Munkres §16

Ex. 16.1 (Morten Poulsen). Let (X, \mathcal{T}) be a topological space, $\left(Y, \mathcal{T}_{Y}\right)$ be a subspace and let $A \subset Y$.

Let \mathcal{T}_{A}^{Y} be the subspace topology on A as a subset of Y and let \mathcal{T}_{A}^{X} be the subspace topology on A as a subset of X. Since

$$
\begin{aligned}
U \in \mathcal{T}_{A}^{Y} & \Leftrightarrow \exists U_{Y} \in \mathcal{T}_{Y}: U=A \cap U_{Y} \\
& \Leftrightarrow \exists U_{X} \in \mathcal{T}: U=A \cap\left(Y \cap U_{X}\right) \\
& \Leftrightarrow \exists U_{X} \in \mathcal{T}: U=A \cap U_{X} \\
& \Leftrightarrow U \in \mathcal{T}_{A}^{X}
\end{aligned}
$$

it follows that $\mathcal{T}_{A}^{Y}=\mathcal{T}_{A}^{X}$.
Ex. 16.3 (Morten Poulsen). Consider $Y=[-1,1]$ as a subspace of \mathbf{R} with the standard topology. By lemma 16.1 a basis for the subspace topology on Y is sets of the form:

$$
Y \cap(a, b)= \begin{cases}(a, b), & a, b \in Y \\ {[-1, b),} & a \notin Y, b \in Y \\ (a, 1], & a \in Y, b \notin Y \\ Y, \emptyset, & a, b \notin Y .\end{cases}
$$

Note that intervals of the form $[a, b)$ are not open in \mathbf{R}, since there are no basis element (c, d) such that $a \in(c, d) \subset[a, b)$. Similarly are intervals of the form $(a, b]$ and $[a, b]$ not open in \mathbf{R}.
$A=\left\{x\left|\frac{1}{2}<|x|<1\right\}: A=\left(-1,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right)\right.$, hence A open in \mathbf{R}. Since $A=Y \cap A$ it follows that A open in Y.
$B=\left\{x\left|\frac{1}{2}<|x| \leq 1\right\}\right.$: Since $B=Y \cap\left(-2,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, 2\right)$ it follows that B open in Y. Another argument is that $B=\left[-1,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right]$, i.e. an union of basis elements, hence open in Y. The set B is not open in \mathbf{R}, since if B is open in \mathbf{R} then $B \cap(0,2)=\left(\frac{1}{2}, 1\right]$ open in \mathbf{R}, contradicting that $\left(\frac{1}{2}, 1\right]$ not open in \mathbf{R}.
$C=\left\{x\left|\frac{1}{2} \leq|x|<1\right\}\right.$: Since there clearly is no basis element U for the subspace topology on Y such that $\frac{1}{2} \in U \subset C$, it follows that C is not open in Y. By an argument similar to the one for the set B, it follows that C not open in \mathbf{R}.
$D=\left\{x\left|\frac{1}{2} \leq|x| \leq 1\right\}:\right.$ By arguments similar to the ones above it is easily seen that D is not open in either Y or \mathbf{R}.
$E=\left\{x\left|0<|x|<1, \frac{1}{x} \notin \mathbf{Z}_{+}\right\}:\right.$Note that $E=(-1,0) \cup((0,1)-K)$, where $K=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbf{Z}_{+}\right\}$. Since $E=(-1,0) \cup \bigcup_{n=1}^{\infty}\left(\frac{1}{n+1}, \frac{1}{n}\right)$ it follows that E is open in \mathbf{R} and Y.

Ex. 16.4. Let $\pi_{k}: \prod_{j \in J} X_{j} \rightarrow X_{k}$ be the projection map onto X_{k}. Observe that π_{k} maps any basis set, ΠV_{j} where $V_{j} \subset X_{j}$ is open and $V_{j}=X_{j}$ for all but finitely many $j \in J$, to an open set in $X_{k}, \pi_{k}\left(\prod V_{j}\right)=V_{k}$. Since maps preserve unions of sets [Ex 2.2], it follows that π_{k} maps open sets in the product $\prod X_{j}$ to open sets in X_{k}.

Ex. 16.6 (Morten Poulsen). The set

$$
\mathcal{B}=\{(a, b) \times(c, d) \mid a<b, c<d \text { and } a, b, c, d \in \mathbf{Q}\}
$$

is a basis for \mathbf{R}^{2} : The set

$$
\{(r, s) \mid r<s \text { and } r, s \in \mathbf{Q}\}
$$

is a basis for \mathbf{R}, by Ex. 13.8(a). From Theorem 15.1 it follows that \mathcal{B} is a basis for \mathbf{R}^{2}.
Ex. 16.7. $\mathbf{R}_{+} \times \mathbf{R}$ is a convex subset of the linearly ordered set $\mathbf{R} \times \mathbf{R}$ that is not an interval nor a ray.

Ex. 16.9 (Morten Poulsen). Let $\mathbf{R}_{\text {dict }}^{2}$ be \mathbf{R}^{2} with the dictionary order topology and let $\mathbf{R}_{d} \times \mathbf{R}$ be the product topology, where \mathbf{R}_{d} is \mathbf{R} with the discrete topology and \mathbf{R} is \mathbf{R} with the standard topology.

The set

$$
\{(a \times b, c \times d) \mid a, b \in \mathbf{R} \text { and }(a<c) \vee(a=c \wedge b<d)\}
$$

is a basis for $\mathbf{R}_{d i c t}^{2}$.
The set

$$
\{\{a\} \mid a \in \mathbf{R}\}
$$

is a basis for \mathbf{R}_{d}, c.f. $\S 13$ Example 3.
The set

$$
\{(a, b) \mid a, b \in \mathbf{R} \text { and } a<b\}
$$

is a basis for \mathbf{R}.
By Theorem 15.1 the set

$$
\{\{a\} \times(b, c) \mid a, b, c \in \mathbf{R} \text { and } b<c\}
$$

is a basis for $\mathbf{R}_{d} \times \mathbf{R}$.
Claim 1. $\mathbf{R}_{d i c t}^{2}=\mathbf{R}_{d} \times \mathbf{R}$.
Proof. " \subset ": Given basis element $(a \times b, c \times d) \in \mathbf{R}_{d i c t}^{2}$ and $x \times y \in(a \times b, c \times d)$ then $x \times y \in$ $\{x\} \times I \subset(a \times b, c \times d)$, where I is an open interval in \mathbf{R} containing y. By Lemma 13.3 it follows that $\mathbf{R}_{d} \times \mathbf{R}$ is finer than $\mathbf{R}_{d i c t}^{2}$.
" \supset ": Clear, since every basis element $\{a\} \times(b, c) \in \mathbf{R}_{d} \times \mathbf{R}$ is a basis element in $\mathbf{R}_{d i c t}^{2}$.

