
1st December 2004

Munkres §4

Ex. 4.2. We assume that there exists a set R equipped with two binary operations, + and ·, and
a linear order < such that

(1) (R,+, ·) is a field.
(2) x < y ⇒ x + z < y + z and 0 < x, 0 < y ⇒ 0 < xy
(3) (R, <) is a linear continuum

Using these axioms we can establish all the usual rules of artihmetic.

(c): ⇒: Assume that x > 0. Adding −x to this gives 0 > −x. .
⇐: Assume that −x < 0. Adding x to this gives 0 < x.

(g): Since 0 6= 1 in a field, we have either 0 < 1 or 1 < 0 by Comparability. We rule out the
latter possibility. If 1 < 0, then −1 > 0 so also 1 = (−1) · (−1) > 0, a contradiction. Thus
we have 0 < 1 and then also −1 < 0 by point (c).

Ex. 4.3 (Morten Poulsen).

(a). Let A be a collection of inductive sets. Since 1 ∈ A for all A ∈ A, it follows that 1 ∈ ∩A∈AA.
Let a ∈ ∩A∈AA. Since A is inductive for all A ∈ A, it follows that a + 1 ∈ A for all A ∈ A, hence
a + 1 ∈ ∩A∈AA. So ∩A∈AA is inductive.

(b). By definition Z+ = ∩A∈AA, where A is the collection of all inductive subsets of the real
numbers.

Proof of (1): The set Z+ is inductive by (a).
Proof of (2): Suppose A ⊂ Z+ is inductive. Since A inductive, it follows by the definition of

Z+ that Z+ ⊂ A, i.e. A = Z+.

Ex. 4.4 (Morten Poulsen).

(a). Let A be the set of n ∈ Z+ for which the statement holds.
The set A is inductive: It is clear that 1 ∈ A, since the only nonempty subset of {1} is {1}.

Suppose n ∈ A. Let B be a nonempty subset of {1, . . . , n + 1}. If n + 1 ∈ B then n + 1 is the
largest element in B. If n + 1 /∈ B then the set B ∩ {1, . . . , n} contains a largest element, since
n ∈ A.

So A ⊂ Z+ is inductive, by the principle of induction, it follows that A = Z+, as desired.

(b). Consider!

Ex. 4.5 (Morten Poulsen).

(a). Let a ∈ Z+. Let
X = {x ∈ R | a + x ∈ Z+ } .

The set X is inductive: 1 ∈ X, since a ∈ Z+ and Z+ inductive. Suppose x ∈ X. Since
a + (x + 1) = (a + x) + 1, a + x ∈ Z+ and Z+ inductive, it follows that x + 1 ∈ X.

By ex. 4.3(a) it follows that X ∩Z+ ⊂ Z+ is inductive. By the principle of induction, it follows
that X ∩ Z+ = Z+, which proves (a).

(b). Let a ∈ Z+. Let
X = {x ∈ R | ax ∈ Z+ } .

The set X is inductive: 1 ∈ X, since a1 = a ∈ Z+. Suppose x ∈ X. Since a(x + 1) = ax + a
and ax, a ∈ Z+, it follows by (a) that x + 1 ∈ X.

As above, it follows that X ∩ Z+ = Z+, which proves (b).
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(c). Let
X = {x ∈ R |x− 1 ∈ Z+ ∪ {0} } .

The set X is inductive: 1 ∈ X, since 1 − 1 = 0 ∈ Z+ ∪ {0}. Suppose x ∈ X. Note that
(x + 1)− 1 = (x− 1) + 1. If x− 1 = 0 then (x− 1) + 1 = 1 ∈ Z+ ∪ {0}. If x− 1 ∈ Z+ then, since
Z+ is inductive, (x− 1) + 1 ∈ Z+ ⊂ Z+ ∪ {0}. So x + 1 ∈ X.

As above, it follows that X ∩ Z+ = Z+, which proves (c).

(d). Let c ∈ Z = Z− ∪ {0} ∪Z+, where Z− is negatives of the elements of Z+. First we prove the
result for d = 1:

(i) c + 1 ∈ Z: If c ∈ Z+ the result follows from (a). It is clear if c = 0. If c ∈ Z− then
c + 1 = −(−c − 1), since −c ∈ Z+, it follows from (c) that −c − 1 ∈ Z+ ∪ {0}, hence
c + 1 ∈ Z.

(ii) c − 1 ∈ Z: If c ∈ Z+ the result follows from (c). It is clear if c = 0. If c ∈ Z− then
c − 1 = −(−c + 1), since −c ∈ Z+, it follows from (a) or by the inductivity of Z+ that
−c + 1 ∈ Z+, hence c− 1 ∈ Z.

Next we prove the result for d ∈ Z+: Let

X = {x ∈ R | c + x ∈ Z }
and

Y = { y ∈ R | c− y ∈ Z } .

The set X is inductive: 1 ∈ X, c.f. (i). Suppose x ∈ X. Since c+(x+1) = (c+x)+1, c+x ∈ Z
and (i), it follows that x + 1 ∈ X.

The set Y is inductive: 1 ∈ X, c.f. (ii). Suppose y ∈ Y . Since c− (y+1) = (c−y)−1, c−y ∈ Z
and (ii), it follows that y + 1 ∈ X.

As above, it follows that X ∩ Z+ = Z+ and Y ∩ Z+ = Z+. This proves the result for d ∈ Z+.
The result is clear if d = 0. The case d ∈ Z− is now easy: Since c + d = c− (−d) and −d ∈ Z+, it
follows that c + d ∈ Z. Since c− d = c + (−d) and −d ∈ Z+, it follows that c− d ∈ Z.

(e). Let c ∈ Z. Let
X = {x ∈ R | cx ∈ Z } .

The set X is inductive: 1 ∈ X, since c1 = c ∈ Z. Suppose x ∈ X. Since c(x + 1) = cx + c and
cx ∈ Z, it follows, by (d), that x + 1 ∈ X.

As above, it follows that X ∩ Z+ = Z+. Thus the result is proved for d ∈ Z+ and is clear if
d = 0. Since cd = (−c)(−d), −c ∈ Z, hence if d ∈ Z− then −d ∈ Z+, this proves the case d ∈ Z−.
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