N < e. Since Ay covers X
there exists By(y, 1/N) containing x. If z € By(y,1/N) then

d(z,z) <d(z,y)+d(y,z) <1/N+1/N=2/N < e,
i.e. z € By(z,¢), hence By(y,1/N) C By(x,e) C U. Tt follows that B is a basis. O

Ex. 30.5. Let X be a metrizable topological space.

Suppose that X has a countable dense subset A. The collection {B(a,r) | a € A,r € Q4+} of
balls centered at points in A and with a rational radius is a countable basis for the topology: It
suffices to show that for any y € B(x,¢) there are a € A and r € Q4 such that y € B(a,r) C
B(z,¢). Let r be a positive rational number such that 2r < e—d(z,y) and let a € ANB(y,r). Then
y € B(a,r), of course, and B(a,r) C B(z,¢) for if d(a,z) < r then d(z, z) < d(z,y) + d(y, z) <
d(z,y) +d(y,a) + d(a, z) < d(z,y) +2r <e.

Suppose that X is Lindelof. For each positive rational number 7, let A, be a countable subset
of X such that X =J,c,, Bla,r). Then A ={J,.q, Ar is a dense countable subset: Any open
ball B(z,¢) contains a point of A, when 0 <r <e¢, r € Q.

We now have an extended version of Thm 30.3:

Theorem 2. Let X be a topological space. Then

X has a countable dense subset <= X is 2nd countable =—=> X is Lindelof

ﬂ

X is 1st countable

If X is metrizable, the three conditions of the top line equivalent.

Ex. 30.6. R, has a countable dense subset and is not 2nd countable. According to [Ex 30.5]
such a space is not metrizable.

The ordered square I2 is compact and not second countable. Any basis for the topology has
uncountably many members because there are uncountably many disjoint open sets (z x 0,z x 1),
x € I, and each of them contains a basis open set. (Alternatively, note that I2 contains the
uncountable discrete subspace {z x 1 | € I} so it can not be second countable by [Example
2 p 190].) According to [Ex 30.4] or [30.5(b)] a compact space with no countable basis is not
metrizable.
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Ex. 30.7. (Open ordinal space and closed ordinal space) Sets of the form («, 5), —co < a < <
+00, form bases for the topologies on the open ordinal space Sq = [0,Q) and the closed ordinal
space Sq = [0,9] [§14, Thm 16.4]. The sets (a, 3] = (o, 8+ 1) = [ + 1, 3] are closed and open.
Let n denote the nth immediate successor of the first element, 0.

[0,9) is first countable: {0} = [0, 1) is open so clearly [0,€?) is first countable at the point
0. For any other element, o > 0, we can use the collection of neighborhoods of the form
(8,q] for 8 < a.

[0,92) does not have a countable dense subset: The complement of any countable sub-
set contains [Thm 10.3] an interval of the form (a, 2) (which is nonempty, even uncountable
[Lemma 10.2]).

[0,9) is not second countable: If it were, there would be a countable dense subset [Thm
30.3].

[0,9) is not Lindel6f: The open covering consisting of the sets [0,a), a < £, does not
contain a countable subcovering.

[0,9] is not first countable at 2: This is a consequence of [Lemma 21.2] in that  is a
limit point of [0, ) but not the limit point of any sequence in [0, Q) for all such sequences
are bounded [Example 3, p. 181].

[0,9] does not have a dense countable subset: for the same reason as for [0, ).

[0,9] is not second countable: It is not even first countable.

[0,9] is Lindel6f: It is even compact [Thm 27.1].

Sq = [0,9) is limit point compact but not compact [Example 2, p. 179] so it can not be
metrizable [Thm 28.2]. Sq is first countable and limit point compact so it is also sequentially
compact [Thm 28.2].

Sq = [0,9] is not metrizable since it is not first countable.

Ex. 30.9. A space X is Lindelof if and only if any collection of closed subsets of X with empty
intersection contains a countable subcollection with empty intersection. Since closed subsets of
closed subsets are closed, it follows immediately that closed subspaces of Lindelof spaces are
Lindelof.

