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Munkres §26

Ex. 26.1 (Morten Poulsen).

(a). Let T and T ′ be two topologies on the set X. Suppose T ′ ⊃ T .
If (X, T ′) is compact then (X, T ) is compact: Clear, since every open covering if (X, T ) is an

open covering in (X, T ′).
If (X, T ) is compact then (X, T ) is in general not compact: Consider [0, 1] in the standard

topology and the discrete topology.

(b).

Lemma 1. If (X, T ) and (X, T ′) are compact Hausdorff spaces then either T and T ′ are equal
or not comparable.

Proof. If (X, T ) compact and T ′ ⊃ T then the identity map (X, T ′) → (X, T ) is a bijective
continuous map, hence a homeomorphism, by theorem 26.6. This proves the result. �

Finally note that the set of topologies on the set X is partially ordered, c.f. ex. 11.2, under
inclusion. From the lemma we conclude that the compact Hausdorff topologies on X are minimal
elements in the set of all Hausdorff topologies on X.

Ex. 26.2 (Morten Poulsen).

(a). The result follows from the following lemma.

Lemma 2. If the set X is equipped with the finite complement topology then every subspace of X
is compact.

Proof. Suppose A ⊂ X and let A be an open covering of A. Then any set A0 ∈ A will covering all
but a finite number of points. Now choose a finite number of sets from A covering A−A0. These
sets and A0 is a finite subcovering, hence A compact. �

(b). Lets prove a more general result: Let X be an uncountable set. Let

Tc = {A ⊂ X |X −A countable or equal X }.

It is straightforward to check that Tc is a topology on X. This topology is called the countable
complement topology.

Lemma 3. The compact subspaces of X are exactly the finite subspaces.

Proof. Suppose A is infinite. Let B = {b1, b2, . . .} be a countable subset of A. Set

An = (X −B) ∪ {b1, . . . , bn}.

Note that {An} is an open covering of A with no finite subcovering. �

The lemma shows that [0, 1] ⊂ R in the countable complement topology is not compact.
Finally note that (X, Tc) is not Hausdorff, since no two nonempty open subsets A and B of X

are disjoint: If A∩B = ∅ then X−(A∩B) = (X−A)∪(X−B), hence X countable, contradicting
that X uncountable.

Ex. 26.3 (Morten Poulsen).

Theorem 4. A finite union of compact subspaces of X is compact.

Proof. Let A1, . . . , An be compact subspaces of X. Let A be an open covering of
⋃n

i=1 Ai. Since
Aj ⊂

⋃n
i1

Ai is compact, 1 ≤ j ≤ n, there is a finite subcovering Aj of A covering Aj . Thus⋃n
j=1Aj is a finite subcovering of A, hence

⋃n
i=1 Ai is compact. �
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Ex. 26.5. For each a ∈ A, choose [Lemma 26.4] disjoint open sets Ua ∈ a and Va ⊃ B. Since A
is compact, A is contained in a finite union U = U1 ∪ · · · ∪ Un of the Uas. Let V = V1 ∩ · · ·Vn be
the intersection of the corresponding Vas. Then U is an open set containing A, V is an open set
containing B, and U and V are disjoint as U ∩ V =

⋃
Ui ∩ V ⊂

⋃
Ui ∩ Vi = ∅.

Ex. 26.6. Since any closed subset A of the compact space X is compact [Thm 26.2], the image
f(A) is a compact [Thm 26.5], hence closed [Thm 26.3], subspace of the Hausdorff space Y .

Ex. 26.7. This is just reformulation of The tube lemma [Lemma 26.8]: Let C be a closed subset
of X × Y and x ∈ X a point such that the slice {x} × Y is disjoint from C. Then, since Y is
compact, there is a neighborhood W of x such that the whole tube W × Y is disjoint from C.

In other words, if x 6∈ π1(C) then there is a neighborhood W of x which is disjoint from π1(C).
Thus The tube lemma says that π1 : X × Y → X is closed when Y is compact (so that π1 is an
example of a perfect map [Ex 26.12]). On the other hand, projection maps are always open [Ex
16.4].

