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Munkres §24

Ex. 24.2 (Morten Poulsen). Let f : S1 → R be a continuous map. Define g : S1 → R by
g(s) = f(s)− f(−s). Clearly g is continuous. Furthermore

g(s) = f(s)− f(−s) = −(f(−s)− f(s)) = −g(−s),

i.e. g is an odd map. By the Intermediate Value Theorem there exists s0 ∈ S1 such that g(s0) = 0,
i.e. f(s0) = f(−s0).

This result is also known as the Borsuk-Ulam theorem in dimension one. Thus there are no
injective continuous maps S1 → R, hence S1 is not homeomorphic to a subspace of R, which is
no surprise.

Ex. 24.4. [1, §17]. Suppose that X is a linearly ordered set that is not a linear continuum. Then
there are nonempty, proper, clopen subsets of X:

• If (x, y) = ∅ for some points x < y then (−∞, x] = (∞, y) is clopen and 6= ∅, X.
• If A ⊂ X is a nonempty subset bounded from above which has no least upper bound then

the set of upper bounds B =
⋂

a∈A[a,∞) =
⋃

b∈B(b,∞) is clopen and 6= ∅, X.
Therefore X is not connected [2, §23].

Ex. 24.8 (Morten Poulsen).

(a).

Theorem 1. The product of an arbitrary collection of path connected spaces is path connected.

Proof. Let {Aj}j∈J be a collection of path connected spaces. Let x = (xj)j∈J and y = (yj)j∈J be
two points in

∏
j∈J Aj

For each j ∈ J there exists a path γj : [0, 1] → Aj between xj and yj , since Aj is path connected
for all j. Now the map γ : [0, 1] →

∏
j∈J Aj defined by γ(t) = (γj(t))j∈J is a path between x and

y, hence the product is path connected. �

(b). This is not true in general: The set S = {x× sin(x−1 | 0 < x < π−1 } is path connected, but
S = S ∪ ({0} × [−1, 1]) is not path connected, c.f. example 24.7.

(c).

Theorem 2. If f : X → Y is a continuous map and X path connected then f(X) is path connected.

Proof. Clearly it suffices to consider the case where f is surjective. Let y1 and y2 be two points
in Y . Then there exists x1 and x2 in X such that f(x1) = y1 and f(x2) = y2. Since X path
connected there is a path γ : [0, 1] → X between x1 and x2. Now δ = f ◦ g : [0, 1] → Y is a path
between δ(0) = f(γ(0)) = y1 and δ(1) = f(γ(1)) = y2, hence Y path connected. �

(d).

Theorem 3. Let {Aj}j∈J be a collection of path connected spaces. If
⋂

j∈J Aj is nonempty then⋃
j∈J Aj is path connected.

Proof. Let a and b be two points in
⋃

j∈J Aj and let c be an element of
⋂

j∈J Aj . Note that there
exists s and t such that a ∈ As and b ∈ At. Clearly c ∈ As ∩ At. Since As and At are path
connected there exists a path f : [0, 1] → As between a and c and a path g : [0, 1] → At between
c and b.

Now h : [0, 1] →
⋃

j∈J Aj defined by

h(t) =
{

f(2t), 0 ≤ t ≤ 1/2
g(2t− 1), 1/2 ≤ t ≤ 1

is a path, by the Pasting lemma, between a and b, hence
⋃

j∈J Aj is path connected.
�
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Ex. 24.10 (Morten Poulsen). Let U be a nonempty, open and connected subspace of R2 and
let x0 ∈ U . Furthermore let A be the set of points in U that can be joined to x0 by a path in U .

A open: Let a0 ∈ A ⊂ U . Since U open there is an open rectangle V (= (a, b)× (c, d)) such that
a0 ∈ V ⊂ U . Since V clearly is path connected it follows that V ⊂ A, hence A open.

A closed: Let u0 ∈ U − A. If every open rectangle containing u0 intersects A then clearly
u0 ∈ A, hence u0 is not a limit point of A. Thus no point of U −A is a limit point of A, hence A
is closed.

