1st December 2004
Munkres §24

Ex. 24.2 (Morten Poulsen). Let f : S — R be a continuous map. Define g : S — R by
g(s) = f(s) = f(—s). Clearly g is continuous. Furthermore

g(s) = f(s) = f(=5) = =(f(=s) = f(s)) = —g(=s),
i.e. gis an odd map. By the Intermediate Value Theorem there exists sq € S* such that g(sg) = 0,
Le. f(s0) = f(=50).
This result is also known as the Borsuk-Ulam theorem in dimension one. Thus there are no
injective continuous maps S' — R, hence S! is not homeomorphic to a subspace of R, which is
no surprise.

Ex. 24.4. [1, §17]. Suppose that X is a linearly ordered set that is not a linear continuum. Then
there are nonempty, proper, clopen subsets of X:

o If (x,y) = 0 for some points z < y then (—oo,z] = (00,y) is clopen and # 0, X.
e If A C X is a nonempty subset bounded from above which has no least upper bound then
the set of upper bounds B =, 4[a,00) = [J,c g(b, 00) is clopen and # 0, X.
Therefore X is not connected [2, §23].

Ex. 24.8 (Morten Poulsen).

(a).
Theorem 1. The product of an arbitrary collection of path connected spaces is path connected.
Proof. Let {A;};es be a collection of path connected spaces. Let x = (z),es and y = (y;) et be
two points in [, ; A;

For each j € J there exists a path 7, : [0,1] — A; between x; and y;, since A; is path connected

for all j. Now the map ~y: [0,1] — [[,c; A; defined by v(t) = (v;(t)) e is a path between z and
1y, hence the product is path connected. O

(b). This is not true in general: The set S = {x x sin(z~! |0 < x < 7~ !} is path connected, but
S =S U ({0} x [~1,1]) is not path connected, c.f. example 24.7.

().
Theorem 2. If f : X — Y is a continuous map and X path connected then f(X) is path connected.

Proof. Clearly it suffices to consider the case where f is surjective. Let y; and ys be two points
in Y. Then there exists z; and z2 in X such that f(xz1) = y; and f(x2) = y2. Since X path
connected there is a path v : [0,1] — X between z; and 9. Now § = fog:[0,1] — Y is a path
between §(0) = f(v(0)) = y; and 6(1) = f(y(1)) = ya2, hence Y path connected. O

(d).
Theorem 3. Let {A;};cs be a collection of path connected spaces. If ()
Ujes A4;j is path connected.

ics Aj is nonempty then

Proof. Let a and b be two points in UjeJ Aj and let ¢ be an element of ﬂjeJ A;. Note that there
exists s and t such that a € A; and b € A;. Clearly ¢ € A; N A;. Since Ay and A; are path
connected there exists a path f :[0,1] — Ag between a and ¢ and a path g : [0,1] — A; between
c and b.

Now h:[0,1] — U,c s A; defined by

f(21), 0<t<1/2
h(t) = { g2t —1), 1/2<t<1

is a path, by the Pasting lemma, between a and b, hence UjeJ A; is path connected.

1



2

Ex. 24.10 (Morten Poulsen). Let U be a nonempty, open and connected subspace of R? and
let 2o € U. Furthermore let A be the set of points in U that can be joined to zy by a path in U.

A open: Let ag € A C U. Since U open there is an open rectangle V(= (a,b) x (¢, d)) such that
ag € V C U. Since V clearly is path connected it follows that V C A, hence A open.

A closed: Let ug € U — A. If every open rectangle containing ug intersects A then clearly
ug € A, hence ug is not a limit point of A. Thus no point of U — A is a limit point of A, hence A
is closed.

Since U connected it follows that A = U, hence U path connected.

Ex. 24.11 (Morten Poulsen). Let A be a subspace of X.

A connected # Int A and Bd A connected: If A = [0,1] then Bd A = {0,1} is not connected.
If A=B(-1x0,1)UB(1 x 0,1) C R?, then Int A = B(—1 x0,1) U B(1 x 0,1) is not connected.

Int A connected # A connected: If A = (0,1) U {2} then Int A = (0,1) is connected, but A is
not connected.

Bd A connected # A connected: A = Q is not connected but Bd A = R is connected.

Int A and Bd A connected & A connected: One example is A = Q. An example with nonempty
interior is

A= ([0,1] x [0,1) U ({0,1} x [1,2)) U(([0,1] N Q) x {2}) C R?
where
BdA=({0,1} x [0,2]) U ({0,1,2} x [0,1])
and
Int A= (0,1) x (0,1).

both are connected but A is not connected.

Ex. 24.12 (The long line). The idea is that the two linear continua Sq x [0,1) and Z x [0,1) =
[1,00), or rather the long line L = (Sq x [0,1)) — {ag x 0} and the real line R = (Z; x [0,1)) —
{1x 0}, should have a great deal in common. L satisfies the conditions of a 1-dimensional manifold
but 2nd countability. The long line is normal [Ex 32.8] but not metrizable [Ex 50.5].

(a) and (b). Easy.

(c¢). I do the hint first. Let a > ap be an element of Sg which has no immediate predecessor
(there are uncountably many such elements [Ex 10.6]). The set of predecessors S, = {b € Sq |
b < a} = {b1,bs,...} is countable and the sets (b,,a] = (b,,a + 1) is a neighborhood basis at a.
Since by is not an immediate predecessor, there is an element a; € (b1, a]. Since sup{ay,ba} is not
an immediate predecessor, there is an element ay € (sup{ai, bz}, a]. Proceeding inductively, we
find a sequence of elements a,, < a such that a, > a,_, and a, > b, for all n. Then a, is an
increasing sequence and since a, > by, b,_1,...,b; for all n, the sequence a,, converges to a.

Let now J be the set of points a such that [agp x 0,a x 1) has the order type of [0,1). I
claim that J is inductive. Suppose that S, C J. If a has an immediate predecessor a; then
[ap X 0,a x 1) =[ag X 0,(a—1) x 1) U[a x 0,a x 1) has the order type of [0,1) by (a). Otherwise,
[ap X 0,a x 1) has the order type of [0,1) by the hint and (b) (let zq, 1, z2,... be the sequence
ag X 0,(11 X 17CL2 X 1)

(d,e). For every point a x ¢t of Sq x [0,1), the intervals [ag x 0,a x 1) and [ag x 0,a x t) have
the order type of [0,1) by (c) and (a). Then (ag x 0,a x t) has the order type of (0,1). Since
intervals are convex, the subspace topology on (ag X 0,a X t) is the order topology [Thm 16.4] so
(ap x 0,a x t) is homeomorphic to (0,1). From this we see that any two points in L are contained
in an interval homeomorphic to (0,1) and therefore there is continuous path between them.

(f). Suppose that L is 2nd countable. Then also So — {ag} is 2nd countable since this property is
preserved under open continuous maps [Ex 16.4, Ex 30.12]. But Su — {ag} is not 2nd countable
for it does not contain countable dense subsets. (Every countable subset of Sq — {ap} C Sq
is bounded [Thm 10.3] so that the complement contains an interval of the form (o, 2) which is
non-empty, in fact, uncountable [Ex 10.6], cf. [Ex 30.7].)
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