Solutions to the January 2006 Topology exam

Problem 1

(1) Suppose that $\bigcap_{n=1}^{\infty} X_{n}=\emptyset$. Then the ascending sequence of subsets $X-X_{1} \subset X-X_{2} \subset \cdots X-X_{n} \subset \cdots$ forms an open covering of X. Since X is compact, $X-X_{n}=X$, or $X_{n}=\emptyset$, for some $n>0$.
(2) $\bigcap_{n=1}^{\infty}[n, \infty)=\emptyset$ in \mathbf{R} or $\bigcap_{n=1}^{\infty}[\sqrt{2}-1 / n, \sqrt{2}+1 / n]=\emptyset$ in $\mathbf{R}-\{\sqrt{2}\}$.

Problem 2

$(1) \Longrightarrow$: This is immediate from the definition of subspace topology.
\Longleftarrow : Suppose that $X_{n} \cap A$ is open in X_{n} for all $n \geq 1$. Then also $\operatorname{Int}\left(X_{n}\right) \cap A$ is open in $\operatorname{Int}\left(X_{n}\right)$. Since $\operatorname{Int}\left(X_{n}\right)$ is open in X, this implies that $\operatorname{Int}\left(X_{n}\right) \cap A$ is open in X for all n. Thus $A=\bigcup_{n=1}^{\infty} \operatorname{Int}\left(X_{n}\right) \cap A$ is open in X.
(2) Apply (1) to the open set $X-A$:
A is closed $\Longleftrightarrow X-A$ is open

$$
\begin{aligned}
& \stackrel{(1)}{\Longleftrightarrow} X_{n} \cap(X-A)=X_{n}-\left(X_{n} \cap A\right) \text { is open in } X_{n} \text { for all } n \\
& \Longleftrightarrow X_{n} \cap A \text { is closed in } X_{n} \text { for all } n
\end{aligned}
$$

Problem 3

(1) $\mathbf{R} P^{2}$.
(2) K is an abstract simplicial complex with 142 -simplices and all their faces. There are 8 vertices, 21 edges, and 142 -simplices so the Euler characteristic is $\chi(K)=8-21+14=1=\chi(\mathcal{P})$.

Problem 4

(1) B_{2} is open in M since it is open in the open set U. It is a general fact that when Y is open in $X, \operatorname{Int}_{Y}(A)=\operatorname{Int}(A)$ for any $A \subset Y$ as the relatively open sets in Y are the open sets in Y; see General Topology, Chp 2, $\S 5$. In particular, $\operatorname{Int}_{B_{2}}(A)=\operatorname{Int}(A)$.
(2) There is a compact set K such that $B_{1} \subset K \subset B_{2}$. Namely, take $K=$ $\varphi^{-1}(C)$ where $C \subset \mathbf{R}^{n}$ is compact and $\varphi\left(B_{1}\right) \subset C \subset \varphi\left(B_{2}\right)$. Since K is closed in the Hausdorff space M and $A \subset K$, also $\bar{A} \subset K$. Therefore $\bar{A} \subset K \subset B_{2}$. Now $\mathrm{Cl}_{B_{2}}(A)=B_{2} \cap \bar{A}=\bar{A}$.
(3) $\partial_{B_{2}}(A)=\mathrm{Cl}_{B_{2}}(A)-\operatorname{Int}_{B_{2}}(A)=\mathrm{Cl}(A)-\operatorname{Int}(A)=\partial(A)$.