The anti-diagonal L C Ry x Ry is a closed discrete uncountable subspace [Example 4 p 193].
Thus the closed subset L does not have a countable dense subset even though Ry, x Ry has a
countable dense subset.

Ex. 30.12. Let f: X — Y be an open continuous map.

Let B be a neighborhood basis at the point « € X. Let f(B) be the collection of images
f(B) C f(X) of members B of the collection B. The sets in f(B) are open in Y, and hence also
in f(X), since f is an open map. Let f(z) be a point in f(X). Any neighborhood of f(x) has the
form V N f(X) for some neighborhood V' C Y of f(x). Since p~1(V) is a neighborhood of x there
is a set B in the collection B such that x € B C f~*(V). Then x € f(B) C VN f(X). This shows
that f(B) is a neighborhood basis at f(z) € f(X).

Let B be a basis for the topology on X. Let f(B) be the collection of images f(B) C f(X)
of members B of the collection B. The sets in f(B) are open in Y, and hence also in f(X),
since f is an open map. Since B ia a covering of X, f(B) is a covering of f(X). Suppose that
f(z) € f(B1) N f(Bg) where z € X and By, Bz are basis sets. Choose a basis set B3 such that
x € B3 C f7H(f(B1) N f(Bz)). Then f(x) € f(Bs) C f(B1) N f(Bz). This shows that f(B) is a
basis for a topology 7;(5y on f(X). This topology is coarser than the topology on f(X) since the
basis elements are open in f(X). Conversely, let f(z) € V N f(X) where V is open in Y. Choose
a basis element B such that x € B C f~1(V). Then f(x) € f(B) C V N f(X). This shows that
all open subsets of f(X) are in 7;(z). We conclude that f(B) is a basis for the topology on f(X).

We conclude that continuous open maps preserve 1st and 2nd countability.

Ex. 30.13. Let D be a countable dense subset and U a collection of open disjoint subsets. Pick
a member of D inside each of the open open sets in /. This gives an injective map 4 — D. Since
D is countable also U/ is countable.



Ex. 30.16. For each natural number k € Z,, let Dy be the set of all finite sequences

(Ila"'7lk7xl7~"7xk)

where I, ..., I C I are disjoint closed subintervals of I with rational endpoints and x1, ...,z € Q
are rational numbers. Since Dy is a subset of a countable set,
k k

D= (QxQ)x--x(QxQ)xQx---xQ=Q%,
Dy itself is countable [Cor 7.3]. Put D = {J,cz, Dk As a countable union of countable sets, D
is countable [Thm 7.5].
For each element (I1,..., I, x1,...,2%) € Dy, let 2(I1,..., Iy, 21,...,71) € R be the element
given by
xz; tel;forsomeje{l,...,k}
0 tg I U--- Ul

where 7,: R — R, t € I, is the projection map. This defines a map z: D — R.

th(fl,...,fk7x1,...,$k) :{

(a). The basis open sets in R’ are finite intersections ﬂ?zl urs 1(Uij) where i1, ..., 4 are k distinct
points in I and U;,,...,U;, are k open subsets of R. Choose disjoint closed subintervals I; such

that i; € I; and choose z; € U;; NQ, j=1,..., k. Then x(Iy,..., Iy, 21,...,71) € ﬂ;?:l W_I(Uij)

i
for g, x(Iy,. .., Ix,21,...,2x) = x5 € U;, for all j = 1,..., k. This shows that any (basis) open
set contains an element of (D), ie that the countable set (D) is dense in R/.

(b). Let D be a dense subset of R” for some set J. Let f: J — P(D) be the map from the index
set J to the power set P(D) of D given by f(j) = Dﬂw;1(2003, 2004). Let j and k be two distinct
points of J. Then f(j) # f(k) for

f() = f(k) = (w7 1(2003,2004) — ;' (2003,2004)) N D
D (w;1(2003,2004) N7, (2002, 2003)) N D # )
since D is dense. This shows that f is injective. Thus card J < card P(D).
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