Since U connected it follows that A = U , hence U path connected.

Ex. 24.11 (Morten Poulsen). Let A be a subspace of X.
A connected 6⇒ IntA and BdA connected: If A = [0, 1] then BdA = {0, 1} is not connected.

If A = B(−1× 0, 1) ∪B(1× 0, 1) ⊂ R2, then IntA = B(−1× 0, 1) ∪B(1× 0, 1) is not connected.
IntA connected 6⇒ A connected: If A = (0, 1) ∪ {2} then Int A = (0, 1) is connected, but A is

not connected.
BdA connected 6⇒ A connected: A = Q is not connected but BdA = R is connected.
IntA and Bd A connected 6⇒ A connected: One example is A = Q. An example with nonempty

interior is
A = ([0, 1]× [0, 1]) ∪ ({0, 1} × [1, 2]) ∪ (([0, 1] ∩Q)× {2}) ⊂ R2

where
BdA = ({0, 1} × [0, 2]) ∪ ({0, 1, 2} × [0, 1])

and
IntA = (0, 1)× (0, 1).

both are connected but A is not connected.

Ex. 24.12 (The long line). The idea is that the two linear continua SΩ× [0, 1) and Z+× [0, 1) =
[1,∞), or rather the long line L = (SΩ × [0, 1)) − {a0 × 0} and the real line R = (Z+ × [0, 1)) −
{1×0}, should have a great deal in common. L satisfies the conditions of a 1-dimensional manifold
but 2nd countability. The long line is normal [Ex 32.8] but not metrizable [Ex 50.5].

(a) and (b). Easy.

(c). I do the hint first. Let a > a0 be an element of SΩ which has no immediate predecessor
(there are uncountably many such elements [Ex 10.6]). The set of predecessors Sa = {b ∈ SΩ |
b < a} = {b1, b2, . . .} is countable and the sets (bn, a] = (bn, a + 1) is a neighborhood basis at a.
Since b1 is not an immediate predecessor, there is an element a1 ∈ (b1, a]. Since sup{a1, b2} is not
an immediate predecessor, there is an element a2 ∈ (sup{a1, b2}, a]. Proceeding inductively, we
find a sequence of elements an < a such that an > an−1 and an > bn for all n. Then an is an
increasing sequence and since an > bn, bn−1, . . . , b1 for all n, the sequence an converges to a.

Let now J be the set of points a such that [a0 × 0, a × 1) has the order type of [0, 1). I
claim that J is inductive. Suppose that Sa ⊂ J . If a has an immediate predecessor a1 then
[a0 × 0, a× 1) = [a0 × 0, (a− 1)× 1)∪ [a× 0, a× 1) has the order type of [0, 1) by (a). Otherwise,
[a0 × 0, a × 1) has the order type of [0, 1) by the hint and (b) (let x0, x1, x2, . . . be the sequence
a0 × 0, a1 × 1, a2 × 1 . . .).

(d,e). For every point a × t of SΩ × [0, 1), the intervals [a0 × 0, a × 1) and [a0 × 0, a × t) have
the order type of [0, 1) by (c) and (a). Then (a0 × 0, a × t) has the order type of (0, 1). Since
intervals are convex, the subspace topology on (a0 × 0, a× t) is the order topology [Thm 16.4] so
(a0× 0, a× t) is homeomorphic to (0, 1). From this we see that any two points in L are contained
in an interval homeomorphic to (0, 1) and therefore there is continuous path between them.

(f). Suppose that L is 2nd countable. Then also SΩ−{a0} is 2nd countable since this property is
preserved under open continuous maps [Ex 16.4, Ex 30.12]. But SΩ − {a0} is not 2nd countable
for it does not contain countable dense subsets. (Every countable subset of SΩ − {a0} ⊂ SΩ

is bounded [Thm 10.3] so that the complement contains an interval of the form (α, Ω) which is
non-empty, in fact, uncountable [Ex 10.6], cf. [Ex 30.7].)
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