Munkres $£ 18$

Ex. 18.1 (Morten Poulsen). Recall the ε - δ-definition of continuity: A function $f: \mathbf{R} \rightarrow \mathbf{R}$ is said to be continuous if

$$
\forall a \in \mathbf{R} \forall \varepsilon \in \mathbf{R}_{+} \exists \delta \in \mathbf{R}_{+} \forall x \in \mathbf{R}:|x-a|<\delta \Rightarrow|f(x)-f(a)|<\varepsilon
$$

Let \mathcal{T} be the standard topology on \mathbf{R} generated by the open intervals.
Theorem 1. For functions $f: \mathbf{R} \rightarrow \mathbf{R}$ the following are equivalent:
(i) $\forall a \in \mathbf{R} \forall \varepsilon \in \mathbf{R}_{+} \exists \delta \in \mathbf{R}_{+} \forall x \in \mathbf{R}:|x-a|<\delta \Rightarrow|f(x)-f(a)|<\varepsilon$.
(ii) $\forall a \in \mathbf{R} \forall \varepsilon \in \mathbf{R}_{+} \exists \delta \in \mathbf{R}_{+}: f((a-\delta, a+\delta)) \subset(f(a)-\varepsilon, f(a)+\varepsilon)$.
(iii) $\forall U \in \mathcal{T}: f^{-1}(U) \in \mathcal{T}$.

Proof. " $(i) \Leftrightarrow(i i)$ ": Clear.
" $(i i) \Rightarrow(i i i)$ ": Let $U \in \mathcal{T}$. If $a \in f^{-1}(U)$ then $f(a) \in U$. Since U is open there exists $\varepsilon \in \mathbf{R}_{+}$such that $(f(a)-\varepsilon, f(a)+\varepsilon) \subset U$. By assumption there exists $\delta_{a} \in \mathbf{R}_{+}$such that $f\left(\left(a-\delta_{a}, a+\delta_{a}\right)\right) \subset(f(a)-\varepsilon, f(a)+\varepsilon)$, hence $\left(a-\delta_{a}, a+\delta_{a}\right) \subset f^{-1}(U)$. It follows that $f^{-1}(U)=\bigcup_{a \in f^{-1}(U)}\left(a-\delta_{a}, a+\delta_{a}\right)$, i.e. open.
" $(i i i) \Rightarrow($ ii $)$ ": Let $a \in \mathbf{R}$. Given $\varepsilon \in \mathbf{R}_{+}$then $f^{-1}((f(a)-\varepsilon, f(a)+\varepsilon))$ is open and contains a. Hence there exists $\delta \in \mathbf{R}_{+}$such that $(a-\delta, a+\delta) \subset f^{-1}((f(a)-\varepsilon, f(a)+\varepsilon))$. It follows that $f((a-\delta, a+\delta)) \subset(f(a)-\varepsilon, f(a)+\varepsilon)$.

Ex. 18.2. Let $f: \mathbf{R} \rightarrow\{0\}$ be the constant map. Then 2004 is a limit point of \mathbf{R} but $f(2004)=0$ is not a limit point of $f(\mathbf{R})=\{0\}$. (The question is if $f\left(A^{\prime}\right) \subset f(A)^{\prime}$ in general. The answer is no: In the above example $\mathbf{R}^{\prime}=\mathbf{R}$ so that $f\left(\mathbf{R}^{\prime}\right)=f(\mathbf{R})=\{0\}$ but $f(\mathbf{R})^{\prime}=\emptyset$.)

Ex. 18.6 (Morten Poulsen).

Claim 2. The map $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by

$$
f(x)= \begin{cases}x, & x \in \mathbf{R}-\mathbf{Q} \\ 0, & x \in \mathbf{Q}\end{cases}
$$

is continuous only at 0 .
Proof. Since $|f(x)| \leq|x|$ for all x it follows that f is continuous at 0 .
Let $x_{0} \in \mathbf{R}-\{0\}$. Since $\lim _{x \rightarrow x_{0}, x \in \mathbf{Q}} f(x)=0$ and $\lim _{x \rightarrow x_{0}, x \in \mathbf{R}-\mathbf{Q}} f(x)=x$ it follows that f is not continuous at x_{0}.

Ex. 18.7 (Morten Poulsen).

(a). The following lemma describes the continuous maps $\mathbf{R}_{\ell} \rightarrow \mathbf{R}$.

Lemma 3. Let $f: \mathbf{R} \rightarrow \mathbf{R}$. The following are equivalent:
(i) $f: \mathbf{R} \rightarrow \mathbf{R}$ is right continuous.
(ii) $\forall x \in \mathbf{R} \forall \varepsilon \in \mathbf{R}_{+} \exists \delta \in \mathbf{R}_{+}: f([x, x+\delta)) \subset(f(x)-\varepsilon, f(x)+\varepsilon)$.
(iii) For each $x \in \mathbf{R}$ and each interval (a, b) containing $f(x)$ there exists an interval $[c, d)$ containing x such that $f([c, d)) \subset(a, b)$.
(iv) $f: \mathbf{R}_{\ell} \rightarrow \mathbf{R}$ is continuous.

