Munkres §11

Ex. 11.8 (Morten Poulsen). First recall some definitions: Let V be a vector space over a field K. Let A be a (possibly empty) subset of V. The subspace spanned by A is denoted $\operatorname{span}_{K} A$ and is defined by

$$
\operatorname{span}_{K} A=\left\{k_{1} a_{1}+\cdots+k_{n} a_{n} \mid n \in \mathbf{Z}_{+} \cup\{0\}, k_{1}, \ldots, k_{n} \in K, a_{1}, \ldots, a_{n} \in A\right\}
$$

i.e. the set of all finite linear combinations of elements from W. If $n=0$ then the linear combination is defined to be the zero element in V. If A is the empty set then $\operatorname{span}_{K} A$ is the subspace $\{0\}$.

The subset A of V is said to be (linearly) independent if $n \in \mathbf{Z}_{+} \cup\{0\}, k_{1}, \ldots, k_{n} \in K$ and $a_{1}, \ldots, a_{n} \in A$ satisfy

$$
k_{1} a_{1}+\cdots+k_{n} a_{n}=0
$$

then

$$
k_{1}=0, \ldots, k_{n}=0
$$

The empty set is (by definition) independent.
The subset A is said to be a basis if A is independent and $\operatorname{span}_{K} A=V$. Note that if A is a basis for V then every element has an unique representation as a finite linear combination of elements of A.

If $V=\{0\}$ then the empty set is a basis, thus assume in the following that $V \neq\{0\}$.
(a). Assume $v \notin \operatorname{span}_{K} A$. Suppose

$$
k_{1} a_{1}+\cdots+k_{n} a_{n}+k_{n+1} v=0
$$

where $n \in \mathbf{Z}_{+} \cup\{0\}, k_{1}, \ldots, k_{n+1} \in K$ and $a_{1}, \ldots, a_{n} \in A$.
If $k_{n+1}=0$ then $k_{1}=0, \ldots, k_{n}=0$, since A is independent. If $k_{n+1} \neq 0$ then $v=$ $\frac{1}{k_{n+1}}\left(k_{1} a_{1}+\cdots+k_{n} a_{n}\right)$, contradicting $v \notin \operatorname{span}_{K} A$. It follows that $A \cup\{v\}$ is independent.
(b). Let W be the set of independent subsets of V. Define a relation \prec on W by

$$
\forall w_{1}, w_{2} \in W: w_{1} \prec w_{2} \Leftrightarrow w_{1} \subsetneq w_{2} .
$$

The relation \prec is clearly a strict partial order on W.
Let W_{0} be a simply ordered subset of W then

$$
U=\bigcup_{w_{0} \in W_{0}} w_{0}
$$

is an independent subset of V : Suppose

$$
k_{1} u_{1}+\cdots+k_{n} u_{n}=0,
$$

where $n \in \mathbf{Z}_{+} \cup\{0\}, k_{1}, \ldots, k_{n} \in K$ and $u_{1}, \ldots, u_{n} \in U$. Then there are $w_{1}, \ldots, w_{n} \in W_{0}$, such that $u_{i} \in w_{i}$ for $1 \leq i \leq n$. Since W_{0} is simply ordered the subset $\left\{w_{1}, \ldots, w_{n}\right\} \subset W_{0}$ has a largest element w, hence $u_{1}, \ldots, u_{n} \in w$. Since w is independent it follows that $k_{1}=0, \ldots, k_{n}=0$, hence U is independent, i.e. $U \in W$.

The set U is clearly an upper bound for W_{0}, hence every simply ordered subset of W has an upper bound in W. Zorn's Lemma gives that W has a maximal element B.
(c). The maximal element B in W is basis for V : Suppose $\operatorname{span}_{K} B$ is a proper subspace of V. Thus there is an element $b \in V-\operatorname{span}_{K} B$, hence, by (a), $B \cup\{b\} \in W$, contradicting the maximality of B. It follows that B is a basis for V.

Thus we have proved:
Theorem 1. Every vector space has a basis.

A few remarks: We know that if a vector space V over the field K has a basis with $n \in \mathbf{Z}_{+}$ elements then every basis for V has n elements and n is called the dimension of V over K, and is denoted $\operatorname{dim}_{K} V=n$. The notion of dimension extends to vector spaces with infinite bases. First one proves the following theorem.

Theorem 2. If A and B are bases for V then A and B have the same cardinality.
In view of the previous theorem we define the dimension of a vector space V to be the cardinality of some basis A for V, i.e. $\operatorname{dim}_{K} V=\operatorname{card} A$.

Hamel bases. Regard the real numbers as a vector space over the rationals. Then this vector space has a basis, any basis for this vector space is called a Hamel basis. Furthermore one shows that $\operatorname{dim}_{\mathbf{Q}} \mathbf{R}=\operatorname{card} \mathbf{R}$.

References

