4th January 2005
Munkres §27

Ex. 27.1 (Morten Poulsen). Let A C X be bounded from above by b € X. For any a € A is
[a,b] compact.

The set C = AN [a,b] is closed in [a,b], hence compact, c.f. theorem 26.2. The inclusion map
j: C — X is continuous, c.f. theorem 18.2(b). By the extreme value theorem C has a largest
element ¢ € C. Clearly c is an upper bound for A.

If ¢ € A then clearly c is the least upper bound. Suppose ¢ ¢ A. If d < ¢ then (d, o) is an open
set containing c, i.e. AN (d,o0) # 0, since c is a limit point for A, since ¢ € C C A. Thus d is not
an upper bound for A, hence c is the least upper bound.

Ex. 27.3.

(a). K is an infinite, discrete, closed subspace of Rk, so K can not be contained in any compact
subspace of Ri [Thm 28.1].

(b). The subspaces (—00,0) and (0, 4+00) inherit their standard topologies, so they are connected.
Then also their closures, (—oo, 0] and [0, 4+00) and their union, R, are also connected [Thm 23.4,
Thm 23.3].

(c). Since the topology R is finer than the standard topology [Lemma 13.4] on R we have

. . Ex 23.1 . . Thm 24.1 .
U is connected in R =" U is connected in R~ & U is convex

for any subspace U of R.

Let now f:[0,1] — Rk be a path from f(0) = 0 to f(1) = 1. The image f([0,1]) is convex
since it is connected as a subspace of Ry [Thm 23.5], and connected subspaces of Rk are convex
as we just noted. Therefore the interval [0, 1] and the its subset K is contained in f([0,1]). The
image f([0,1]) is also compact in the subspace topology from Ry [Thm 26.5]. Thus the image is
a compact subspace of Rk containing K; this is a contradiction (see (a)). We conclude that there
can not exist any path in Rg from 0 to 1.

Ex. 27.5. Ifirst repeat Thm 27.7 in order to emphasize the similarity between the two statements.

Theorem 1 (Thm 27.7). Let X be a compact Hausdor(f space with no isolated points. Then X
contains uncountably many points.

Proof. Let A ={ay,as,...} be a countable subset of X. We must find a point in X outside A.
We have X # {a1} for {a1} is not open. So the open set X — {a1} is nonempty. By regularity
[Lemma 26.4, Lemma 31.1], we can find an open nonempty set U; such that

U1CU1CX—{(11}CX

We have Uy # {aq} for {as} is not open. So the open set Uy — {as} is nonempty. By regularity
[Lemma 26.4, Lemma 31.1], we can find an open nonempty set Us such that

U, CUQCU]_—{G/Q} cl;
Continuing this way we find a descending sequence of nonempty open sets U, such that

U, C ﬁn CcU,_1— {an} CUna

for all n.
Because X is compact, the intersection (U, = (U, is nonempty [p. 170] and contained in
NX —{ax}) =X — U{an} = X — A O

Theorem 2 (Baire category theorem). Let X be a compact Hausdorff space and {A,} a sequence
of closed subspaces. If Int A, = for all n, then Int|J A,, = 0.
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Proof. (See Thm 48.2.) Let Uy be any nonempty subspace of X. We must find a point in Uy
outside | J 4.
We have Uy ¢ A; for A; has no interior. So the open set Uy — A; is nonempty. By regularity

[Lemma 26.4, Lemma 31.1], we can find a nonempty open set U; such that

U CUl CU07A1CU0
We have U; ¢ A, for As has no interior. So the open set U; — Ay is nonempty. By regularity
[Lemma 26.4, Lemma 31.1], we can find a nonempty open set Uy such that

UQCUQCU1—A2CU1
Continuing this way, we find a descending sequence of nonempty open sets U, such that

U, CU, CUpo1 — Ay, CUpy

for all n.
Because X is compact, the intersection (U, = (U, is nonempty [p. 170] and contained in
U NnN(X —A4,)=Up —JAn.
O

Ex. 27.6 (The Cantor set).

(a). The set A,, is a union of 2" disjoint closed intervals of length 1/3™. Let p and g be two points
in C. Choose n so that [p — ¢| > 1/3™. Then there is point r between them that is not in A, so
not in C. As in [Example 4, p. 149], this shows that any subspace of C' containing p and ¢ has a
separation.

(b). C is compact because [Thm 26.2] it is closed subspace of the compact space [0, 1].

(c). C is constructed from any of the A, by removing interior points only. Thus the boundary of
A, is contained in C for all n. Any interval of length > 1/3""! around any point of A,, contains
a boundary point of A, 11, hence a point of C. Thus C has no isolated points.

(d). C is a nonempty compact Hausdorff space with no isolated points, so it contains uncountably
many points [Thm 27.7].
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