Munkres §26

Ex. 26.1 (Morten Poulsen).

(a). Let \mathcal{T} and \mathcal{T}' be two topologies on the set X. Suppose $\mathcal{T}' \supset \mathcal{T}$.

If (X, \mathcal{T}') is compact then (X, \mathcal{T}) is compact: Clear, since every open covering if (X, \mathcal{T}) is an open covering in (X, \mathcal{T}') .

If (X, \mathcal{T}) is compact then (X, \mathcal{T}) is in general not compact: Consider [0, 1] in the standard topology and the discrete topology.

(b).

Lemma 1. If (X, \mathcal{T}) and (X, \mathcal{T}') are compact Hausdorff spaces then either \mathcal{T} and \mathcal{T}' are equal or not comparable.

Proof. If (X, \mathcal{T}) compact and $\mathcal{T}' \supset \mathcal{T}$ then the identity map $(X, \mathcal{T}') \rightarrow (X, \mathcal{T})$ is a bijective continuous map, hence a homeomorphism, by theorem 26.6. This proves the result. \Box

Finally note that the set of topologies on the set X is partially ordered, c.f. ex. 11.2, under inclusion. From the lemma we conclude that the compact Hausdorff topologies on X are minimal elements in the set of all Hausdorff topologies on X.

Ex. 26.2 (Morten Poulsen).

(a). The result follows from the following lemma.

Lemma 2. If the set X is equipped with the finite complement topology then every subspace of X is compact.

Proof. Suppose $A \subset X$ and let \mathcal{A} be an open covering of A. Then any set $A_0 \in \mathcal{A}$ will covering all but a finite number of points. Now choose a finite number of sets from \mathcal{A} covering $A - A_0$. These sets and A_0 is a finite subcovering, hence A compact.

(b). Lets prove a more general result: Let X be an uncountable set. Let

 $\mathcal{T}_c = \{ A \subset X \mid X - A \text{ countable or equal } X \}.$

It is straightforward to check that \mathcal{T}_c is a topology on X. This topology is called the countable complement topology.

Lemma 3. The compact subspaces of X are exactly the finite subspaces.

Proof. Suppose A is infinite. Let $B = \{b_1, b_2, \ldots\}$ be a countable subset of A. Set

$$A_n = (X - B) \cup \{b_1, \dots, b_n\}.$$

Note that $\{A_n\}$ is an open covering of A with no finite subcovering.

The lemma shows that $[0,1] \subset \mathbf{R}$ in the countable complement topology is not compact.

Finally note that (X, \mathcal{T}_c) is not Hausdorff, since no two nonempty open subsets A and B of X are disjoint: If $A \cap B = \emptyset$ then $X - (A \cap B) = (X - A) \cup (X - B)$, hence X countable, contradicting that X uncountable.

Ex. 26.3 (Morten Poulsen).

Theorem 4. A finite union of compact subspaces of X is compact.

Proof. Let A_1, \ldots, A_n be compact subspaces of X. Let \mathcal{A} be an open covering of $\bigcup_{i=1}^n A_i$. Since $A_j \subset \bigcup_{i_1}^n A_i$ is compact, $1 \leq j \leq n$, there is a finite subcovering \mathcal{A}_j of \mathcal{A} covering A_j . Thus $\bigcup_{i=1}^n \mathcal{A}_j$ is a finite subcovering of \mathcal{A} , hence $\bigcup_{i=1}^n A_i$ is compact. \Box

 $\mathbf{2}$

Ex. 26.5. For each $a \in A$, choose [Lemma 26.4] disjoint open sets $U_a \in a$ and $V_a \supset B$. Since A is compact, A is contained in a finite union $U = U_1 \cup \cdots \cup U_n$ of the U_a s. Let $V = V_1 \cap \cdots \vee V_n$ be the intersection of the corresponding V_a s. Then U is an open set containing A, V is an open set containing B, and U and V are disjoint as $U \cap V = \bigcup U_i \cap V \subset \bigcup U_i \cap V_i = \emptyset$.

Ex. 26.6. Since any closed subset A of the compact space X is compact [Thm 26.2], the image f(A) is a compact [Thm 26.5], hence closed [Thm 26.3], subspace of the Hausdorff space Y.

Ex. 26.7. This is just reformulation of The tube lemma [Lemma 26.8]: Let C be a closed subset of $X \times Y$ and $x \in X$ a point such that the slice $\{x\} \times Y$ is disjoint from C. Then, since Y is compact, there is a neighborhood W of x such that the whole tube $W \times Y$ is disjoint from C.

In other words, if $x \notin \pi_1(C)$ then there is a neighborhood W of x which is disjoint from $\pi_1(C)$. Thus The tube lemma says that $\pi_1: X \times Y \to X$ is closed when Y is compact (so that π_1 is an example of a perfect map [Ex 26.12]). On the other hand, projection maps are always open [Ex 16.4].

