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Munkres §11

Ex. 11.8 (Morten Poulsen). First recall some definitions: Let V be a vector space over a field
K. Let A be a (possibly empty) subset of V . The subspace spanned by A is denoted spanKA and
is defined by

spanKA = { k1a1 + · · ·+ knan |n ∈ Z+ ∪ {0}, k1, . . . , kn ∈ K, a1, . . . , an ∈ A }

i.e. the set of all finite linear combinations of elements from W . If n = 0 then the linear
combination is defined to be the zero element in V . If A is the empty set then spanKA is the
subspace {0}.

The subset A of V is said to be (linearly) independent if n ∈ Z+ ∪ {0}, k1, . . . , kn ∈ K and
a1, . . . , an ∈ A satisfy

k1a1 + · · ·+ knan = 0

then
k1 = 0, . . . , kn = 0.

The empty set is (by definition) independent.
The subset A is said to be a basis if A is independent and spanKA = V . Note that if A is

a basis for V then every element has an unique representation as a finite linear combination of
elements of A.

If V = {0} then the empty set is a basis, thus assume in the following that V 6= {0}.

(a). Assume v /∈ spanKA. Suppose

k1a1 + · · ·+ knan + kn+1v = 0,

where n ∈ Z+ ∪ {0}, k1, . . . , kn+1 ∈ K and a1, . . . , an ∈ A.
If kn+1 = 0 then k1 = 0, . . . , kn = 0, since A is independent. If kn+1 6= 0 then v =

1
kn+1

(k1a1 + · · ·+ knan ), contradicting v /∈ spanKA. It follows that A ∪ {v} is independent.

(b). Let W be the set of independent subsets of V . Define a relation ≺ on W by

∀w1, w2 ∈ W : w1 ≺ w2 ⇔ w1 ( w2.

The relation ≺ is clearly a strict partial order on W .
Let W0 be a simply ordered subset of W then

U =
⋃

w0∈W0

w0

is an independent subset of V : Suppose

k1u1 + · · ·+ knun = 0,

where n ∈ Z+ ∪ {0}, k1, . . . , kn ∈ K and u1, . . . , un ∈ U . Then there are w1, . . . , wn ∈ W0, such
that ui ∈ wi for 1 ≤ i ≤ n. Since W0 is simply ordered the subset {w1, . . . , wn} ⊂ W0 has a largest
element w, hence u1, . . . , un ∈ w. Since w is independent it follows that k1 = 0, . . . , kn = 0, hence
U is independent, i.e. U ∈ W .

The set U is clearly an upper bound for W0, hence every simply ordered subset of W has an
upper bound in W . Zorn’s Lemma gives that W has a maximal element B.

(c). The maximal element B in W is basis for V : Suppose spanKB is a proper subspace of V . Thus
there is an element b ∈ V − spanKB, hence, by (a), B ∪{b} ∈ W , contradicting the maximality of
B. It follows that B is a basis for V .

Thus we have proved:

Theorem 1. Every vector space has a basis.
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A few remarks: We know that if a vector space V over the field K has a basis with n ∈ Z+

elements then every basis for V has n elements and n is called the dimension of V over K, and is
denoted dimK V = n. The notion of dimension extends to vector spaces with infinite bases. First
one proves the following theorem.

Theorem 2. If A and B are bases for V then A and B have the same cardinality.

In view of the previous theorem we define the dimension of a vector space V to be the cardinality
of some basis A for V , i.e. dimK V = cardA.

Hamel bases. Regard the real numbers as a vector space over the rationals. Then this vector space
has a basis, any basis for this vector space is called a Hamel basis. Furthermore one shows that
dimQ R = cardR.
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