Solutions to Topology Exam april 2007

Problem 1

(1) $C^{\circ} = \emptyset$, so C is not open.

(2) $\overline{C} = C \cup (\mathbf{R} \times \{0\})$, so C is not closed.

(3) Note that $C_r = C \cap (\{r\} \times [0, r])$ is a closed discrete infinite subspace of C for any r > 0. C_r is closed in C because it is the intersection of C and a closed subset of \mathbf{R}^2 .

Let now $U \subset C$ be a neighborhood of (0, 0). Since U contains a closed discrete infinite subspace, namely C_r for r sufficiently small, U is not contained in any compact subspace of C. Thus C is not locally compact at (0, 0).

Problem 2

(1) Clear. To see that $x \sim x$ for any x in X, choose $A \in \mathcal{A}$ so that $x \in A$. Then $x \in A$, $A \cap A \neq \emptyset$, $x \in A$, so $x \sim x$. In fact, all points of A are equivalent to x.

(2) Suppose that there exist $A_0, \ldots, A_k \in \mathcal{A}$ such that $x \in A_0, y \in A_k$, and $A_{i-1} \cap A_i \neq \emptyset$ for all $1 \leq i \leq k$. The union $A_0 \cup A_1$ is connected since A_0 and A_0 are connected and $A_0 \cap A_1 \neq \emptyset$. Repeating this argument finitely many times, we see that $A_0 \cup \cdots \cup A_k$ is connected.

(3) Let $E(x) \subset X$ be the equivalence class containing $x \in X$. Since all points in any $A \in \mathcal{A}$ are equivalent, $E(x) = \bigcup_{A \ni y \in E(x)} A$ is a union of sets from \mathcal{A} and therefore open. E(x) is also connected for, by (2), it is a union of connected sets with a point, x, in common.

(4) Since the equivalence classe are connected, the components are unions of equivalence classes; since the equivalence classes are open, each component cannot consist of more than one equivalence class.

Problem 3

(1) T is the ASC generated by $\{\{4, 2, 3\}, \{1, 5, 3\}, \{1, 2, 6\}, \{1, 5, 6\}, \{4, 2, 6\}, \{4, 5, 3\}\}$. This is a triangulation of $\partial \Delta^2 \times [0, 1]$ where $\Delta^2 \times \{0\} = 1, 2, 3$ and $\Delta^2 \times \{1\} = 4, 5, 5$.

(2) Remove one 2-simplex, assume it is $\{1, 2, 3\}$, from K_1 and one 2-simplex from K_2 , assume it is $\{4, 5, 6\}$, and add the six 2-simplexes of T.

(3) $\chi(K) = \chi(K_2) - 1 + \chi(K_2) - 1 + 6 - 6 = \chi(K_2) + \chi(K_2) - 2$ since we removed two 2-simplexes and added six new 2-simplexes and six new 1-simplexes.