Solutions to Topology Exam april 2007

Problem 1

(1) $C^{\circ}=\emptyset$, so C is not open.
(2) $\bar{C}=C \cup(\mathbf{R} \times\{0\})$, so C is not closed.
(3) Note that $C_{r}=C \cap(\{r\} \times[0, r])$ is a closed discrete infinite subspace of C for any $r>0 . C_{r}$ is closed in C because it is the intersection of C and a closed subset of \mathbf{R}^{2}.

Let now $U \subset C$ be a neighborhood of $(0,0)$. Since U contains a closed discrete infinite subspace, namely C_{r} for r sufficiently small, U is not contained in any compact subspace of C. Thus C is not locally compact at $(0,0)$.

Problem 2

(1) Clear. To see that $x \sim x$ for any x in X, choose $A \in \mathcal{A}$ so that $x \in A$. Then $x \in A$, $A \cap A \neq \emptyset, x \in A$, so $x \sim x$. In fact, all points of A are equivalent to x.
(2) Suppose that there exist $A_{0}, \ldots, A_{k} \in \mathcal{A}$ such that $x \in A_{0}, y \in A_{k}$, and $A_{i-1} \cap A_{i} \neq \emptyset$ for all $1 \leq i \leq k$. The union $A_{0} \cup A_{1}$ is connected since A_{0} and A_{0} are connected and $A_{0} \cap A_{1} \neq \emptyset$. Repeating this argument finitely many times, we see that $A_{0} \cup \cdots \cup A_{k}$ is connected.
(3) Let $E(x) \subset X$ be the equivalence class containing $x \in X$. Since all points in any $A \in \mathcal{A}$ are equivalent, $E(x)=\bigcup_{A \ni y \in E(x)} A$ is a union of sets from \mathcal{A} and therefore open. $E(x)$ is also connected for, by (2), it is a union of connected sets with a point, x, in common.
(4) Since the equivalence classe are connected, the components are unions of equivalence classes; since the equivalence classes are open, each component cannot consist of more than one equivalence class.

Problem 3

(1) T is the ASC generated by $\{\{4,2,3\},\{1,5,3\},\{1,2,6\},\{1,5,6\},\{4,2,6\},\{4,5,3\}\}$. This is a triangulation of $\partial \Delta^{2} \times[0,1]$ where $\Delta^{2} \times\{0\}=1,2,3$ and $\Delta^{2} \times\{1\}=4,5,5$.
(2) Remove one 2 -simplex, assume it is $\{1,2,3\}$, from K_{1} and one 2-simplex from K_{2}, assume it is $\{4,5,6\}$, and add the six 2 -simplexes of T.
(3) $\chi(K)=\chi\left(K_{2}\right)-1+\chi\left(K_{2}\right)-1+6-6=\chi\left(K_{2}\right)+\chi\left(K_{2}\right)-2$ since we removed two 2 -simplexes and added six new 2 -simplexes and six new 1 -simplexes.

