Munkres §17

Ex. 17.3. $A \times B$ is closed because its complement

$$
(X \times Y)-(A \times B)=(X-A) \times Y \cup X \times(Y-B)
$$

is open in the product topology.

Ex. 17.6.

(a). If $A \subset B$, then all limit points of A are also limit points of B, so [Thm 17.6] $\bar{A} \subset \bar{B}$.
(b). Since $A \cup B \subset \bar{A} \cup \bar{B}$ and $\bar{A} \cup \bar{B}$ is closed [Thm 17.1], we have $\overline{A \cup B} \subset \bar{A} \cup \bar{B}$ by (a). Conversely, since $A \subset A \cup B \subset \overline{A \cup B}$, we have $\bar{A} \subset \overline{A \cup B}$ by (a) again. Similarly, $\bar{B} \subset \overline{A \cup B}$. Therefore $\bar{A} \cup \bar{B} \subset \overline{A \cup B}$. This shows that closure commutes with finite unions.
(c). Since $\bigcup A_{\alpha} \supset A_{\alpha}$ we have $\overline{\bigcup A_{\alpha}} \supset \overline{A_{\alpha}}$ by (a) for all α and therefore $\overline{\bigcup A_{\alpha}} \supset \bigcup \overline{A_{\alpha}}$. In general we do not have equality as the example $A_{q}=\{q\}, q \in \mathbf{Q}$, in \mathbf{R} shows.

Ex. 17.8.

(a). By [Ex 17.6.(a)], $\overline{A \cap B} \subset \bar{A}$ and $\overline{A \cap B} \subset \bar{B}$, so $\overline{A \cap B} \subset \bar{A} \cap \bar{B}$. It is not true in general that $\overline{A \cap B}=\bar{A} \cap \bar{B}$ as the example $A=[0,1), B=[1,2]$ in \mathbf{R} shows. (However, if A is open and D is dense then $\overline{A \cap D}=\bar{A}$).
(b). Since $\bigcap A_{\alpha} \subset A_{\alpha}$ we have $\overline{\bigcap A_{\alpha}} \subset \overline{A_{\alpha}}$ for all α and therefore $\overline{\bigcap A_{\alpha}} \subset \bigcap \overline{A_{\alpha}}$. (In fact, (a) is a special case of (b)).
(c). Let $x \in \bar{A}-\bar{B}$. For any neighborhood of $x, U-\bar{B}$ is also a neighborhood of x so

$$
U \cap(A-B)=(U-B) \cap A \supset(U-\bar{B}) \cap A \neq \emptyset
$$

since x is in the closure of A [Thm 17.5]. So $x \in \overline{A-B}$. This shows that $\bar{A}-\bar{B} \subset \overline{A-B}$. Equality does not hold in general as $\overline{\mathbf{R}}-\overline{\{0\}}=\mathbf{R}-\{0\} \varsubsetneqq \overline{\mathbf{R}-\{0\}}=\mathbf{R}$.

Just to recap we have
(1) $A \subset B \Rightarrow \bar{A} \subset \bar{B} \quad(A \subset B, B$ closed $\Rightarrow \bar{A} \subset B)$
(2) $\overline{A \cup B}=\bar{A} \cup \bar{B}$
(3) $\overline{A \cap B} \subset \bar{A} \cap \bar{B} \quad(\overline{A \cap D}=\bar{A}$ if D is dense.)
(4) $\overline{\bigcup A_{\alpha}} \supset \bigcup \overline{A_{\alpha}}$
(5) $\overline{\bigcap A_{\alpha}} \subset \bigcap \overline{A_{\alpha}}$
(6) $\bar{A}-\bar{B} \subset \overline{A-B}$

Dually,
(1) $A \subset B \Rightarrow \operatorname{Int} A \subset \operatorname{Int} B \quad(A \subset B, A$ open $\Rightarrow A \subset \operatorname{Int} B)$
(2) $\operatorname{Int}(A \cap B)=\operatorname{Int} A \cap \operatorname{Int} B$
(3) $\operatorname{Int}(A \cup B) \supset \operatorname{Int} A \cup \operatorname{Int} B$

These formulas are really the same because

$$
\overline{X-A}=X-\operatorname{Int} A, \quad \operatorname{Int}(X-A)=X-\bar{A}
$$

Ex. 17.9. [Thm 19.5] Since $\bar{A} \times \bar{B}$ is closed [Ex 17.3] and contains $A \times B$, it also contains the closure of $A \times B[\operatorname{Ex} 17.6$.(a)], i.e. $\overline{A \times B} \subset \bar{A} \times \bar{B}$.

