Munkres §4

Ex. 4.2. We assume that there exists a set \mathbf{R} equipped with two binary operations, + and \cdot, and a linear order $<$ such that
(1) $(\mathbf{R},+, \cdot)$ is a field.
(2) $x<y \Rightarrow x+z<y+z$ and $0<x, 0<y \Rightarrow 0<x y$
(3) $(\mathbf{R},<)$ is a linear continuum

Using these axioms we can establish all the usual rules of artihmetic.
$(\mathrm{c}): \Rightarrow$: Assume that $x>0$. Adding $-x$ to this gives $0>-x$.
\Leftarrow : Assume that $-x<0$. Adding x to this gives $0<x$.
(g): Since $0 \neq 1$ in a field, we have either $0<1$ or $1<0$ by Comparability. We rule out the latter possibility. If $1<0$, then $-1>0$ so also $1=(-1) \cdot(-1)>0$, a contradiction. Thus we have $0<1$ and then also $-1<0$ by point (c).

Ex. 4.3 (Morten Poulsen).

(a). Let \mathcal{A} be a collection of inductive sets. Since $1 \in A$ for all $A \in \mathcal{A}$, it follows that $1 \in \cap_{A \in \mathcal{A}} A$. Let $a \in \cap_{A \in \mathcal{A}} A$. Since A is inductive for all $A \in \mathcal{A}$, it follows that $a+1 \in A$ for all $A \in \mathcal{A}$, hence $a+1 \in \cap_{A \in \mathcal{A}} A$. So $\cap_{A \in \mathcal{A}} A$ is inductive.
(b). By definition $\mathbf{Z}_{+}=\cap_{A \in \mathcal{A}} A$, where \mathcal{A} is the collection of all inductive subsets of the real numbers.

Proof of (1): The set \mathbf{Z}_{+}is inductive by (a).
Proof of (2): Suppose $A \subset \mathbf{Z}_{+}$is inductive. Since A inductive, it follows by the definition of \mathbf{Z}_{+}that $\mathbf{Z}_{+} \subset A$, i.e. $A=\mathbf{Z}_{+}$.

Ex. 4.4 (Morten Poulsen).

(a). Let A be the set of $n \in \mathbf{Z}_{+}$for which the statement holds.

The set A is inductive: It is clear that $1 \in A$, since the only nonempty subset of $\{1\}$ is $\{1\}$. Suppose $n \in A$. Let B be a nonempty subset of $\{1, \ldots, n+1\}$. If $n+1 \in B$ then $n+1$ is the largest element in B. If $n+1 \notin B$ then the set $B \cap\{1, \ldots, n\}$ contains a largest element, since $n \in A$.

So $A \subset \mathbf{Z}_{+}$is inductive, by the principle of induction, it follows that $A=\mathbf{Z}_{+}$, as desired.
(b). Consider!

Ex. 4.5 (Morten Poulsen).

(a). Let $a \in \mathbf{Z}_{+}$. Let

$$
X=\left\{x \in \mathbf{R} \mid a+x \in \mathbf{Z}_{+}\right\} .
$$

The set X is inductive: $1 \in X$, since $a \in \mathbf{Z}_{+}$and \mathbf{Z}_{+}inductive. Suppose $x \in X$. Since $a+(x+1)=(a+x)+1, a+x \in \mathbf{Z}_{+}$and \mathbf{Z}_{+}inductive, it follows that $x+1 \in X$.

By ex. 4.3(a) it follows that $X \cap \mathbf{Z}_{+} \subset \mathbf{Z}_{+}$is inductive. By the principle of induction, it follows that $X \cap \mathbf{Z}_{+}=\mathbf{Z}_{+}$, which proves (a).
(b). Let $a \in \mathbf{Z}_{+}$. Let

$$
X=\left\{x \in \mathbf{R} \mid a x \in \mathbf{Z}_{+}\right\}
$$

The set X is inductive: $1 \in X$, since $a 1=a \in \mathbf{Z}_{+}$. Suppose $x \in X$. Since $a(x+1)=a x+a$ and $a x, a \in \mathbf{Z}_{+}$, it follows by (a) that $x+1 \in X$.

