Munkres §24

Ex. 24.2 (Morten Poulsen). Let $f: S^{1} \rightarrow \mathbf{R}$ be a continuous map. Define $g: S^{1} \rightarrow \mathbf{R}$ by $g(s)=f(s)-f(-s)$. Clearly g is continuous. Furthermore

$$
g(s)=f(s)-f(-s)=-(f(-s)-f(s))=-g(-s)
$$

i.e. g is an odd map. By the Intermediate Value Theorem there exists $s_{0} \in S^{1}$ such that $g\left(s_{0}\right)=0$, i.e. $f\left(s_{0}\right)=f\left(-s_{0}\right)$.

This result is also known as the Borsuk-Ulam theorem in dimension one. Thus there are no injective continuous maps $S^{1} \rightarrow \mathbf{R}$, hence S^{1} is not homeomorphic to a subspace of \mathbf{R}, which is no surprise.

Ex. 24.4. $[1, \S 17]$. Suppose that X is a linearly ordered set that is not a linear continuum. Then there are nonempty, proper, clopen subsets of X :

- If $(x, y)=\emptyset$ for some points $x<y$ then $(-\infty, x]=(\infty, y)$ is clopen and $\neq \emptyset, X$.
- If $A \subset X$ is a nonempty subset bounded from above which has no least upper bound then the set of upper bounds $B=\bigcap_{a \in A}[a, \infty)=\bigcup_{b \in B}(b, \infty)$ is clopen and $\neq \emptyset, X$.
Therefore X is not connected $[2, \S 23]$.

Ex. 24.8 (Morten Poulsen).

(a).

Theorem 1. The product of an arbitrary collection of path connected spaces is path connected.
Proof. Let $\left\{A_{j}\right\}_{j \in J}$ be a collection of path connected spaces. Let $x=\left(x_{j}\right)_{j \in J}$ and $y=\left(y_{j}\right)_{j \in J}$ be two points in $\prod_{j \in J} A_{j}$

For each $j \in J$ there exists a path $\gamma_{j}:[0,1] \rightarrow A_{j}$ between x_{j} and y_{j}, since A_{j} is path connected for all j. Now the map $\gamma:[0,1] \rightarrow \prod_{j \in J} A_{j}$ defined by $\gamma(t)=\left(\gamma_{j}(t)\right)_{j \in J}$ is a path between x and y, hence the product is path connected.
(b). This is not true in general: The set $S=\left\{x \times \sin \left(x^{-1} \mid 0<x<\pi^{-1}\right\}\right.$ is path connected, but $\bar{S}=S \cup(\{0\} \times[-1,1])$ is not path connected, c.f. example 24.7.
(c).

Theorem 2. If $f: X \rightarrow Y$ is a continuous map and X path connected then $f(X)$ is path connected.
Proof. Clearly it suffices to consider the case where f is surjective. Let y_{1} and y_{2} be two points in Y. Then there exists x_{1} and x_{2} in X such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Since X path connected there is a path $\gamma:[0,1] \rightarrow X$ between x_{1} and x_{2}. Now $\delta=f \circ g:[0,1] \rightarrow Y$ is a path between $\delta(0)=f(\gamma(0))=y_{1}$ and $\delta(1)=f(\gamma(1))=y_{2}$, hence Y path connected.
(d).

Theorem 3. Let $\left\{A_{j}\right\}_{j \in J}$ be a collection of path connected spaces. If $\bigcap_{j \in J} A_{j}$ is nonempty then $\bigcup_{j \in J} A_{j}$ is path connected.
Proof. Let a and b be two points in $\bigcup_{j \in J} A_{j}$ and let c be an element of $\bigcap_{j \in J} A_{j}$. Note that there exists s and t such that $a \in A_{s}$ and $b \in A_{t}$. Clearly $c \in A_{s} \cap A_{t}$. Since A_{s} and A_{t} are path connected there exists a path $f:[0,1] \rightarrow A_{s}$ between a and c and a path $g:[0,1] \rightarrow A_{t}$ between c and b.

Now $h:[0,1] \rightarrow \bigcup_{j \in J} A_{j}$ defined by

$$
h(t)= \begin{cases}f(2 t), & 0 \leq t \leq 1 / 2 \\ g(2 t-1), & 1 / 2 \leq t \leq 1\end{cases}
$$

is a path, by the Pasting lemma, between a and b, hence $\bigcup_{j \in J} A_{j}$ is path connected.

Ex. 24.10 (Morten Poulsen). Let U be a nonempty, open and connected subspace of \mathbf{R}^{2} and let $x_{0} \in U$. Furthermore let A be the set of points in U that can be joined to x_{0} by a path in U.
A open: Let $a_{0} \in A \subset U$. Since U open there is an open rectangle $V(=(a, b) \times(c, d))$ such that $a_{0} \in V \subset U$. Since V clearly is path connected it follows that $V \subset A$, hence A open.
A closed: Let $u_{0} \in U-A$. If every open rectangle containing u_{0} intersects A then clearly $u_{0} \in A$, hence u_{0} is not a limit point of A. Thus no point of $U-A$ is a limit point of A, hence A is closed.

Since U connected it follows that $A=U$, hence U path connected.
Ex. 24.11 (Morten Poulsen). Let A be a subspace of X.
A connected $\nRightarrow \operatorname{Int} A$ and $\operatorname{Bd} A$ connected: If $A=[0,1]$ then $\operatorname{Bd} A=\{0,1\}$ is not connected. If $A=\overline{B(-1 \times 0,1)} \cup \overline{B(1 \times 0,1)} \subset \mathbf{R}^{2}$, then Int $A=B(-1 \times 0,1) \cup B(1 \times 0,1)$ is not connected.

