Munkres §13

Ex. 13.1 (Morten Poulsen). Let (X, \mathcal{T}) be a topological space and $A \subset X$. The following are equivalent:
(i) $A \in \mathcal{T}$.
(ii) $\forall x \in A \exists U_{x} \in \mathcal{T}: x \in U_{x} \subset A$.

Proof. (i) \Rightarrow (ii): If $x \in A$ then $x \in A \subset A$ and $A \in \mathcal{T}$.
(ii) \Rightarrow (i): $A=\bigcup_{x \in A} U_{x}$, hence $A \in \mathcal{T}$.

Ex. 13.4 (Morten Poulsen). Note that every collection of topologies on a set X is itself a set: A topologi is a subset of $\mathcal{P}(X)$, i.e. an element of $\mathcal{P}(\mathcal{P}(X))$, hence a collection of topologies is a subset of $\mathcal{P}(\mathcal{P}(X))$, i.e. a set.

Let $\left\{\mathcal{T}_{\alpha}\right\}$ be a nonempty set of topologies on the set X.
(a). Since every \mathcal{T}_{α} is a topology on X it is clear that the intersection $\bigcap \mathcal{T}_{\alpha}$ is a topology on X.

The union $\bigcup \mathcal{T}_{\alpha}$ is in general not a topology on X : Let $X=\{a, b, c\}$. It is straightforward to check that $\mathcal{T}_{1}=\{X, \emptyset,\{a\},\{a, b\}\}$ and $\mathcal{T}_{2}=\{X, \emptyset,\{c\},\{b, c\}\}$ are topologies on X. But $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is not a topology on X, since $\{a, b\} \cap\{b, c\}=\{b\} \notin \mathcal{T}_{1} \cup \mathcal{T}_{2}$.
(b). The intersection of all topologies that are finer than all \mathcal{T}_{α} is clearly the smallest topology containing all \mathcal{T}_{α}.

The intersection of all \mathcal{T}_{α} is clearly the largest topology that is contained in all \mathcal{T}_{α}.
(c). The topology $\mathcal{T}_{3}=\mathcal{T}_{1} \cap \mathcal{T}_{2}=\{X, \emptyset,\{a\}\}$ is the largest topology on X contained in \mathcal{T}_{1} and \mathcal{T}_{2}. The topology $\mathcal{T}_{4}=\{X, \emptyset,\{a\},\{b\},\{a, b\},\{b, c\}\}$ is the smallest topology that contains \mathcal{T}_{1} and \mathcal{T}_{2}.

Ex. 13.5 (Morten Poulsen). Let (X, \mathcal{T}) be a topological space, \mathcal{A} basis for \mathcal{T} and let $\left\{\mathcal{T}_{\alpha}\right\}$ be the set of topologies on X that contains \mathcal{A}.

Claim 1. $\mathcal{T}=\bigcap \mathcal{T}_{\alpha}$.
Proof. " \subset ": Let $U \in \mathcal{T}$. By lemma 13.1, U is an union of elements of \mathcal{A}. Since \mathcal{T}_{α} is a topology for all α, it follows that $U \in \mathcal{T}_{\alpha}$ for all α, i.e. $U \in \bigcap \mathcal{T}_{\alpha}$.
$" \supset ":$ Clear since $\mathcal{A} \subset \bigcap \mathcal{T}_{\alpha} \subset \mathcal{T}$.

Now assume \mathcal{A} is a subbasis.
Claim 2. $\mathcal{T}=\bigcap \mathcal{T}_{\alpha}$.
Proof. " \subset ": Let $U \in \mathcal{T}$. By the definition of a subbasis and the remarks at the bottom on page $82, U$ is an union of finite intersections of elements of \mathcal{A}. Since \mathcal{T}_{α} is a topology for all α, it follows that $U \in \mathcal{T}_{\alpha}$ for all α, i.e. $U \in \bigcap \mathcal{T}_{\alpha}$.
$" \supset ":$ Clear since $\mathcal{A} \subset \bigcap \mathcal{T}_{\alpha} \subset \mathcal{T}$.
Ex. 13.6 (Morten Poulsen). The topologies \mathbf{R}_{l} and \mathbf{R}_{K} on \mathbf{R} are not comparable:
$\mathbf{R}_{l} \not \subset \mathbf{R}_{K}$: Consider $[-1,0) \in \mathbf{R}_{l}$. Clearly no basis element $B_{K} \in \mathbf{R}_{K}$ satisfy $-1 \in B_{K} \subset$ [$-1,0$), hence \mathbf{R}_{K} is not finer than \mathbf{R}_{l}, by lemma 13.3.
$\mathbf{R}_{K} \not \subset \mathbf{R}_{l}$: Consider $(-1,1)-K \in \mathbf{R}_{K}$. Clearly no basis element $B_{l} \in \mathbf{R}_{l}$ satisfy $0 \in B_{l} \subset$ $(-1,1)-K$, hence \mathbf{R}_{l} is not finer than \mathbf{R}_{K}, by lemma 13.3.