As above, it follows that $X \cap \mathbf{Z}_{+}=\mathbf{Z}_{+}$, which proves (b).
(c). Let

$$
X=\left\{x \in \mathbf{R} \mid x-1 \in \mathbf{Z}_{+} \cup\{0\}\right\} .
$$

The set X is inductive: $1 \in X$, since $1-1=0 \in \mathbf{Z}_{+} \cup\{0\}$. Suppose $x \in X$. Note that $(x+1)-1=(x-1)+1$. If $x-1=0$ then $(x-1)+1=1 \in \mathbf{Z}_{+} \cup\{0\}$. If $x-1 \in \mathbf{Z}_{+}$then, since \mathbf{Z}_{+}is inductive, $(x-1)+1 \in Z_{+} \subset \mathbf{Z}_{+} \cup\{0\}$. So $x+1 \in X$.

As above, it follows that $X \cap \mathbf{Z}_{+}=\mathbf{Z}_{+}$, which proves (c).
(d). Let $c \in \mathbf{Z}=\mathbf{Z}_{-} \cup\{0\} \cup \mathbf{Z}_{+}$, where \mathbf{Z}_{-}is negatives of the elements of \mathbf{Z}_{+}. First we prove the result for $d=1$:
(i) $c+1 \in \mathbf{Z}$: If $c \in \mathbf{Z}_{+}$the result follows from (a). It is clear if $c=0$. If $c \in \mathbf{Z}_{-}$then $c+1=-(-c-1)$, since $-c \in \mathbf{Z}_{+}$, it follows from (c) that $-c-1 \in \mathbf{Z}_{+} \cup\{0\}$, hence $c+1 \in \mathbf{Z}$.
(ii) $c-1 \in \mathbf{Z}$: If $c \in \mathbf{Z}_{+}$the result follows from (c). It is clear if $c=0$. If $c \in \mathbf{Z}_{-}$then $c-1=-(-c+1)$, since $-c \in \mathbf{Z}_{+}$, it follows from (a) or by the inductivity of \mathbf{Z}_{+}that $-c+1 \in \mathbf{Z}_{+}$, hence $c-1 \in \mathbf{Z}$.
Next we prove the result for $d \in \mathbf{Z}_{+}$: Let

$$
X=\{x \in \mathbf{R} \mid c+x \in \mathbf{Z}\}
$$

and

$$
Y=\{y \in \mathbf{R} \mid c-y \in \mathbf{Z}\}
$$

The set X is inductive: $1 \in X$, c.f. (i). Suppose $x \in X$. Since $c+(x+1)=(c+x)+1, c+x \in \mathbf{Z}$ and (i), it follows that $x+1 \in X$.

The set Y is inductive: $1 \in X$, c.f. (ii). Suppose $y \in Y$. Since $c-(y+1)=(c-y)-1, c-y \in \mathbf{Z}$ and (ii), it follows that $y+1 \in X$.

As above, it follows that $X \cap \mathbf{Z}_{+}=\mathbf{Z}_{+}$and $Y \cap \mathbf{Z}_{+}=\mathbf{Z}_{+}$. This proves the result for $d \in \mathbf{Z}_{+}$. The result is clear if $d=0$. The case $d \in \mathbf{Z}_{-}$is now easy: Since $c+d=c-(-d)$ and $-d \in \mathbf{Z}_{+}$, it follows that $c+d \in \mathbf{Z}$. Since $c-d=c+(-d)$ and $-d \in \mathbf{Z}_{+}$, it follows that $c-d \in \mathbf{Z}$.
(e). Let $c \in \mathbf{Z}$. Let

$$
X=\{x \in \mathbf{R} \mid c x \in \mathbf{Z}\} .
$$

The set X is inductive: $1 \in X$, since $c 1=c \in \mathbf{Z}$. Suppose $x \in X$. Since $c(x+1)=c x+c$ and $c x \in \mathbf{Z}$, it follows, by (d), that $x+1 \in X$.

As above, it follows that $X \cap \mathbf{Z}_{+}=\mathbf{Z}_{+}$. Thus the result is proved for $d \in \mathbf{Z}_{+}$and is clear if $d=0$. Since $c d=(-c)(-d),-c \in \mathbf{Z}$, hence if $d \in \mathbf{Z}_{-}$then $-d \in \mathbf{Z}_{+}$, this proves the case $d \in \mathbf{Z}_{-}$.

References