Int A connected $\nRightarrow A$ connected: If $A=(0,1) \cup\{2\}$ then Int $A=(0,1)$ is connected, but A is not connected.
$\mathrm{Bd} A$ connected $\nRightarrow A$ connected: $A=\mathbf{Q}$ is not connected but $\operatorname{Bd} A=\mathbf{R}$ is connected.
Int A and $\mathrm{Bd} A$ connected $\nRightarrow A$ connected: One example is $A=\mathbf{Q}$. An example with nonempty interior is

$$
A=([0,1] \times[0,1]) \cup(\{0,1\} \times[1,2]) \cup(([0,1] \cap \mathbf{Q}) \times\{2\}) \subset \mathbf{R}^{2}
$$

where

$$
\operatorname{Bd} A=(\{0,1\} \times[0,2]) \cup(\{0,1,2\} \times[0,1])
$$

and

$$
\operatorname{Int} A=(0,1) \times(0,1)
$$

both are connected but A is not connected.
Ex. 24.12 (The long line). The idea is that the two linear continua $S_{\Omega} \times[0,1)$ and $\mathbf{Z}_{+} \times[0,1)=$ $[1, \infty)$, or rather the long line $L=\left(S_{\Omega} \times[0,1)\right)-\left\{a_{0} \times 0\right\}$ and the real line $\mathbf{R}=\left(\mathbf{Z}_{+} \times[0,1)\right)-$ $\{1 \times 0\}$, should have a great deal in common. L satisfies the conditions of a 1-dimensional manifold but 2nd countability. The long line is normal [Ex 32.8] but not metrizable [Ex 50.5].
(a) and (b). Easy.
(c). I do the hint first. Let $a>a_{0}$ be an element of S_{Ω} which has no immediate predecessor (there are uncountably many such elements [Ex 10.6]). The set of predecessors $S_{a}=\left\{b \in S_{\Omega} \mid\right.$ $b<a\}=\left\{b_{1}, b_{2}, \ldots\right\}$ is countable and the sets $\left(b_{n}, a\right]=\left(b_{n}, a+1\right)$ is a neighborhood basis at a. Since b_{1} is not an immediate predecessor, there is an element $a_{1} \in\left(b_{1}, a\right]$. Since $\sup \left\{a_{1}, b_{2}\right\}$ is not an immediate predecessor, there is an element $a_{2} \in\left(\sup \left\{a_{1}, b_{2}\right\}, a\right]$. Proceeding inductively, we find a sequence of elements $a_{n}<a$ such that $a_{n}>a_{n-1}$ and $a_{n}>b_{n}$ for all n. Then a_{n} is an increasing sequence and since $a_{n}>b_{n}, b_{n-1}, \ldots, b_{1}$ for all n, the sequence a_{n} converges to a.

Let now J be the set of points a such that $\left[a_{0} \times 0, a \times 1\right)$ has the order type of $[0,1)$. I claim that J is inductive. Suppose that $S_{a} \subset J$. If a has an immediate predecessor a_{1} then $\left[a_{0} \times 0, a \times 1\right)=\left[a_{0} \times 0,(a-1) \times 1\right) \cup[a \times 0, a \times 1)$ has the order type of $[0,1)$ by (a). Otherwise, $\left[a_{0} \times 0, a \times 1\right.$) has the order type of $[0,1)$ by the hint and (b) (let $x_{0}, x_{1}, x_{2}, \ldots$ be the sequence $\left.a_{0} \times 0, a_{1} \times 1, a_{2} \times 1 \ldots\right)$.
(d,e). For every point $a \times t$ of $S_{\Omega} \times\left[0,1\right.$), the intervals $\left[a_{0} \times 0, a \times 1\right)$ and $\left[a_{0} \times 0, a \times t\right)$ have the order type of $[0,1)$ by (c) and (a). Then $\left(a_{0} \times 0, a \times t\right)$ has the order type of $(0,1)$. Since intervals are convex, the subspace topology on $\left(a_{0} \times 0, a \times t\right)$ is the order topology [Thm 16.4] so $\left(a_{0} \times 0, a \times t\right)$ is homeomorphic to $(0,1)$. From this we see that any two points in L are contained in an interval homeomorphic to $(0,1)$ and therefore there is continuous path between them.
(f). Suppose that L is 2 nd countable. Then also $S_{\Omega}-\left\{a_{0}\right\}$ is 2 nd countable since this property is preserved under open continuous maps [Ex 16.4, Ex 30.12]. But $S_{\Omega}-\left\{a_{0}\right\}$ is not 2nd countable for it does not contain countable dense subsets. (Every countable subset of $S_{\Omega}-\left\{a_{0}\right\} \subset S_{\Omega}$ is bounded [Thm 10.3] so that the complement contains an interval of the form (α, Ω) which is non-empty, in fact, uncountable [Ex 10.6], cf. [Ex 30.7].)

References

[1] Jesper M. Møller, General topology, http://www.math.ku.dk/ moller/e03/3gt/notes/gtnotes.dvi.
[2] James R. Munkres, Topology. Second edition, Prentice-Hall Inc., Englewood Cliffs, N.J., 2000. MR 57 \#4063