Ex. 13.7 (Morten Poulsen). We know that \mathcal{T}_{1} and \mathcal{T}_{2} are bases for topologies on R. Furthermore \mathcal{T}_{3} is a topology on \mathbf{R}. It is straightforward to check that the last two sets are bases for topologies on \mathbf{R} as well.

The following table show the relationship between the given topologies on \mathbf{R}.

	\mathcal{T}_{1}	\mathcal{T}_{2}	\mathcal{T}_{3}	\mathcal{T}_{4}	\mathcal{T}_{5}
\mathcal{T}_{1}	$=$	$\subset(1)$	$\not \subset(2)$	$\subset(3)$	$\not \subset(4)$
\mathcal{T}_{2}	$\not \subset(5)$	$=$	$\not \subset(6)$	$\subset(7)$	$\not \subset(8)$
\mathcal{T}_{3}	$\subset(9)$	$\subset(10)$	$=$	$\subset(11)$	$\not \subset(12)$
\mathcal{T}_{4}	$\not \subset(13)$	$\not \subset(14)$	$\not \subset(15)$	$=$	$\not \subset(16)$
\mathcal{T}_{5}	$\subset(17)$	$\subset(18)$	$\not \subset(19)$	$\subset(20)$	$=$

(1) Lemma 13.3.
(2) Since \mathbf{R} - $(0,1)$ not finite.
(3) Given basis element $(a, b) \in \mathcal{T}_{1}$ and $x \in(a, b)$ then the basis element $(a, x] \in \mathcal{T}_{4}$ satisfy $x \in(a, x] \subset(a, b)$, hence \mathcal{T}_{4} is finer than \mathcal{T}_{1}, by lemma 13.3.
(4) Given a basis element $(a, b) \in \mathcal{T}_{1}$ and $x \in(a, b)$ then there are clearly no basis element $(-\infty, c) \in \mathcal{T}_{5}$ such that $x \in(-\infty, c) \subset(a, b)$, hence \mathcal{T}_{5} is not finer than \mathcal{T}_{1}, by lemma 13.3.
(5) Lemma 13.3.
(6) Since $\mathbf{R}-(0,1)$ not finite.
(7) Given basis element $(a, b)-K \in \mathcal{T}_{2}$ and $x \in(a, b)-K$. If $x \in(0,1)$ then there exists $m \in \mathbf{Z}_{+}$such that $\frac{1}{m}<x<\frac{1}{m-1}$, hence $x \in\left(\frac{1}{m}, x\right] \subset(a, b)-K$. If $x \notin(0,1)$ then $x \in(a, x] \subset(a, b)-K$. It follows from (4) and lemma 13.3 that \mathcal{T}_{4} is finer than \mathcal{T}_{2}.
(8) Since $\mathcal{T}_{1} \not \subset \mathcal{T}_{5}$ and $\mathcal{T}_{1} \subset \mathcal{T}_{2}$.
(9) Let $U \in \mathcal{T}_{3}, U$ nonempty, i.e. $\mathbf{R}-U=\left\{r_{1}, \ldots, r_{n}\right\}, r_{1}<\cdots<r_{n}$. Since

$$
U=\left(\bigcup_{i=1}^{\infty}\left(r_{1}-i, r_{1}\right)\right) \cup\left(\bigcup_{j=1}^{n-1}\left(r_{j}, r_{j+1}\right)\right) \cup\left(\bigcup_{k=1}^{\infty}\left(r_{n}, r_{n}+k\right)\right)
$$