Ex. 26.8. Let $G \subset X \times Y$ be the graph of a function $f: X \to Y$ where Y is compact Hausdorff. Then

G is closed in $X \times Y \Leftrightarrow f$ is continuous

 \Leftarrow : (For this it suffices that Y be Hausdorff.) Let $(x, y) \in X \times Y$ be a point that is not in the graph of f. Then $y \neq f(x)$ so by the Hausdorff axiom there will be disjoint neighborhoods $V \ni y$ and $W \ni f(x)$. By continuity of f, $f(U) \subset W \subset Y - V$. This means that $(U \times V) \cap G = \emptyset$. ⇒: Let V be a neighborhood of f(x) for some $x \in X$. Then $G \cap (X \times (Y - V))$ is closed in $X \times Y$ so [Ex 26.7] the projection $\pi_1(G \cap (X \times (Y - V)))$ is closed in X and does not contain x. Let U be a neighborhood of X such that $U \times Y$ does not intersect $G \cap (X \times (Y - V))$. Then f(U) does not intersect Y - V, or $f(U) \subset V$. This shows that f is continuous at the arbitrary point $x \in X$.

Ex. 26.12. (Any perfect map is *proper*; see the January 2003 exam for more on proper maps.) Let $p: X \to Y$ be closed continuous surjective map such that $p^{-1}(y)$ is compact for each $y \in Y$. Then $p^{-1}(C)$ is compact for any compact subspace $C \subset Y$.

For this exercise we shall use the following lemma.

Lemma 5. Let $p: X \to Y$ be a closed map.

- (1) If $p^{-1}(y) \subset U$ where U is an open subspace of X, then $p^{-1}(W) \subset U$ for some neighborhood $W \subset Y$ of y.
- (2) If $p^{-1}(B) \subset U$ for some subspace B of Y and some open subspace U of X, then $p^{-1}(W) \subset U$ for some neighborhood $W \subset Y$ of B.

Proof. Note that

$$p^{-1}(W) \subset U \Leftrightarrow [p(x) \in W \Rightarrow x \in U] \Leftrightarrow [x \notin U \Rightarrow p(x) \notin W] \Leftrightarrow p(X - U) \subset Y - W$$
$$\Leftrightarrow p(X - U) \cap W = \emptyset$$

(1) The point y does not belong to the closed set p(X - U). Therefore a whole neighborhood $W \subset Y$ of y is disjoint from p(X - U), i.e. $p^{-1}(W) \subset U$.

(2) Each point $y \in B$ has a neighborhood W_y such that $p^{-1}(W_y) \subset U$. The union $W = \bigcup W_y$ is then a neighborhood of B with $p^{-1}(W) \subset U$.

We shall not need point (2) here.

Let $C \subset Y$ be compact. Consider a collection $\{U_{\alpha}\}_{\alpha \in J}$ of open sets covering of $p^{-1}(C)$. For each $y \in C$, the compact space $p^{-1}(y)$ is contained in a the union of a finite subcollection $\{U_{\alpha}\}_{\alpha \in J(y)}$. There is neighborhood W_y of y such that $p^{-1}(W_y)$ is contained in this finite union. By compactness of C, finitely many W_{y_1}, \ldots, W_{y_k} cover Y. Then the finite collection $\bigcup_{i=1}^k \{U_{\alpha}\}_{\alpha \in J(y_i)}$ cover $p^{-1}(C)$. This shows that $p^{-1}(C)$ is compact.

Ex. 26.13. Let G be a topological group and A and B subspaces of G.

Assume $c \notin AB = \bigcup_{b \in B} Ab$. The regularity axiom for G [Suppl Ex 22.7] implies that there are disjoint open sets $W_b \ni c$ and $U_b \supset Ab$ separating c and Ab for each point $b \in B$. Then $A^{-1}U_b$ is an open neighborhood of b. Since B is compact, it can be covered by finitely many of these open sets $A^{-1}U_b$, say

$$B \subset A^{-1}U_1 \cup \dots \cup A^{-1}U_k = A^{-1}U$$

where $U = U_1 \cup \cdots \cup U_k$. The corresponding open set $W = W_1 \cap \cdots \cap W_k$ is an open neighborhood of c that is disjoint from AB since $W \cap AB \subset \bigcup W \cap U_i \subset \bigcup W_i \cap U_i = \emptyset$.

(b). *H* compact subgroup of $G \Rightarrow p: G \to G/H$ is a closed map The saturation *AH* of any closed subset $A \subset G$ is closed by (a).

(c). *H* compact subgroup of *G* and G/H compact $\Rightarrow G$ compact The quotient map $p: G \to G/H$ is a perfect map because it is a closed map by (b) and has compact fibres $p^{-1}(gH) = gH$. Now apply [Ex 26.12].

References