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Munkres §17

Ex. 17.3. A×B is closed because its complement

(X × Y )− (A×B) = (X −A)× Y ∪X × (Y −B)

is open in the product topology.

Ex. 17.6.

(a). If A ⊂ B, then all limit points of A are also limit points of B, so [Thm 17.6] A ⊂ B.

(b). Since A ∪ B ⊂ A ∪ B and A ∪ B is closed [Thm 17.1], we have A ∪B ⊂ A ∪ B by (a).
Conversely, since A ⊂ A ∪ B ⊂ A ∪B, we have A ⊂ A ∪B by (a) again. Similarly, B ⊂ A ∪B.
Therefore A ∪B ⊂ A ∪B. This shows that closure commutes with finite unions.

(c). Since
⋃

Aα ⊃ Aα we have
⋃

Aα ⊃ Aα by (a) for all α and therefore
⋃

Aα ⊃
⋃

Aα. In general
we do not have equality as the example Aq = {q}, q ∈ Q, in R shows.

Ex. 17.8.

(a). By [Ex 17.6.(a)], A ∩B ⊂ A and A ∩B ⊂ B, so A ∩B ⊂ A ∩ B. It is not true in general
that A ∩B = A∩B as the example A = [0, 1), B = [1, 2] in R shows. (However, if A is open and
D is dense then A ∩D = A).

(b). Since
⋂

Aα ⊂ Aα we have
⋂

Aα ⊂ Aα for all α and therefore
⋂

Aα ⊂
⋂

Aα. (In fact, (a) is
a special case of (b)).

(c). Let x ∈ A−B. For any neighborhood of x, U −B is also a neighborhood of x so

U ∩ (A−B) = (U −B) ∩A ⊃ (U −B) ∩A 6= ∅
since x is in the closure of A [Thm 17.5]. So x ∈ A−B. This shows that A−B ⊂ A−B. Equality
does not hold in general as R− {0} = R− {0} $ R− {0} = R.

Just to recap we have
(1) A ⊂ B ⇒ A ⊂ B (A ⊂ B, B closed ⇒ A ⊂ B)
(2) A ∪B = A ∪B
(3) A ∩B ⊂ A ∩B (A ∩D = A if D is dense.)
(4)

⋃
Aα ⊃

⋃
Aα

(5)
⋂

Aα ⊂
⋂

Aα

(6) A−B ⊂ A−B

Dually,
(1) A ⊂ B ⇒ IntA ⊂ IntB (A ⊂ B, A open ⇒ A ⊂ IntB)
(2) Int (A ∩B) = Int A ∩ IntB
(3) Int (A ∪B) ⊃ IntA ∪ IntB

These formulas are really the same because

X −A = X − IntA, Int (X −A) = X −A

Ex. 17.9. [Thm 19.5] Since A × B is closed [Ex 17.3] and contains A × B, it also contains the
closure of A×B [Ex 17.6.(a)], i.e. A×B ⊂ A×B.

Conversely, let (x, y) ∈ A × B. Any neighborhood of (x, y) contains a product neighborhood
of the form U × V where U ⊂ X is a neighborhood of x and V ⊂ Y a neighborhood of y. The
intersection of this product neighborhood with A×B

(U × V ) ∩ (A×B) = (U ∩A)× (V ∩ Y )

is nonempty because U ∩ A 6= ∅ as x ∈ A and V ∩B 6= ∅ as y ∈ B. Since thus any neighborhood
of (x, y) intersect A×B nontrivially, the point (x, y) lies in the closure of A×B [Thm 17.5]. This
shows that A×B ⊂ A×B.
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Ex. 17.10 (Morten Poulsen).

Theorem 1. Every order topology is Hausdorff.

Proof. Let (X,≤) be a simply ordered set. Let X be equipped with the order topology induced
by the simple order. Furthermore let a and b be two distinct points in X, may assume that a < b.
Let

A = {x ∈ X | a < x < b },
i.e. the set of elements between a and b.

If A is empty then a ∈ (−∞, b), b ∈ (a,∞) and (−∞, b) ∩ (a,∞) = ∅, hence X is Hausdorff.
If A is nonempty then a ∈ (−∞, x), b ∈ (x,∞) and (−∞, x) ∩ (x,∞) = ∅ for any element x in

A, hence X is Hausdorff. �

Ex. 17.11 (Morten Poulsen).

Theorem 2. The product of two Hausdorff spaces is Hausdorff.

Proof. Let X and Y be Hausdorff spaces and let a1 × b1 and a2 × b2 be two distinct points in
X × Y . Note that either a1 6= a2 or b1 6= b2.

If a1 6= a2 then, since X is Hausdorff, there exists open sets U1 and U2 in X such that a1 ∈ U1,
a2 ∈ U2 and U1 ∩ U2 = ∅. It follows that U1 × Y and U2 × Y are open in X × Y . Furthermore
a1 × b1 ∈ U1 × Y , a2 × b2 ∈ U2 × Y and (U1 × Y )∩ (U2 × Y ) = (U1 ∩U2)× Y = ∅ × Y = ∅, hence
X × Y is Hausdorff.

The case b1 6= b2 is similar. �

Ex. 17.12 (Morten Poulsen).

