${ m GARCH} { m processes} - { m continuous} { m counterparts} { m (Part 2)}$

Alexander Lindner

Centre of Mathematical Sciences Technical University of Munich D-85747 Garching Germany lindner@ma.tum.de http://www-m1.ma.tum.de/m4/pers/lindner/

Maphysto Workshop Non-Linear Time Series Modeling Copenhagen September 27 – 30, 2004

Contents

- 1. Why processes in continuous time?
- 2. The GARCH diffusion limit of Nelson
- 3. The COGARCH process: definition and properties

Why continuous time models?

- Observations are quite often irregularly spaced.
- Observations quite often come in at a very high frequency.

Then a continuous time model may provide a better approximation to the discrete data than a discrete model.

Aim: Construct continuous time models with features of GARCH.

The diffusion approximation of Nelson

$$\sigma_n^2 = \omega + \lambda \sigma_{n-1}^2 \varepsilon_{n-1}^2 + \delta \sigma_{n-1}^2$$

= $\omega + (\lambda \varepsilon_{n-1}^2 + \delta) \sigma_{n-1}^2$
 $Y_n = \sigma_n \varepsilon_n$

where $(\varepsilon_n)_{n \in \mathbb{N}}$ i.i.d.: GARCH(1,1) process.

Set

$$G_n := \sum_{i=0}^n Y_i, \quad n \in \mathbb{N}_0$$

Then

$$G_n - G_{n-1} = Y_n,$$

so the increments of $(G_n)_{n \in \mathbb{N}_0}$ are a GARCH process, i.e. (G_n) is "accumulated GARCH".

Question: Can we find a sequence of processes, whose increments on finer becoming grids are GARCH processes, such that the processes converge in distribution to a non-trivial limit process?

Setup:

Take grid width h > 0

$${}_{h}G_{nh} = {}_{h}G_{(n-1)h} + {}_{h}\sigma_{nh} \cdot {}_{h}\varepsilon_{nh}, \quad n \in \mathbb{N},$$

$${}_{h}\sigma_{(n+1)h}^{2} = \omega_{h} + \left(h^{-1}\lambda_{h} \cdot {}_{h}\varepsilon_{nh}^{2} + \delta_{h}\right) \cdot {}_{h}\sigma_{nh}^{2}, \quad n \in \mathbb{N}_{0},$$

$$\left({}_{h}\varepsilon_{nh}\right)_{n \in \mathbb{N}_{0}} \text{ i.i.d. } N(0, h)$$

$$\left({}_{h}\sigma_{0}^{2}, {}_{h}G_{0}\right) \text{ independent of } ({}_{h}\varepsilon_{nh})_{n \in \mathbb{N}}$$

$$\omega_{h} > 0, \; \lambda_{h} \ge 0, \; \delta_{h} \ge 0.$$

Then $({}_{h}G_{nh} - {}_{h}G_{(n-1)h})_{n \in \mathbb{N}}$ is GARCH(1,1) process

 ${}_{h}G_{t} := {}_{h}G_{nh}, {}_{h}\sigma_{t}^{2} := {}_{h}\sigma_{nh}^{2}, {}_{nh} \leq t < (n+1)h$ defines $({}_{h}G_{t}, {}_{h}\sigma_{t}^{2})$ for all $t \in \mathbb{R}_{+}$

Question: When does $({}_{h}G_{t}, {}_{h}\sigma_{t}^{2})_{t\geq 0}$ converge weakly to a process (G, σ^{2}) as $h \downarrow 0$?

(weak convergence is in the space $D(\mathbb{R}_+, \mathbb{R}^2)$ of càdlàg functions, endowed with the Borel sets of the Skorohod topology; weak convergence of processes implies in particular convergence of finite dimensional distributions)

Theorem: (Nelson, 1990)

Suppose

$$({}_{h}G_{0}, {}_{h}\sigma_{0}^{2}) \xrightarrow{d} (G_{0}, \sigma_{0}^{2}), \quad h \downarrow 0$$

$$P(\sigma_{0}^{2} > 0) = 1$$

$$\lim_{h \downarrow 0} h^{-1}\omega_{h} = \omega \ge 0$$

$$\lim_{h \downarrow 0} h^{-1}(1 - \delta_{h} - \lambda_{h}) = \theta$$

$$\lim_{h \downarrow 0} 2h^{-1}\lambda_{h}^{2} = \lambda^{2} > 0$$

Then $({}_{h}G, {}_{h}\sigma^{2})$ converges weakly as $h \downarrow 0$ to the unique solution (G, σ^{2}) of the diffusion equation

$$dG_t = \sigma_t \, dB_t^{(1)},\tag{1}$$

$$d\sigma_t^2 = (\omega - \theta \sigma_t^2) dt + \lambda \sigma_t^2 dB_t^{(2)}, \qquad (2)$$

with starting value (G_0, σ_0^2) , where $(B_t^{(1)})_{t\geq 0}$ and $(B_t^{(2)})_{t\geq 0}$ are *independent* Brownian motions, independent of (G_0, σ_0^2) .