Ex. 26.8. Let G ⊂ X × Y be the graph of a function f : X → Y where Y is compact Hausdorff.
Then

G is closed in X × Y ⇔ f is continuous

⇐: (For this it suffices that Y be Hausdorff.) Let (x, y) ∈ X × Y be a point that is not in the
graph of f . Then y 6= f(x) so by the Hausdorff axiom there will be disjoint neighborhoods V 3 y
and W 3 f(x). By continuity of f , f(U) ⊂ W ⊂ Y − V . This means that (U × V ) ∩G = ∅.
⇒: Let V be a neighborhood of f(x) for some x ∈ X. Then G∩ (X × (Y −V )) is closed in X ×Y
so [Ex 26.7] the projection π1(G ∩ (X × (Y − V ))) is closed in X and does not contain x. Let U
be a neighborhood of X such that U × Y does not intersect G ∩ (X × (Y − V )). Then f(U) does
not intersect Y − V , or f(U) ⊂ V . This shows that f is continuous at the arbitrary point x ∈ X.

Ex. 26.12. (Any perfect map is proper; see the January 2003 exam for more on proper maps.)
Let p : X → Y be closed continuous surjective map such that p−1(y) is compact for each y ∈ Y .
Then p−1(C) is compact for any compact subspace C ⊂ Y .

For this exercise we shall use the following lemma.

Lemma 5. Let p : X → Y be a closed map.
(1) If p−1(y) ⊂ U where U is an open subspace of X, then p−1(W ) ⊂ U for some neighborhood

W ⊂ Y of y.
(2) If p−1(B) ⊂ U for some subspace B of Y and some open subspace U of X, then p−1(W ) ⊂

U for some neighborhood W ⊂ Y of B.

Proof. Note that

p−1(W ) ⊂ U ⇔
[
p(x) ∈ W ⇒ x ∈ U

]
⇔

[
x 6∈ U ⇒ p(x) 6∈ W

]
⇔ p(X − U) ⊂ Y −W

⇔ p(X − U) ∩W = ∅

(1) The point y does not belong to the closed set p(X − U). Therefore a whole neighborhood
W ⊂ Y of y is disjoint from p(X − U), i.e. p−1(W ) ⊂ U .
(2) Each point y ∈ B has a neighborhood Wy such that p−1(Wy) ⊂ U . The union W =

⋃
Wy is

then a neighborhood of B with p−1(W ) ⊂ U . �

We shall not need point (2) here.
Let C ⊂ Y be compact. Consider a collection {Uα}α∈J of open sets covering of p−1(C).

For each y ∈ C, the compact space p−1(y) is contained in a the union of a finite subcollection
{Uα}α∈J(y). There is neighborhood Wy of y such that p−1(Wy) is contained in this finite union. By
compactness of C, finitely many Wy1 , . . . ,Wyk

cover Y . Then the finite collection
⋃k

i=1{Uα}α∈J(yi)

cover p−1(C). This shows that p−1(C) is compact.

Ex. 26.13. Let G be a topological group and A and B subspaces of G.
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(a). A closed and B compact ⇒ AB closed
Assume c 6∈ AB =

⋃
b∈B Ab. The regularity axiom for G [Suppl Ex 22.7] implies that there are

disjoint open sets Wb 3 c and Ub ⊃ Ab separating c and Ab for each point b ∈ B. Then A−1Ub is
an open neighborhood of b. Since B is compact, it can be covered by finitely many of these open
sets A−1Ub, say

B ⊂ A−1U1 ∪ · · · ∪A−1Uk = A−1U

where U = U1∪· · ·∪Uk. The corresponding open set W = W1∩· · ·∩Wk is an open neighborhood
of c that is disjoint from AB since W ∩AB ⊂

⋃
W ∩ Ui ⊂

⋃
Wi ∩ Ui = ∅.

(b). H compact subgroup of G ⇒ p : G → G/H is a closed map
The saturation AH of any closed subset A ⊂ G is closed by (a).

(c). H compact subgroup of G and G/H compact ⇒ G compact
The quotient map p : G → G/H is a perfect map because it is a closed map by (b) and has compact
fibres p−1(gH) = gH. Now apply [Ex 26.12].

References


	Ex. 26.1 (Morten Poulsen)
	Ex. 26.2 (Morten Poulsen)
	Ex. 26.3 (Morten Poulsen)
	Ex. 26.5
	Ex. 26.6
	Ex. 26.7
	Ex. 26.8
	Ex. 26.12
	Ex. 26.13
	References