Conversely, let $(x, y) \in \bar{A} \times \bar{B}$. Any neighborhood of (x, y) contains a product neighborhood of the form $U \times V$ where $U \subset X$ is a neighborhood of x and $V \subset Y$ a neighborhood of y. The intersection of this product neighborhood with $A \times B$

$$
(U \times V) \cap(A \times B)=(U \cap A) \times(V \cap Y)
$$

is nonempty because $U \cap A \neq \emptyset$ as $x \in \bar{A}$ and $V \cap B \neq \emptyset$ as $y \in \bar{B}$. Since thus any neighborhood of (x, y) intersect $A \times B$ nontrivially, the point (x, y) lies in the closure of $A \times B$ [Thm 17.5]. This shows that $\bar{A} \times \bar{B} \subset \overline{A \times B}$.

Ex. 17.10 (Morten Poulsen).

Theorem 1. Every order topology is Hausdorff.
Proof. Let (X, \leq) be a simply ordered set. Let X be equipped with the order topology induced by the simple order. Furthermore let a and b be two distinct points in X, may assume that $a<b$. Let

$$
A=\{x \in X \mid a<x<b\}
$$

i.e. the set of elements between a and b.

If A is empty then $a \in(-\infty, b), b \in(a, \infty)$ and $(-\infty, b) \cap(a, \infty)=\emptyset$, hence X is Hausdorff.
If A is nonempty then $a \in(-\infty, x), b \in(x, \infty)$ and $(-\infty, x) \cap(x, \infty)=\emptyset$ for any element x in A, hence X is Hausdorff.

Ex. 17.11 (Morten Poulsen).

Theorem 2. The product of two Hausdorff spaces is Hausdorff.
Proof. Let X and Y be Hausdorff spaces and let $a_{1} \times b_{1}$ and $a_{2} \times b_{2}$ be two distinct points in $X \times Y$. Note that either $a_{1} \neq a_{2}$ or $b_{1} \neq b_{2}$.

If $a_{1} \neq a_{2}$ then, since X is Hausdorff, there exists open sets U_{1} and U_{2} in X such that $a_{1} \in U_{1}$, $a_{2} \in U_{2}$ and $U_{1} \cap U_{2}=\emptyset$. It follows that $U_{1} \times Y$ and $U_{2} \times Y$ are open in $X \times Y$. Furthermore $a_{1} \times b_{1} \in U_{1} \times Y, a_{2} \times b_{2} \in U_{2} \times Y$ and $\left(U_{1} \times Y\right) \cap\left(U_{2} \times Y\right)=\left(U_{1} \cap U_{2}\right) \times Y=\emptyset \times Y=\emptyset$, hence $X \times Y$ is Hausdorff.

The case $b_{1} \neq b_{2}$ is similar.
Ex. 17.12 (Morten Poulsen).
Theorem 3. Every subspace of a Hausdorff space is Hausdorff.
Proof. Let A be a subspace of a Haussdorff space X and let a and b be two distinct points in A.
Since X is Hausdorff there exists two open sets U and V in X such that $a \in U, b \in V$ and
$U \cap V=\emptyset$. Hence $a \in A \cap U, b \in A \cap V$ and $(A \cap U) \cap(A \cap V)=(U \cap V) \cap A=\emptyset \cap A=\emptyset$. Since $A \cap U$ and $A \cap V$ are open in A, it follows that A is Hausdorff.

Ex. 17.13 (Morten Poulsen).

Theorem 4. A topological space X is Hausdorff if only if the diagonal

$$
\Delta=\{x \times x \in X \times X \mid x \in X\}
$$

is closed in $X \times X$.
Proof. Suppose X is Hausdorff. The diagonal Δ is closed if and only if the complement $\Delta^{c}=$ $X \times X-\Delta$ is open. Let $a \times b \in \Delta^{c}$, i.e. a and b are distinct points in X. Since X is Hausdorff there exists open sets U and V in X such that $a \in U, b \in V$ and $U \cap V=\emptyset$. Hence $a \times b \in U \times V$ and $U \times V$ open in $X \times X$. Furthermore $(U \times V) \cap \Delta=\emptyset$, since U and V are disjoint. So for every point $a \times b \in \Delta^{c}$ there exists an open set $U_{a \times b}$ such that $a \times b \in U_{a \times b} \subset \Delta^{c}$. By Ex. 13.1 it follows that Δ^{c} open, i.e. Δ closed.

Now suppose Δ is closed. If a and b are two distinct points in X then $a \times b \in \Delta^{c}$. Since Δ^{c} is open there exists a basis element $U \times V, U$ and V open in X, for the product topology, such that $a \times b \in U \times V \subset \Delta^{c}$. Since $U \times V \subset \Delta^{c}$ it follows that $U \cap V=\emptyset$. Hence U and V are open sets such that $a \in U, b \in V$ and $U \cap V=\emptyset$, i.e. X is Hausdorff.