Theorem 3. Every subspace of a Hausdorff space is Hausdorff.

Proof. Let A be a subspace of a Haussdorff space X and let a and b be two distinct points in A.
Since X is Hausdorff there exists two open sets U and V in X such that a ∈ U , b ∈ V and

U ∩ V = ∅. Hence a ∈ A∩U , b ∈ A∩ V and (A∩U)∩ (A∩ V ) = (U ∩ V )∩A = ∅ ∩A = ∅. Since
A ∩ U and A ∩ V are open in A, it follows that A is Hausdorff. �

Ex. 17.13 (Morten Poulsen).

Theorem 4. A topological space X is Hausdorff if only if the diagonal

∆ = {x× x ∈ X ×X |x ∈ X }
is closed in X ×X.

Proof. Suppose X is Hausdorff. The diagonal ∆ is closed if and only if the complement ∆c =
X ×X −∆ is open. Let a × b ∈ ∆c, i.e. a and b are distinct points in X. Since X is Hausdorff
there exists open sets U and V in X such that a ∈ U , b ∈ V and U ∩ V = ∅. Hence a× b ∈ U × V
and U × V open in X × X. Furthermore (U × V ) ∩ ∆ = ∅, since U and V are disjoint. So for
every point a× b ∈ ∆c there exists an open set Ua×b such that a× b ∈ Ua×b ⊂ ∆c. By Ex. 13.1
it follows that ∆c open, i.e. ∆ closed.

Now suppose ∆ is closed. If a and b are two distinct points in X then a× b ∈ ∆c. Since ∆c is
open there exists a basis element U × V , U and V open in X, for the product topology, such that
a× b ∈ U × V ⊂ ∆c. Since U × V ⊂ ∆c it follows that U ∩ V = ∅. Hence U and V are open sets
such that a ∈ U , b ∈ V and U ∩ V = ∅, i.e. X is Hausdorff. �

Ex. 17.14 (Morten Poulsen). The sequence converges to every real number, by the following
result.

Theorem 5. Let X be a set equipped with the finite complement topology. If (xn)n∈Z+ is an
infinite sequence of distinct points in X then (xn) converges to every x in X.

Proof. Let U be a neighborhood of x ∈ X, i.e X − U is finite. It follows that xn ∈ U , for all, but
finitely many, n ∈ Z+, i.e. (xn) converges to x. �
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Ex. 17.21 (Morten Poulsen). Let X be a topological space. Consider the three operations on
P(X), namely closure A 7→ A, complement A 7→ X − A and interior A 7→ A◦. Write A− instead
of A and Ac instead of X −A, e.g. X −X −A = Ac−c.

Lemma 6. If A ⊂ X then A◦ = Ac−c.

Proof. A◦ ⊃ Ac−c: Since Ac ⊂ Ac−, Ac−c ⊂ A and Ac−c is open.
A◦ ⊂ Ac−c: Since A◦ ⊂ A, Ac ⊂ A◦c and A◦c is closed, it follows that Ac− ⊂ A◦c, hence

A◦ ⊂ Ac−c. �

This lemma shows that the interior operation can be expressed in terms of the closure and
complement operations.

(a). The following theorem, also known as Kuratowski’s Closure-Complement Problem, was first
proved by Kuratowski in 1922.

Theorem 7. Let X be a topological space and A ⊂ X. Then at most 14 distinct sets can be
derived from A by repeated application of closure and complementation.

Proof. Let A1 = A and set B1 = Ac
1. Define A2n = A−2n−1 and A2n+1 = Ac

2n for n ∈ Z+. Define
B2n = B−

2n−1 and B2n+1 = Bc
2n for n ∈ Z+.

Note that every set obtainable from A by repeatedly applying the closure and complement
operations is clearly one of the sets An or Bn.

Now A7 = Ac−c
4 = A◦4 = A−◦3 . Since A3 = A−c

1 it follows that A3 is open, hence A3 ⊂ A7 ⊂ A−3 ,
so A−7 = A−3 , i.e. A8 = A4, hence An+4 = An for n ≥ 4. Similarly Bn+4 = Bn for n ≥ 4.

Thus every An or Bn is equal to one of the 14 sets A1, . . . , A7, B1, . . . , B7, this proves the
result. �

(b). An example:
A = ((−∞,−1)− {−2}) ∪ ([−1, 1] ∩Q) ∪ {2}.

The 14 different sets:

A1 = ((−∞,−1)− {−2}) ∪ ([−1, 1] ∩Q) ∪ {2}
A2 = (−∞, 1] ∪ {2}
A3 = (1,∞)− {2}
A4 = [1,∞)

A5 = (−∞, 1)

A6 = (−∞, 1]

A7 = (1,∞)

B1 = {−2} ∪ ([−1, 1]−Q) ∪ ((1,∞)− {2})
B2 = {−2} ∪ [−1,∞)

B3 = (−∞,−1)− {−2}
B4 = (−∞,−1]

B5 = (−1,∞)

B6 = [−1,∞)

B7 = (−∞,−1).

Another example:

A = { 1/n |n ∈ Z+ } ∪ (2, 3) ∪ (3, 4) ∪ {9/2} ∪ [5, 6] ∪ {x |x ∈ Q, 7 ≤ x < 8 }.
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