Proof. " $(i) \Leftrightarrow(i i) ":$ By definition.
$"(i i) \Rightarrow(i i i) ":$ Let $x \in \mathbf{R}$. Assume $f(x) \in(a, b)$. Set $\varepsilon=\min \{f(x)-a, b-f(x)\} \in \mathbf{R}_{+}$. Then $(f(x)-\varepsilon, f(x)+\varepsilon) \subset(a, b)$. By (ii) there exists $\delta \in \mathbf{R}_{+}$such that $f([x, x+\delta)) \subset(f(x)-\varepsilon, f(x)+\varepsilon)$, hence $[c, d)=[x, x+\delta)$ does the trick.
$"(i i i) \Rightarrow(i i) ":$ Let $x \in \mathbf{R}$ and $\varepsilon \in \mathbf{R}_{+}$. By (iii) there exists $[c, d)$ such that $x \in[c, d)$ and $f([c, d)) \subset(f(x)-\varepsilon, f(x)+\varepsilon)$. Set $\delta=d-x \in \mathbf{R}_{+}$. Then $[x, x+\delta)=[x, d) \subset[c, d)$, hence $f([x, x+\delta)) \subset(x-\varepsilon, x+\varepsilon)$.
$"(i i i) \Leftrightarrow(i v) ":$ Clear.
(b). The continuous maps from \mathbf{R} to \mathbf{R}_{ℓ} are the constant maps, c.f. Ex. 25.1.

A map $f: \mathbf{R}_{\ell} \rightarrow \mathbf{R}_{\ell}$ is continuous if and only if for any x and $\varepsilon>0$ there exists $\delta>0$ such that $f([x, x+\delta)) \subset[f(x), f(x)+\varepsilon)$. Hence $f: \mathbf{R}_{\ell} \rightarrow \mathbf{R}_{\ell}$ is continuous if and only if $f: \mathbf{R} \rightarrow \mathbf{R}$ is right continuous and $\forall x \in \mathbf{R} \exists \delta>0 \forall y \in[x, x+\delta): f(x) \leq f(y)$. (Thanks to Prateek Karandikar for a correction and for this example of a continuous map $\mathbf{R}_{\ell} \rightarrow \mathbf{R}_{\ell .}$)
Ex. 18.8. Let Y be an ordered set. Give $Y \times Y$ the product topology. Consider the set

$$
\Delta^{-}=\left\{y_{1} \times y_{2} \mid y_{1}>y_{2}\right\}
$$

of points below the diagonal. Let $\left(y_{1}, y_{2}\right) \in \Delta^{-}$so that $y_{1}>y_{2}$. If y_{2} is the immediate predecessor of y_{1} then

$$
y_{1} \times y_{2} \in\left[y_{1}, \infty\right) \times\left(-\infty, y_{2}\right)=\left(y_{2}, \infty\right) \times\left(-\infty, y_{1}\right) \subset \Delta^{-}
$$

and if $y_{1}>y>y_{2}$ for some $y \in Y$ then

$$
y_{1} \times y_{2} \in(y, \infty) \times(-\infty, y) \subset \Delta^{-}
$$

This shows that Δ^{-}is open.
(a). Since the map $(f, g): X \xrightarrow{\Delta} X \times X \xrightarrow{f \times g} Y \times Y$ is continuous, the preimage

$$
(f, g)^{-1}\left(\Delta^{-}\right)=\{x \in X \mid f(x)>g(x)\}
$$

is open and the complement $\{x \in X \mid f(x) \leq g(x)\}$ is closed.
(b). The map

$$
\min \{f, g\}(x)= \begin{cases}f(x) & f(x) \leq g(x) \\ g(x) & f(x) \geq g(x)\end{cases}
$$

is continuous according to [1, Thm 18.3].
Ex. 18.10. Let $\left(f_{j}: X_{j} \rightarrow Y_{j}\right)_{j \in J}$ be an indexed family of continuous maps. Define $\prod f_{j}$: $\Pi X_{j} \rightarrow \Pi Y_{j}$ to be the map that takes $\left(x_{j}\right) \in \Pi X_{j}$ to $\left(f_{j}\left(x_{j}\right)\right) \in \Pi Y_{j}$. The commutative diagram

shows that $\pi_{k} \circ \prod f_{j}=f_{k} \circ \pi_{k}$ is continuous for all $k \in J$. Thus $\prod f_{j}: \prod X_{j} \rightarrow \prod Y_{j}$ is continuous [1, Thm 18.4, Thm 19.6].
Ex. 18.13. Let $f, g: X \rightarrow Y$ be two continuous maps between topological spaces where the codomain, Y, is Hausdorff. The equalizer

$$
\operatorname{Eq}(f, g)=\{x \in X \mid f(x)=g(x)\}=(f, g)^{-1}(\Delta)
$$

is then a closed subset of X for it is the preimage under the continuous map $(f, g): X \rightarrow Y \times Y$ of the diagonal $\Delta=\{(y, y) \in Y \times Y \mid y \in Y\}$ which is closed since Y is Hausdorff [1, Ex 17.13]. (This is [1, Ex 31.5].)

It follows that if f and g agree on the subset $A \subset X$ then they also agree on \bar{A} for

$$
A \subset \operatorname{Eq}(f, g) \Longrightarrow \bar{A} \subset \operatorname{Eq}(f, g)
$$

In particular, if f and g agree on a dense subset of X, they are equal: Any continuous map into a Hausdorff space is determined by its values on a dense subset.

References

[1] James R. Munkres, Topology. Second edition, Prentice-Hall Inc., Englewood Cliffs, N.J., 2000. MR 57 \#4063