Ex. 17.14 (Morten Poulsen). The sequence converges to every real number, by the following result.

Theorem 5. Let X be a set equipped with the finite complement topology. If $\left(x_{n}\right)_{n \in \mathbf{Z}_{+}}$is an infinite sequence of distinct points in X then $\left(x_{n}\right)$ converges to every x in X.

Proof. Let U be a neighborhood of $x \in X$, i.e $X-U$ is finite. It follows that $x_{n} \in U$, for all, but finitely many, $n \in \mathbf{Z}_{+}$, i.e. $\left(x_{n}\right)$ converges to x.

Ex. 17.21 (Morten Poulsen). Let X be a topological space. Consider the three operations on $\mathcal{P}(X)$, namely closure $A \mapsto \bar{A}$, complement $A \mapsto X-A$ and interior $A \mapsto A^{\circ}$. Write A^{-}instead of \bar{A} and A^{c} instead of $X-A$, e.g. $X-\overline{X-A}=A^{c-c}$.

Lemma 6. If $A \subset X$ then $A^{\circ}=A^{c-c}$.
Proof. $A^{\circ} \supset A^{c-c}$: Since $A^{c} \subset A^{c-}, A^{c-c} \subset A$ and A^{c-c} is open.
$A^{\circ} \subset A^{c-c}$: Since $A^{\circ} \subset A, A^{c} \subset A^{\circ c}$ and $A^{\circ c}$ is closed, it follows that $A^{c-} \subset A^{\circ c}$, hence $A^{\circ} \subset A^{c-c}$.

This lemma shows that the interior operation can be expressed in terms of the closure and complement operations.
(a). The following theorem, also known as Kuratowski's Closure-Complement Problem, was first proved by Kuratowski in 1922.

Theorem 7. Let X be a topological space and $A \subset X$. Then at most 14 distinct sets can be derived from A by repeated application of closure and complementation.

Proof. Let $A_{1}=A$ and set $B_{1}=A_{1}^{c}$. Define $A_{2 n}=A_{2 n-1}^{-}$and $A_{2 n+1}=A_{2 n}^{c}$ for $n \in \mathbf{Z}_{+}$. Define $B_{2 n}=B_{2 n-1}^{-}$and $B_{2 n+1}=B_{2 n}^{c}$ for $n \in \mathbf{Z}_{+}$.

Note that every set obtainable from A by repeatedly applying the closure and complement operations is clearly one of the sets A_{n} or B_{n}.

Now $A_{7}=A_{4}^{c-c}=A_{4}^{\circ}=A_{3}^{-\circ}$. Since $A_{3}=A_{1}^{-c}$ it follows that A_{3} is open, hence $A_{3} \subset A_{7} \subset A_{3}^{-}$, so $A_{7}^{-}=A_{3}^{-}$, i.e. $A_{8}=A_{4}$, hence $A_{n+4}=A_{n}$ for $n \geq 4$. Similarly $B_{n+4}=B_{n}$ for $n \geq 4$.

Thus every A_{n} or B_{n} is equal to one of the 14 sets $A_{1}, \ldots, A_{7}, B_{1}, \ldots, B_{7}$, this proves the result.
(b). An example:

$$
A=((-\infty,-1)-\{-2\}) \cup([-1,1] \cap \mathbf{Q}) \cup\{2\} .
$$

The 14 different sets:

$$
\begin{aligned}
& A_{1}=((-\infty,-1)-\{-2\}) \cup([-1,1] \cap \mathbf{Q}) \cup\{2\} \\
& A_{2}=(-\infty, 1] \cup\{2\} \\
& A_{3}=(1, \infty)-\{2\} \\
& A_{4}=[1, \infty) \\
& A_{5}=(-\infty, 1) \\
& A_{6}=(-\infty, 1] \\
& A_{7}=(1, \infty) \\
& B_{1}=\{-2\} \cup([-1,1]-\mathbf{Q}) \cup((1, \infty)-\{2\}) \\
& B_{2}=\{-2\} \cup[-1, \infty) \\
& B_{3}=(-\infty,-1)-\{-2\} \\
& B_{4}=(-\infty,-1] \\
& B_{5}=(-1, \infty) \\
& B_{6}=[-1, \infty) \\
& B_{7}=(-\infty,-1) .
\end{aligned}
$$

Another example:

$$
A=\left\{1 / n \mid n \in \mathbf{Z}_{+}\right\} \cup(2,3) \cup(3,4) \cup\{9 / 2\} \cup[5,6] \cup\{x \mid x \in \mathbf{Q}, 7 \leq x<8\}
$$

References

