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Munkres §27

Ex. 27.1 (Morten Poulsen). Let A ⊂ X be bounded from above by b ∈ X. For any a ∈ A is
[a, b] compact.

The set C = A ∩ [a, b] is closed in [a, b], hence compact, c.f. theorem 26.2. The inclusion map
j : C → X is continuous, c.f. theorem 18.2(b). By the extreme value theorem C has a largest
element c ∈ C. Clearly c is an upper bound for A.

If c ∈ A then clearly c is the least upper bound. Suppose c /∈ A. If d < c then (d,∞) is an open
set containing c, i.e. A∩ (d,∞) 6= ∅, since c is a limit point for A, since c ∈ C ⊂ A. Thus d is not
an upper bound for A, hence c is the least upper bound.

Ex. 27.3.

(a). K is an infinite, discrete, closed subspace of RK , so K can not be contained in any compact
subspace of RK [Thm 28.1].

(b). The subspaces (−∞, 0) and (0,+∞) inherit their standard topologies, so they are connected.
Then also their closures, (−∞, 0] and [0,+∞) and their union, RK , are also connected [Thm 23.4,
Thm 23.3].

(c). Since the topology RK is finer than the standard topology [Lemma 13.4] on R we have

U is connected in RK
Ex 23.1⇒ U is connected in R Thm 24.1⇔ U is convex

for any subspace U of RK .
Let now f : [0, 1] → RK be a path from f(0) = 0 to f(1) = 1. The image f([0, 1]) is convex

since it is connected as a subspace of RK [Thm 23.5], and connected subspaces of RK are convex
as we just noted. Therefore the interval [0, 1] and the its subset K is contained in f([0, 1]). The
image f([0, 1]) is also compact in the subspace topology from RK [Thm 26.5]. Thus the image is
a compact subspace of RK containing K; this is a contradiction (see (a)). We conclude that there
can not exist any path in RK from 0 to 1.

Ex. 27.5. I first repeat Thm 27.7 in order to emphasize the similarity between the two statements.

Theorem 1 (Thm 27.7). Let X be a compact Hausdorff space with no isolated points. Then X
contains uncountably many points.

Proof. Let A = {a1, a2, . . .} be a countable subset of X. We must find a point in X outside A.
We have X 6= {a1} for {a1} is not open. So the open set X − {a1} is nonempty. By regularity

[Lemma 26.4, Lemma 31.1], we can find an open nonempty set U1 such that

U1 ⊂ U1 ⊂ X − {a1} ⊂ X

We have U1 6= {a2} for {a2} is not open. So the open set U1 − {a2} is nonempty. By regularity
[Lemma 26.4, Lemma 31.1], we can find an open nonempty set U2 such that

U2 ⊂ U2 ⊂ U1 − {a2} ⊂ U1

Continuing this way we find a descending sequence of nonempty open sets Un such that

Un ⊂ Un ⊂ Un−1 − {an} ⊂ Un−1

for all n.
Because X is compact, the intersection

⋂
Un =

⋂
Un is nonempty [p. 170] and contained in⋂

(X − {an}) = X −
⋃
{an} = X −A. �

Theorem 2 (Baire category theorem). Let X be a compact Hausdorff space and {An} a sequence
of closed subspaces. If IntAn = ∅ for all n, then Int

⋃
An = ∅.
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Proof. (See Thm 48.2.) Let U0 be any nonempty subspace of X. We must find a point in U0

outside
⋃

An.
We have U0 6⊂ A1 for A1 has no interior. So the open set U0 − A1 is nonempty. By regularity

[Lemma 26.4, Lemma 31.1], we can find a nonempty open set U1 such that

U1 ⊂ U1 ⊂ U0 −A1 ⊂ U0

We have U1 6⊂ A2 for A2 has no interior. So the open set U1 − A2 is nonempty. By regularity
[Lemma 26.4, Lemma 31.1], we can find a nonempty open set U2 such that

U2 ⊂ U2 ⊂ U1 −A2 ⊂ U1

Continuing this way, we find a descending sequence of nonempty open sets Un such that

Un ⊂ Un ⊂ Un−1 −An ⊂ Un−1

for all n.
Because X is compact, the intersection

⋂
Un =

⋂
Un is nonempty [p. 170] and contained in

U0 ∩
⋂

(X −An) = U0 −
⋃

An.
�

Ex. 27.6 (The Cantor set).

(a). The set An is a union of 2n disjoint closed intervals of length 1/3n. Let p and q be two points
in C. Choose n so that |p− q| > 1/3n. Then there is point r between them that is not in An, so
not in C. As in [Example 4, p. 149], this shows that any subspace of C containing p and q has a
separation.

(b). C is compact because [Thm 26.2] it is closed subspace of the compact space [0, 1].

(c). C is constructed from any of the An by removing interior points only. Thus the boundary of
An is contained in C for all n. Any interval of length > 1/3n+1 around any point of An contains
a boundary point of An+1, hence a point of C. Thus C has no isolated points.

(d). C is a nonempty compact Hausdorff space with no isolated points, so it contains uncountably
many points [Thm 27.7].
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