1st December 2004

Munkres §19

Ex. 19.7. Any nonempty basis open set in the product topology contains an element from \mathbf{R}^{∞} , cf. Example 7p. 151. Therefore $\overline{\mathbf{R}^{\infty}} = \mathbf{R}^{\omega}$ in the product topology. (\mathbf{R}^{∞} is *dense* [Definition p. 191] in \mathbf{R}^{ω} with the product topology.)

Let (x_i) be any point in $\mathbf{R}^{\omega} - \mathbf{R}^{\infty}$. Put

$$U_i = \begin{cases} \mathbf{R} & \text{if } x_i = 0\\ \mathbf{R} - \{0\} & \text{if } x_i \neq 0 \end{cases}$$

Then $\prod U_i$ is open in the box topology and $(x_i) \in \prod U_i \subset \mathbf{R}^{\omega} - \mathbf{R}^{\infty}$. This shows that \mathbf{R}^{∞} is closed so that $\overline{\mathbf{R}^{\infty}} = \mathbf{R}^{\infty}$ with the box topology on \mathbf{R}^{ω} .

See [Ex 20.5] for the closure of \mathbf{R}^{∞} in \mathbf{R}^{ω} with the uniform topology.

Ex. 19.10.

(a). The topology \mathcal{T} (the *initial topology* for the set maps $\{f_{\alpha} \mid \alpha \in J\}$) is the intersection [Ex 13.4] of all topologies on A for which all the maps $f_{\alpha}, \alpha \in J$, are continuous.

(b). Since all the functions $f_{\alpha} \colon A \to X_{\alpha}, \alpha \in J$, are continuous, $S = \bigcup S_{\alpha} \subset \mathcal{T}$. The topology \mathcal{T}_S generated by S, which is the coarsest topology containing S [Ex 13.5], is therefore also contained in \mathcal{T} . On the other hand, $\mathcal{T} \subset \mathcal{T}_S$, for all the functions $f_{\alpha} \colon A \to X_{\alpha}, \alpha \in J$, are continuous in \mathcal{T}_S and \mathcal{T} is the coarsest topology with this property. Thus $\mathcal{T} = \mathcal{T}_S$.

(c). Let $g \colon Y \to A$ be any map. Then

$$g: Y \to A \text{ is continuous} \Leftrightarrow \forall U \in \mathcal{S} \colon g^{-1}(U) \in \mathcal{T}_Y$$
$$\Leftrightarrow \forall \alpha \in J \; \forall U_\alpha \in \mathcal{T}_\alpha \colon g^{-1}(f_\alpha^{-1}U_\alpha) \in \mathcal{T}_Y$$
$$\Leftrightarrow \forall \alpha \in J \; \forall U_\alpha \in \mathcal{T}_\alpha \colon (f_\alpha \circ g)^{-1}U_\alpha \in \mathcal{T}_Y$$
$$\Leftrightarrow \forall \alpha \in J \colon f_\alpha \circ g \colon Y \to X_\alpha \text{ is continuous}$$
$$\Leftrightarrow f \circ g \colon Y \to \prod X_\alpha \text{ is continuous}$$

where \mathcal{T}_Y is the topology on Y and \mathcal{T}_{α} the topology on X_{α} .

(d). Consider first a single map $f: A \to X$, and give A the initial topology so that the open sets in A are the sets of the form $f^{-1}U$ for U open in X. Then $f: A \to f(A)$ is always continuous [Thm 18.2] and open because $f(A) \cap U = f(f^{-1}U)$ for all (open) subsets U of X. Next, note that the initial topology for the set maps $\int f_{-1} \phi \in U$ is the initial topology for the

Next, note that the initial topology for the set maps $\{f_{\alpha} \mid \alpha \in J\}$ is the initial topology for the single map $f = (f_{\alpha}): A \to \prod X_{\alpha}$. As just observed, $f: A \to f(A)$ is continuous and open.

Example: The product topology on $\prod X_{\alpha}$ is the initial topology for the set of projections $\pi_{\alpha} \colon \prod X_{\alpha} \to X_{\alpha}$.

References