4th January 2005

Munkres §27

Ex. 27.1 (Morten Poulsen). Let $A \subset X$ be bounded from above by $b \in X$. For any $a \in A$ is [a, b] compact.

The set $C = \overline{A} \cap [a, b]$ is closed in [a, b], hence compact, c.f. theorem 26.2. The inclusion map $j: C \to X$ is continuous, c.f. theorem 18.2(b). By the extreme value theorem C has a largest element $c \in C$. Clearly c is an upper bound for A.

If $c \in A$ then clearly c is the least upper bound. Suppose $c \notin A$. If d < c then (d, ∞) is an open set containing c, i.e. $A \cap (d, \infty) \neq \emptyset$, since c is a limit point for A, since $c \in C \subset \overline{A}$. Thus d is not an upper bound for A, hence c is the least upper bound.

Ex. 27.3.

(a). K is an infinite, discrete, closed subspace of \mathbf{R}_K , so K can not be contained in any compact subspace of \mathbf{R}_K [Thm 28.1].

(b). The subspaces $(-\infty, 0)$ and $(0, +\infty)$ inherit their standard topologies, so they are connected. Then also their closures, $(-\infty, 0]$ and $[0, +\infty)$ and their union, \mathbf{R}_K , are also connected [Thm 23.4, Thm 23.3].

(c). Since the topology \mathbf{R}_K is finer than the standard topology [Lemma 13.4] on \mathbf{R} we have

U is connected in $\mathbf{R}_K \stackrel{\text{Ex } 23.1}{\Rightarrow} U$ is connected in $\mathbf{R} \stackrel{\text{Thm } 24.1}{\Leftrightarrow} U$ is convex

for any subspace U of \mathbf{R}_K .

Let now $f: [0,1] \to \mathbf{R}_K$ be a path from f(0) = 0 to f(1) = 1. The image f([0,1]) is convex since it is connected as a subspace of \mathbf{R}_K [Thm 23.5], and connected subspaces of \mathbf{R}_K are convex as we just noted. Therefore the interval [0,1] and the its subset K is contained in f([0,1]). The image f([0,1]) is also compact in the subspace topology from \mathbf{R}_K [Thm 26.5]. Thus the image is a compact subspace of \mathbf{R}_K containing K; this is a contradiction (see (a)). We conclude that there can not exist any path in \mathbf{R}_K from 0 to 1.

Ex. 27.5. I first repeat Thm 27.7 in order to emphasize the similarity between the two statements.

Theorem 1 (Thm 27.7). Let X be a compact Hausdorff space with no isolated points. Then X contains uncountably many points.

Proof. Let $A = \{a_1, a_2, \ldots\}$ be a countable subset of X. We must find a point in X outside A.

We have $X \neq \{a_1\}$ for $\{a_1\}$ is not open. So the open set $X - \{a_1\}$ is nonempty. By regularity [Lemma 26.4, Lemma 31.1], we can find an open nonempty set U_1 such that

$$U_1 \subset \overline{U}_1 \subset X - \{a_1\} \subset X$$

We have $U_1 \neq \{a_2\}$ for $\{a_2\}$ is not open. So the open set $U_1 - \{a_2\}$ is nonempty. By regularity [Lemma 26.4, Lemma 31.1], we can find an open nonempty set U_2 such that

$$U_2 \subset \overline{U}_2 \subset U_1 - \{a_2\} \subset U_1$$

Continuing this way we find a descending sequence of nonempty open sets U_n such that

$$U_n \subset U_n \subset U_{n-1} - \{a_n\} \subset U_{n-1}$$

for all n.

Because X is compact, the intersection $\bigcap U_n = \bigcap \overline{U}_n$ is nonempty [p. 170] and contained in $\bigcap (X - \{a_n\}) = X - \bigcup \{a_n\} = X - A.$

Theorem 2 (Baire category theorem). Let X be a compact Hausdorff space and $\{A_n\}$ a sequence of closed subspaces. If Int $A_n = \emptyset$ for all n, then Int $\bigcup A_n = \emptyset$.

 $\mathbf{2}$

Proof. (See Thm 48.2.) Let U_0 be any nonempty subspace of X. We must find a point in U_0 outside $\bigcup A_n$.

We have $U_0 \not\subset A_1$ for A_1 has no interior. So the open set $U_0 - A_1$ is nonempty. By regularity [Lemma 26.4, Lemma 31.1], we can find a nonempty open set U_1 such that

$$U_1 \subset \overline{U}_1 \subset U_0 - A_1 \subset U_0$$

We have $U_1 \not\subset A_2$ for A_2 has no interior. So the open set $U_1 - A_2$ is nonempty. By regularity [Lemma 26.4, Lemma 31.1], we can find a nonempty open set U_2 such that

$$U_2 \subset \overline{U}_2 \subset U_1 - A_2 \subset U_1$$

Continuing this way, we find a descending sequence of nonempty open sets U_n such that

$$U_n \subset \overline{U}_n \subset U_{n-1} - A_n \subset U_{n-1}$$

for all n.

Because X is compact, the intersection $\bigcap U_n = \bigcap \overline{U}_n$ is nonempty [p. 170] and contained in $U_0 \cap \bigcap (X - A_n) = U_0 - \bigcup A_n$.

Ex. 27.6 (The Cantor set).

(a). The set A_n is a union of 2^n disjoint closed intervals of length $1/3^n$. Let p and q be two points in C. Choose n so that $|p - q| > 1/3^n$. Then there is point r between them that is not in A_n , so not in C. As in [Example 4, p. 149], this shows that any subspace of C containing p and q has a separation.

(b). C is compact because [Thm 26.2] it is closed subspace of the compact space [0, 1].

(c). C is constructed from any of the A_n by removing interior points only. Thus the boundary of A_n is contained in C for all n. Any interval of length $> 1/3^{n+1}$ around any point of A_n contains a boundary point of A_{n+1} , hence a point of C. Thus C has no isolated points.

(d). C is a nonempty compact Hausdorff space with no isolated points, so it contains uncountably many points [Thm 27.7].

References