Munkres $£ 10$

Ex. 10.1. If a subset of a well-ordered set has an upper bound, the smallest upper bound is a least upper bound (supremum) for the set. (This proof is a tautology!)

Ex. 10.2.

(a). The smallest successor x_{+}of any element x is the immediate successor. (The iterated successors of x has the order type of a section of \mathbf{Z}_{+}.)
(b). \mathbf{Z}.

Ex. 10.4.

(a). Let A be a simply ordered set containing a subset with the order type of \mathbf{Z}_{-}. Then this subset does not have a smallest element so A is not well-ordered. Conversely, let A be simply ordered set containing a nonempty subset B with no smallest element. Let b_{1} be any element of B. Since b_{1} is not a smallest element of B there is some element b_{2} of B such that $b_{2}<b_{1}$. Continuing inductively we obtain an infinite descending chain $\cdots<b_{n+1}<b_{n}<\cdots<b_{2}<b_{1}$ forming a subset of the same order type as \mathbf{Z}_{-}.
(b). A does not contain a subset with the order type of \mathbf{Z}_{-}.

Ex. 10.6.
(a). For any element α of S_{Ω}, the set $\left\{x \in S_{\Omega} \mid x \leq \alpha\right\}=S_{\alpha} \cup\{\alpha\}$ is countable but S_{Ω} itself is uncountable [Lemma 10.2].
(b). For any element $\alpha \in S_{\Omega}$, the set $S_{\alpha} \cup\{\alpha\}$ is countable so its complement, $\left\{x \in S_{\Omega} \mid x>\right.$ $\alpha\}=(\alpha,+\infty)$, in the uncountable set S_{Ω}, is uncountable [Lemma 10.2, Thm 7.5].
(c). We show the stronger statement [Thm 10.3] that X_{0} is not bounded from above. We do this by assuming that X_{0} has an upper bound α and find a contradiction. The (non-empty) simply ordered set $(\alpha,+\infty)$ is well-ordered [p.63], it has no largest element by (a), and each element of $(\alpha,+\infty)$, except the smallest element, has an immediate predecessor. Thus $(\alpha,+\infty)$ has the order type of \mathbf{Z}_{+}, in particular $(\alpha,+\infty)$ is countable, contradicting (b). (Let x be any element of $(\alpha,+\infty)$. Since $(\alpha,+\infty)$ does not contain an infinite descending chain [Ex 10.4], α is an iterated immediate predecessor of x and x is an iterated immediate successor of α.)

Ex. 10.7. We show the contrapositive. Let J_{0} be any subset of J that is not everything. Let α be the smallest element of the complement $J-J_{0}$, the smallest element outside J_{0}. This means that $\alpha \notin J_{0}$ and that any element smaller than α is in J_{0}, i.e. $S_{\alpha} \subset J_{0}$. Thus J_{0} is not inductive.

References