it follows that $U \in \mathcal{T}_{1}$.
(10) Since $\mathcal{T}_{3} \subset \mathcal{T}_{1} \subset \mathcal{T}_{2}$.
(11) Let $U \in \mathcal{T}_{3}, U$ nonempty, i.e. $\mathbf{R}-U=\left\{r_{1}, \ldots, r_{n}\right\}, r_{1}<\cdots<r_{n}$, and let $x \in U$. If $d=\min \left\{\left|x-r_{i}\right| \mid i \in\{1, \ldots, n\}\right\}>0$ then $x \in\left(x-\frac{d}{2}, x+\frac{d}{2}\right] \subset U$. It follows from lemma 13.3 that \mathcal{T}_{4} is finer than \mathcal{T}_{3}.
(12) Consider $U=\mathbf{R}-\{0\} \in \mathcal{T}_{3}$. There are no basis element $(-\infty, a) \in \mathcal{T}_{5}$ such that $1 \in$ $(-\infty, a) \subset U$, hence \mathcal{T}_{5} is not finer than \mathcal{T}_{4}, by lemma 13.3.
(13) Given basis element $(c, x] \in \mathcal{T}_{4}$ there is clearly no basis element $(a, b) \in \mathcal{T}_{1}$ such that $x \in(a, b) \subset(c, x]$, hence \mathcal{T}_{1} is not finer than \mathcal{T}_{4}, by lemma 13.3.
(14) Given basis element $(c, x] \in \mathcal{T}_{4}$ there is clearly no basis element $B_{K} \in \mathcal{I}_{2}$ such that $x \in B_{K} \subset(c, x]$, hence \mathcal{T}_{2} is not finer than \mathcal{T}_{4}, by lemma 13.3.
(15) Since $\mathbf{R}-(0,1]$ not finite.
(16) Given basis element $(c, x] \in \mathcal{T}_{4}$ there is clearly no basis element $(-\infty, a) \in \mathcal{T}_{5}$ such that $x \in(-\infty, a) \subset(c, x]$, hence \mathcal{T}_{5} is not finer than \mathcal{T}_{4}, by lemma 13.3.
(17) Since $(-\infty, a)=\bigcup_{i=1}^{\infty}(a-i, a) \in \mathcal{T}_{1}$ for all $a \in \mathbf{R}$.
(18) Since $\mathcal{T}_{5} \subset \mathcal{T}_{1} \subset \mathcal{T}_{2}$.
(19) Since $\mathbf{R}-(-\infty, 0)$ not finite.
(20) Given basis element $(-\infty, a) \in \mathcal{T}_{5}$ and $x \in(-\infty, a)$ then clearly $x \in\left(x-|x-a|, x+\frac{|x-a|}{2}\right] \subset$ $(-\infty, a)$, hence \mathcal{T}_{4} is finer than \mathcal{T}_{5}, by lemma 13.3.

Ex. 13.8 (Morten Poulsen).

(a). Let

$$
\mathcal{B}=\{(a, b) \mid a, b \in \mathbf{Q}, a<b\} .
$$

It is straightforward to check that \mathcal{B} is a basis. Let \mathcal{T} be the standard topology on \mathbf{R} generated by the basis:

$$
\{(r, s) \mid r, s \in \mathbf{R}\}
$$

Let $U \in \mathcal{T}$ and let $x \in U$. Then (by definition of an open set in a topology generated by a basis) there exists a basis element $(r, s), r, s \in \mathbf{R}$, such that $x \in(r, s)$. Furthermore there exists $a, b \in \mathbf{Q}$ such that $r \leq a<x<b \leq s$, hence $x \in(a, b) \subset(r, s)$. It follows, by lemma 13.2 , that \mathcal{B} is a basis for \mathcal{T}.
(b). Let

$$
\mathcal{C}=\{[a, b) \mid a, b \in \mathbf{Q}, a<b\}
$$

It is straightforward to check that \mathcal{C} is a basis. Let $\mathcal{T}_{\mathcal{C}}$ be the topology on \mathbf{R} generated by \mathcal{C}. Consider $[\sqrt{2}, 2) \in \mathbf{R}_{l}$. There are clearly no basis element $[a, b) \in \mathcal{C}$ such that $\sqrt{2} \in[a, b) \subset$ $[\sqrt{2}, 2)$, hence $\mathcal{T}_{\mathcal{C}}$ is not finer than \mathbf{R}_{l}, by lemma 13.3.

Since \mathbf{R}_{l} is clearly finer than $\mathcal{T}_{\mathcal{C}}$, it follows that \mathbf{R}_{l} is strictly finer than $\mathcal{T}_{\mathcal{C}}$.

References

