Solutions to the January 2007 Topology exam

Problem 1

Assume that X is compact. Then the closed subspace C is also compact. So C is a discrete compact space. Then C is finite.

Problem 2

Suppose that $A \cap B$ is open for all $B \in \mathcal{B}$. Let $a \in A$. Choose a neighborhood U of a and finitely many sets $B_{1}, \ldots, B_{m} \in \mathcal{B}$ such that $x \in U \subset B_{1} \cup \cdots \cup B_{m}$. Since the sets in \mathcal{B} are closed we can assume that $a \in B_{i}$ for all i where $1 \leq i \leq m$. (If $a \notin B_{i}$ for some i then replace U by $U-B_{i}$ which is still an open neighborhood of a.) Since $A \cap B_{i}$ is open in B_{i} and $a \in A \cap B_{i}$ there is an open neighborhood U_{i} of x such that $x \in U_{i} \cap B_{i} \subset A \cap B_{i}$. Now $U_{1} \cap \cdots \cap U_{m} \cap U$ is an open neighborhood of a and

$$
\begin{aligned}
& U_{1} \cap \cdots \cap U_{m} \cap U \subset\left(U_{1} \cap \cdots \cap U_{m}\right) \cap\left(B_{1} \cup \cdots \cup B_{m}\right) \\
& \qquad\left(U_{1} \cap B_{1}\right) \cup \cdots \cup\left(U_{m} \cap B_{m}\right) \subset\left(A \cap B_{1}\right) \cup \cdots \cup\left(A \cap B_{m}\right) \\
& =A \cap\left(B_{1} \cup \cdots \cup B_{m}\right)=A
\end{aligned}
$$

This shows that A is open in X.

Problem 3

(1) K_{v} is subcomplex because it is a subset of K that is closed under taking nonempty subsets.
(2) The realization of any subcomplex of K is a closed subset of $|K|$. In particular, $\left|K_{v}\right| \subset|K|$ is closed and the complement $\operatorname{st}(v)=|K|-\left|K_{v}\right|$ is open.
(3) Observe that $\left|K_{v}\right|=\{t \in|K| \mid t(v)=0\}$ and $\operatorname{st}(v)=\{t \in|K| \mid t(v)>0\}$. We shall prove that the open $\operatorname{star} \operatorname{st}(v)$ is star-shaped. Let x be a point in $\operatorname{st}(v)$. Let $\tau \in K$ be a simplex such that x lies in $|\tau|$. Then $v \in \tau$, for otherwise $\tau \in K_{v}$ and $x \in|\tau| \subset\left|K_{v}\right|$. Now

$$
[0,1] \ni \lambda \rightarrow \lambda v+(1-\lambda) x \in|\tau|
$$

is a continuous path in $|\tau|$ and $|K|$ from v to x. This path actually runs in $\operatorname{st}(v)$ for $(\lambda v+(1-$ $\lambda) x(v)=\lambda+(1-\lambda) x(v)>0$ for all $\lambda \in[0,1]$ because this is a path from $x(v)$ to 1 . This shows that $\operatorname{st}(v)$ is a union of closed intervals emanating from v and therefore $\operatorname{st}(v)$ is path-connected. (4) Let $V \subset|K|$ be an open neighborhood of v. Put $V^{n}=V \cap\left|K^{n}\right|$. We shall recursively define a path-connected neighborhood U of v such that $U \subset V$. Let $U^{0}=\{v\}$. Suppose that we have defined $U^{0} \subset \cdots \subset U^{n-1}$ where each U^{k} is path-connected and $\overline{U^{k}} \subset V^{k}$. For each n-simplex $\sigma \in K$ with v as a vertex there is path-connected neighborhood U_{σ} of v in $|\sigma|$ such that $U_{\sigma} \cap \partial|\sigma|=U^{n-1} \cap|\sigma|$ and $\overline{U_{\sigma}} \subset V \cap|\sigma|$. Let U^{n} be the union of all the U_{σ}. Then U^{n} is open in $\left|K^{n}\right|$ since its intersection with each n-simplex is open and path-connected as a union of path-connected spaces with a point in common. Finally, $U=\bigcup U^{n}$ is an open path-connected neighborhood of v contained in V. This shows that $|K|$ is locally path-connected at all its vertices. But any point of $|K|$ is the vertex of some subdivision of K.

Problem 4

The surface representation

$$
\begin{aligned}
&\left\langle a, b, c, d \mid a b d c^{-1}, a^{-1} c d^{-1} b\right\rangle=\left\langle a, b, c, d \mid a b d c^{-1}, c d^{-1} b a^{-1}\right\rangle=\left\langle a, b \mid a b b a^{-1}\right\rangle \\
&=\left\langle a, b \mid b b a^{-1} a\right\rangle=\langle b \mid b b\rangle
\end{aligned}
$$

represents the projective plane $\mathbf{R} P^{2}$.

