1st December 2004

Munkres §16

Ex. 16.1 (Morten Poulsen). Let (X, \mathcal{T}) be a topological space, (Y, \mathcal{T}_Y) be a subspace and let $A \subset Y$.

Let \mathcal{T}_A^Y be the subspace topology on A as a subset of Y and let \mathcal{T}_A^X be the subspace topology on A as a subset of X. Since

$$U \in \mathcal{T}_{A}^{Y} \Leftrightarrow \exists U_{Y} \in \mathcal{T}_{Y} : U = A \cap U_{Y}$$
$$\Leftrightarrow \exists U_{X} \in \mathcal{T} : U = A \cap (Y \cap U_{X})$$
$$\Leftrightarrow \exists U_{X} \in \mathcal{T} : U = A \cap U_{X}$$
$$\Leftrightarrow U \in \mathcal{T}_{A}^{X}$$

it follows that $\mathcal{T}_A^Y = \mathcal{T}_A^X$.

Ex. 16.3 (Morten Poulsen). Consider Y = [-1, 1] as a subspace of **R** with the standard topology. By lemma 16.1 a basis for the subspace topology on Y is sets of the form:

$$Y \cap (a,b) = \begin{cases} (a,b), & a,b \in Y \\ [-1,b), & a \notin Y, b \in Y \\ (a,1], & a \in Y, b \notin Y \\ Y, \emptyset, & a,b \notin Y. \end{cases}$$

Note that intervals of the form [a, b) are not open in **R**, since there are no basis element (c, d) such that $a \in (c, d) \subset [a, b)$. Similarly are intervals of the form (a, b] and [a, b] not open in **R**.

 $A = \{x \mid \frac{1}{2} < |x| < 1\}$: $A = (-1, -\frac{1}{2}) \cup (\frac{1}{2}, 1)$, hence A open in **R**. Since $A = Y \cap A$ it follows that A open in Y.

 $B = \{x \mid \frac{1}{2} < |x| \le 1\}$: Since $B = Y \cap (-2, -\frac{1}{2}) \cup (\frac{1}{2}, 2)$ it follows that B open in Y. Another argument is that $B = [-1, -\frac{1}{2}) \cup (\frac{1}{2}, 1]$, i.e. an union of basis elements, hence open in Y. The set B is not open in \mathbf{R} , since if B is open in \mathbf{R} then $B \cap (0, 2) = (\frac{1}{2}, 1]$ open in \mathbf{R} , contradicting that $(\frac{1}{2}, 1]$ not open in \mathbf{R} .

 $C = \{ x \mid \frac{1}{2} \leq |x| < 1 \}$: Since there clearly is no basis element U for the subspace topology on Y such that $\frac{1}{2} \in U \subset C$, it follows that C is not open in Y. By an argument similar to the one for the set B, it follows that C not open in **R**.

 $D = \{x \mid \frac{1}{2} \le |x| \le 1\}$: By arguments similar to the ones above it is easily seen that D is not open in either Y or **R**.

 $E = \{ x \mid 0 < |x| < 1, \frac{1}{x} \notin \mathbf{Z}_+ \}: \text{ Note that } E = (-1, 0) \cup ((0, 1) - K), \text{ where } K = \{ \frac{1}{n} \mid n \in \mathbf{Z}_+ \}.$ Since $E = (-1, 0) \cup \bigcup_{n=1}^{\infty} (\frac{1}{n+1}, \frac{1}{n})$ it follows that E is open in **R** and Y.

Ex. 16.4. Let $\pi_k \colon \prod_{j \in J} X_j \to X_k$ be the projection map onto X_k . Observe that π_k maps any basis set, $\prod V_j$ where $V_j \subset X_j$ is open and $V_j = X_j$ for all but finitely many $j \in J$, to an open set in X_k , $\pi_k(\prod V_j) = V_k$. Since maps preserve unions of sets [Ex 2.2], it follows that π_k maps open sets in the product $\prod X_j$ to open sets in X_k .

Ex. 16.6 (Morten Poulsen). The set

$$\mathcal{B} = \{ (a, b) \times (c, d) \mid a < b, c < d \text{ and } a, b, c, d \in \mathbf{Q} \}$$

is a basis for \mathbf{R}^2 : The set

$$\{(r,s) \mid r < s \text{ and } r, s \in \mathbf{Q}\}$$

is a basis for **R**, by Ex. 13.8(a). From Theorem 15.1 it follows that \mathcal{B} is a basis for \mathbf{R}^2 .

Ex. 16.7. $\mathbf{R}_+ \times \mathbf{R}$ is a convex subset of the linearly ordered set $\mathbf{R} \times \mathbf{R}$ that is not an interval nor a ray.

 $\mathbf{2}$

Ex. 16.9 (Morten Poulsen). Let \mathbf{R}_{dict}^2 be \mathbf{R}^2 with the dictionary order topology and let $\mathbf{R}_d \times \mathbf{R}$ be the product topology, where \mathbf{R}_d is \mathbf{R} with the discrete topology and \mathbf{R} is \mathbf{R} with the standard topology.

The set

 $\{\,(a \times b, c \times d) \,|\, a, b \in \mathbf{R} \text{ and } (a < c) \lor (a = c \land b < d)\,\}$

is a basis for \mathbf{R}_{dict}^2 . The set

$$\{\,\{a\}\,|\,a\in\mathbf{R}\,\}$$

is a basis for \mathbf{R}_d , c.f. §13 Example 3. The set

$$\{(a,b) \mid a, b \in \mathbf{R} \text{ and } a < b\}$$

is a basis for \mathbf{R} .

By Theorem 15.1 the set

$$\{ \{a\} \times (b,c) \, | \, a, b, c \in \mathbf{R} \text{ and } b < c \}$$

is a basis for $\mathbf{R}_d \times \mathbf{R}$.

Claim 1. $\mathbf{R}_{dict}^2 = \mathbf{R}_d \times \mathbf{R}$.

Proof. " \subset ": Given basis element $(a \times b, c \times d) \in \mathbf{R}^2_{dict}$ and $x \times y \in (a \times b, c \times d)$ then $x \times y \in \{x\} \times I \subset (a \times b, c \times d)$, where I is an open interval in \mathbf{R} containing y. By Lemma 13.3 it follows that $\mathbf{R}_d \times \mathbf{R}$ is finer than \mathbf{R}^2_{dict} .

" \supset ": Clear, since every basis element $\{a\} \times (b,c) \in \mathbf{R}_d \times \mathbf{R}$ is a basis element in \mathbf{R}_{dict}^2 . \Box

References