1st December 2004

Munkres §4

Ex. 4.2. We assume that there exists a set **R** equipped with two binary operations, + and \cdot , and a linear order < such that

- (1) $(\mathbf{R}, +, \cdot)$ is a field.
- (2) $x < y \Rightarrow x + z < y + z$ and $0 < x, 0 < y \Rightarrow 0 < xy$
- (3) $(\mathbf{R}, <)$ is a linear continuum

Using these axioms we can establish all the usual rules of artihmetic.

(c): \Rightarrow : Assume that x > 0. Adding -x to this gives 0 > -x.

 \Leftarrow : Assume that -x < 0. Adding x to this gives 0 < x.

(g): Since $0 \neq 1$ in a field, we have either 0 < 1 or 1 < 0 by Comparability. We rule out the latter possibility. If 1 < 0, then -1 > 0 so also $1 = (-1) \cdot (-1) > 0$, a contradiction. Thus we have 0 < 1 and then also -1 < 0 by point (c).

Ex. 4.3 (Morten Poulsen).

(a). Let \mathcal{A} be a collection of inductive sets. Since $1 \in A$ for all $A \in \mathcal{A}$, it follows that $1 \in \bigcap_{A \in \mathcal{A}} A$. Let $a \in \bigcap_{A \in \mathcal{A}} A$. Since A is inductive for all $A \in \mathcal{A}$, it follows that $a + 1 \in A$ for all $A \in \mathcal{A}$, hence $a + 1 \in \bigcap_{A \in \mathcal{A}} A$. So $\bigcap_{A \in \mathcal{A}} A$ is inductive.

(b). By definition $\mathbf{Z}_+ = \bigcap_{A \in \mathcal{A}} A$, where \mathcal{A} is the collection of all inductive subsets of the real numbers.

Proof of (1): The set \mathbf{Z}_+ is inductive by (a).

Proof of (2): Suppose $A \subset \mathbf{Z}_+$ is inductive. Since A inductive, it follows by the definition of \mathbf{Z}_+ that $\mathbf{Z}_+ \subset A$, i.e. $A = \mathbf{Z}_+$.

Ex. 4.4 (Morten Poulsen).

(a). Let A be the set of $n \in \mathbf{Z}_+$ for which the statement holds.

The set A is inductive: It is clear that $1 \in A$, since the only nonempty subset of $\{1\}$ is $\{1\}$. Suppose $n \in A$. Let B be a nonempty subset of $\{1, \ldots, n+1\}$. If $n+1 \in B$ then n+1 is the largest element in B. If $n+1 \notin B$ then the set $B \cap \{1, \ldots, n\}$ contains a largest element, since $n \in A$.

So $A \subset \mathbf{Z}_+$ is inductive, by the principle of induction, it follows that $A = \mathbf{Z}_+$, as desired.

(b). Consider!

Ex. 4.5 (Morten Poulsen).

(a). Let $a \in \mathbf{Z}_+$. Let

$$X = \{ x \in \mathbf{R} \, | \, a + x \in \mathbf{Z}_+ \}$$

The set X is inductive: $1 \in X$, since $a \in \mathbf{Z}_+$ and \mathbf{Z}_+ inductive. Suppose $x \in X$. Since a + (x + 1) = (a + x) + 1, $a + x \in \mathbf{Z}_+$ and \mathbf{Z}_+ inductive, it follows that $x + 1 \in X$.

By ex. 4.3(a) it follows that $X \cap \mathbf{Z}_+ \subset \mathbf{Z}_+$ is inductive. By the principle of induction, it follows that $X \cap \mathbf{Z}_+ = \mathbf{Z}_+$, which proves (a).

(b). Let $a \in \mathbf{Z}_+$. Let

$$X = \{ x \in \mathbf{R} \, | \, ax \in \mathbf{Z}_+ \} \, .$$

The set X is inductive: $1 \in X$, since $a1 = a \in \mathbf{Z}_+$. Suppose $x \in X$. Since a(x+1) = ax + aand $ax, a \in \mathbf{Z}_+$, it follows by (a) that $x + 1 \in X$.

As above, it follows that $X \cap \mathbf{Z}_+ = \mathbf{Z}_+$, which proves (b).

