

Read each scenario below and follow the directions.
There is an island in the center of Elizabeth's town that has three bridges leading to it. Elizabeth likes to take a walk from her home to the island by crossing every bridge once and only once. How can she do this? Draw Elizabeth's home where it belongs.

Carlos is trying to find a way to cross every bridge on the river in his town without ending up on the island. Can he do it without crossing any of the bridges more than once? Show how, numbering the bridges in the order that you cross them.

The Spiral River in Lin's town has nine bridges that connect five islands. Every year the Five-Island race goes through the town crossing each bridge only once. Show one route that the racers could take, numbering the bridges in the order they should be crossed.

The Revolution River creates two nearly identical islands that are each accessible by three bridges. The Euler Foundation, a new company in town, is offering $\$ 20,000$ to anyone who can visit both islands by crossing each bridge once, and only once. Can you win the prize? Show how.

Draw your own bridge crossing problem in the space below and give it to a classmate to solve.

Königsberg is a city on the Pregel River that contains two islands and is joined by seven bridges. The river flows around the two islands of the town. The bridges run from the banks of the river to the two islands in the river, with a bridge connecting the islands. It became town tradition to take a Sunday walk to try and cross each of the seven bridges only once. Draw the map the people must have followed in order to complete their journey.

This is the original bridge crossing problem that a man named Leonhard Euler solved in the 1730 s . He proved that it was impossible to cross each of the seven bridges in a single walk without retracing some of your steps. In fact, when dealing with bridges, if there are three or more pieces of land that have an odd number of bridges going to them, you will not be able to cross each bridge without retracing some steps.

How does this knowledge compare to what you discovered as you solved the puzzles?

Draw two bridge-crossing puzzles on the back of this page, one that is possible, and one that is not. Give them to a classmate and have the classmate determine which can be solved and which cannot without actually doing either one.

