Munkres §27

Ex. 27.1 (Morten Poulsen). Let $A \subset X$ be bounded from above by $b \in X$. For any $a \in A$ is $[a, b]$ compact.

The set $C=\bar{A} \cap[a, b]$ is closed in $[a, b]$, hence compact, c.f. theorem 26.2. The inclusion map $j: C \rightarrow X$ is continuous, c.f. theorem $18.2(\mathrm{~b})$. By the extreme value theorem C has a largest element $c \in C$. Clearly c is an upper bound for A.

If $c \in A$ then clearly c is the least upper bound. Suppose $c \notin A$. If $d<c$ then (d, ∞) is an open set containing c, i.e. $A \cap(d, \infty) \neq \emptyset$, since c is a limit point for A, since $c \in C \subset \bar{A}$. Thus d is not an upper bound for A, hence c is the least upper bound.

Ex. 27.3.

(a). K is an infinite, discrete, closed subspace of \mathbf{R}_{K}, so K can not be contained in any compact subspace of \mathbf{R}_{K} [Thm 28.1].
(b). The subspaces $(-\infty, 0)$ and $(0,+\infty)$ inherit their standard topologies, so they are connected. Then also their closures, $(-\infty, 0]$ and $[0,+\infty)$ and their union, \mathbf{R}_{K}, are also connected [Thm 23.4, Thm 23.3].
(c). Since the topology \mathbf{R}_{K} is finer than the standard topology [Lemma 13.4] on \mathbf{R} we have

$$
U \text { is connected in } \mathbf{R}_{K} \stackrel{\text { Ex } 23.1}{\Rightarrow} U \text { is connected in } \mathbf{R}^{\text {Thm }} \stackrel{24.1}{\Leftrightarrow} U \text { is convex }
$$

for any subspace U of \mathbf{R}_{K}.
Let now $f:[0,1] \rightarrow \mathbf{R}_{K}$ be a path from $f(0)=0$ to $f(1)=1$. The image $f([0,1])$ is convex since it is connected as a subspace of \mathbf{R}_{K} [Thm 23.5], and connected subspaces of \mathbf{R}_{K} are convex as we just noted. Therefore the interval $[0,1]$ and the its subset K is contained in $f([0,1])$. The image $f([0,1])$ is also compact in the subspace topology from \mathbf{R}_{K} [Thm 26.5]. Thus the image is a compact subspace of \mathbf{R}_{K} containing K; this is a contradiction (see (a)). We conclude that there can not exist any path in \mathbf{R}_{K} from 0 to 1 .

Ex. 27.5. I first repeat Thm 27.7 in order to emphasize the similarity between the two statements.
Theorem 1 (Thm 27.7). Let X be a compact Hausdorff space with no isolated points. Then X contains uncountably many points.
Proof. Let $A=\left\{a_{1}, a_{2}, \ldots\right\}$ be a countable subset of X. We must find a point in X outside A.
We have $X \neq\left\{a_{1}\right\}$ for $\left\{a_{1}\right\}$ is not open. So the open set $X-\left\{a_{1}\right\}$ is nonempty. By regularity
[Lemma 26.4, Lemma 31.1], we can find an open nonempty set U_{1} such that

$$
U_{1} \subset \bar{U}_{1} \subset X-\left\{a_{1}\right\} \subset X
$$

We have $U_{1} \neq\left\{a_{2}\right\}$ for $\left\{a_{2}\right\}$ is not open. So the open set $U_{1}-\left\{a_{2}\right\}$ is nonempty. By regularity [Lemma 26.4, Lemma 31.1], we can find an open nonempty set U_{2} such that

$$
U_{2} \subset \bar{U}_{2} \subset U_{1}-\left\{a_{2}\right\} \subset U_{1}
$$

Continuing this way we find a descending sequence of nonempty open sets U_{n} such that

$$
U_{n} \subset \bar{U}_{n} \subset U_{n-1}-\left\{a_{n}\right\} \subset U_{n-1}
$$

for all n.
Because X is compact, the intersection $\bigcap U_{n}=\bigcap \bar{U}_{n}$ is nonempty [p. 170] and contained in $\bigcap\left(X-\left\{a_{n}\right\}\right)=X-\bigcup\left\{a_{n}\right\}=X-A$.

Theorem 2 (Baire category theorem). Let X be a compact Hausdorff space and $\left\{A_{n}\right\}$ a sequence of closed subspaces. If $\operatorname{Int} A_{n}=\emptyset$ for all n, then $\operatorname{Int} \bigcup A_{n}=\emptyset$.

Proof. (See Thm 48.2.) Let U_{0} be any nonempty subspace of X. We must find a point in U_{0} outside $\bigcup A_{n}$.

We have $U_{0} \not \subset A_{1}$ for A_{1} has no interior. So the open set $U_{0}-A_{1}$ is nonempty. By regularity [Lemma 26.4, Lemma 31.1], we can find a nonempty open set U_{1} such that

$$
U_{1} \subset \bar{U}_{1} \subset U_{0}-A_{1} \subset U_{0}
$$

We have $U_{1} \not \subset A_{2}$ for A_{2} has no interior. So the open set $U_{1}-A_{2}$ is nonempty. By regularity [Lemma 26.4, Lemma 31.1], we can find a nonempty open set U_{2} such that

$$
U_{2} \subset \bar{U}_{2} \subset U_{1}-A_{2} \subset U_{1}
$$

Continuing this way, we find a descending sequence of nonempty open sets U_{n} such that

$$
U_{n} \subset \bar{U}_{n} \subset U_{n-1}-A_{n} \subset U_{n-1}
$$

for all n.
Because X is compact, the intersection $\bigcap U_{n}=\bigcap \bar{U}_{n}$ is nonempty [p. 170] and contained in $U_{0} \cap \cap\left(X-A_{n}\right)=U_{0}-\bigcup A_{n}$.

Ex. 27.6 (The Cantor set).

(a). The set A_{n} is a union of 2^{n} disjoint closed intervals of length $1 / 3^{n}$. Let p and q be two points in C. Choose n so that $|p-q|>1 / 3^{n}$. Then there is point r between them that is not in A_{n}, so not in C. As in [Example 4, p. 149], this shows that any subspace of C containing p and q has a separation.
(b). C is compact because [Thm 26.2] it is closed subspace of the compact space $[0,1]$.
(c). C is constructed from any of the A_{n} by removing interior points only. Thus the boundary of A_{n} is contained in C for all n. Any interval of length $>1 / 3^{n+1}$ around any point of A_{n} contains a boundary point of A_{n+1}, hence a point of C. Thus C has no isolated points.
(d). C is a nonempty compact Hausdorff space with no isolated points, so it contains uncountably many points [Thm 27.7].

References