(c). Let

$$X = \{ x \in \mathbf{R} \, | \, x - 1 \in \mathbf{Z}_+ \cup \{0\} \} \, .$$

The set X is inductive: $1 \in X$, since $1 - 1 = 0 \in \mathbf{Z}_+ \cup \{0\}$. Suppose $x \in X$. Note that (x+1) - 1 = (x-1) + 1. If x - 1 = 0 then $(x-1) + 1 = 1 \in \mathbf{Z}_+ \cup \{0\}$. If $x - 1 \in \mathbf{Z}_+$ then, since \mathbf{Z}_+ is inductive, $(x-1) + 1 \in \mathbf{Z}_+ \subset \mathbf{Z}_+ \cup \{0\}$. So $x + 1 \in X$.

As above, it follows that $X \cap \mathbf{Z}_+ = \mathbf{Z}_+$, which proves (c).

(d). Let $c \in \mathbf{Z} = \mathbf{Z}_{-} \cup \{0\} \cup \mathbf{Z}_{+}$, where \mathbf{Z}_{-} is negatives of the elements of \mathbf{Z}_{+} . First we prove the result for d = 1:

- (i) $c + 1 \in \mathbf{Z}$: If $c \in \mathbf{Z}_+$ the result follows from (a). It is clear if c = 0. If $c \in \mathbf{Z}_-$ then c + 1 = -(-c 1), since $-c \in \mathbf{Z}_+$, it follows from (c) that $-c 1 \in \mathbf{Z}_+ \cup \{0\}$, hence $c + 1 \in \mathbf{Z}$.
- (ii) $c-1 \in \mathbf{Z}$: If $c \in \mathbf{Z}_+$ the result follows from (c). It is clear if c = 0. If $c \in \mathbf{Z}_-$ then c-1 = -(-c+1), since $-c \in \mathbf{Z}_+$, it follows from (a) or by the inductivity of \mathbf{Z}_+ that $-c+1 \in \mathbf{Z}_+$, hence $c-1 \in \mathbf{Z}$.

Next we prove the result for $d \in \mathbf{Z}_+$: Let

$$X = \{ x \in \mathbf{R} \, | \, c + x \in \mathbf{Z} \}$$

and

$$Y = \{ y \in \mathbf{R} \, | \, c - y \in \mathbf{Z} \} \, .$$

The set X is inductive: $1 \in X$, c.f. (i). Suppose $x \in X$. Since c + (x+1) = (c+x)+1, $c+x \in \mathbb{Z}$ and (i), it follows that $x + 1 \in X$.

The set Y is inductive: $1 \in X$, c.f. (ii). Suppose $y \in Y$. Since c - (y+1) = (c-y) - 1, $c - y \in \mathbb{Z}$ and (ii), it follows that $y + 1 \in X$.

As above, it follows that $X \cap \mathbf{Z}_+ = \mathbf{Z}_+$ and $Y \cap \mathbf{Z}_+ = \mathbf{Z}_+$. This proves the result for $d \in \mathbf{Z}_+$. The result is clear if d = 0. The case $d \in \mathbf{Z}_-$ is now easy: Since c + d = c - (-d) and $-d \in \mathbf{Z}_+$, it follows that $c + d \in \mathbf{Z}$. Since c - d = c + (-d) and $-d \in \mathbf{Z}_+$, it follows that $c - d \in \mathbf{Z}$.

(e). Let $c \in \mathbf{Z}$. Let

$X = \{ x \in \mathbf{R} \, | \, cx \in \mathbf{Z} \} \, .$

The set X is inductive: $1 \in X$, since $c1 = c \in \mathbb{Z}$. Suppose $x \in X$. Since c(x+1) = cx + c and $cx \in \mathbb{Z}$, it follows, by (d), that $x + 1 \in X$.

As above, it follows that $X \cap \mathbf{Z}_+ = \mathbf{Z}_+$. Thus the result is proved for $d \in \mathbf{Z}_+$ and is clear if d = 0. Since cd = (-c)(-d), $-c \in \mathbf{Z}$, hence if $d \in \mathbf{Z}_-$ then $-d \in \mathbf{Z}_+$, this proves the case $d \in \mathbf{Z}_-$.

References