If $2\theta/\lambda^2 > -1$ and $\omega > 0$, then the solution $(\sigma_t^2)_{t\geq 0}$ is strictly stationary iff $\sigma_0^{-2} \stackrel{d}{=} \Gamma(1 + 2\theta/\lambda^2, 2\omega/\lambda^2)$

Example: $\omega_h = \omega h, \ \delta_h = 1 - \lambda \sqrt{h/2} - \theta h, \ \lambda_h = \lambda \sqrt{h/2}$

Interpretation:

The solution of (1) and (2) can be approximated by a GARCH process in discrete time.

Observe:

- The stationary limiting process σ^2 has Pareto like tails.
- The limit (G, σ^2) is driven by **two independent** Brownian motions. The GARCH process has only one source of randomness!
- The processes G and σ^2 are continuous. But empirical volatility can exhibit jumps.
- Estimation of the parameters of the diffusion limit and of the discrete GARCH processes may lead to significantly different results (Wang, 2002)

Further literature: Drost and Werker (1996), Duan (1997)

The COGARCH(1,1) process Klüppelberg, Lindner, Maller (2004)

Recall discrete GARCH(1,1):

Both appearing random walks are linked

Idea: Replace appearing random walks by *Lévy processes* (= continuous time analogue of random walk) Replace ε_j by jumps of a Lévy process *L*.

Recall: A stochastic process $(L_t)_{t\geq 0}$ is a *Lévy process* iff

- it has independent increments: for $0 \le a < b \le c < d$: $L_d - L_c$ and $L_b - L_a$ are independent
- it has stationary increments: the distribution of $L_{t+s} - L_t$ does not depend on t
- it is stochastically continuous
- with probability one it has right-continuous paths with finite left-limits (càdlàg paths)
- $L_0 = 0$ a.s.

Examples

- Brownian motion (has normal increments)
- Compound Poisson process: $(\varepsilon_n)_{n\in\mathbb{N}}$ i.i.d. sequence, independent of $(v_n)_{n\in\mathbb{N}}$ i.i.d. with exponential distribution with mean c

$$T_n := \sum_{j=1}^n v_n$$
$$N_t := \max\{n \in \mathbb{N}_0 : T_n \le t\}$$
$$L_t := \sum_{j=1}^{N_t} \varepsilon_j$$

Note: All Lévy processes apart from Brownian motion have jumps.

Lévy-Kintchine formula

 $(L_t)_{t\geq 0}$ Lévy process:

 $Ee^{isL_t} = e^{t\chi_L(s)}, \quad s \in \mathbb{R},$ $\chi_L(s) = i\gamma_L s - \tau_L^2 \frac{s^2}{2} + \int_{\mathbb{R}} (e^{isx} - 1 - isx \mathbf{1}_{\{|x| < 1\}}) \Pi_L(dx), \quad s \in \mathbb{R}.$

- $(\gamma_L, \tau_L, \Pi_L)$ characteristic triplet
- $\tau_L^2 \ge 0$ Brownian part
- Π_L Lévy measure:

$$\int_{|x|<1} x^2 \Pi_L(dx) < \infty, \quad \int_{|x|\ge 1} \Pi_L(dx) < \infty$$

• If $\int_{|x|<1} |x| \Pi_L(dx) < \infty$ and $\tau_L^2 = 0$: finite variation case.

$$\chi_L(s) = i\gamma_{L,0}s - \tau_L^2 \frac{s^2}{2} + \int_{\mathbb{R}} (e^{isx} - 1)\Pi_L(dx) \quad s \in \mathbb{R}.$$

 $\gamma_{L,0}$ drift of L

Jumps of Lévy processes

- $\Delta L_t := L_t L_{t-} jumps$
- totally described by the Lévy measure
- Π_L infinite (not compound Poisson) \implies almost surely, $(L_t)_{t\geq 0}$ has infinitely many jumps in finite time intervals
- $\sum_{0 < s \le t} |\Delta L_s| < \infty \iff \int_{|x| < 1} |x| \prod_L (dx) < \infty$
- Always: $\sum_{0 < s \le t} |\Delta L_s|^2 < \infty$ almost surely.

COGARCH(1,1) - definition

For $\Pi_L \neq 0, \, \delta > 0, \, \lambda \ge 0$ define auxiliary Lévy process

$$X_t = -t \log \delta - \sum_{0 < s \le t} \log(1 + \frac{\lambda}{\delta} (\Delta L_s)^2), \quad t \ge 0.$$

For $\omega > 0$ and a finite random variable σ_0^2 independent of $(L_t)_{t \ge 0}$ define the *volatility process*

$$\sigma_t^2 = \left(\omega \int_0^t e^{X_s} ds + \sigma_0^2\right) e^{-X_{t-}}, \quad t \ge 0.$$

Define COGARCH(1,1) $(G_t)_{t\geq 0}$ by

$$G_0 = 0, \quad dG_t = \sigma_t dL_t, \quad t \ge 0.$$

Note:

G jumps at the same times as L with jump size $\Delta G_t = \sigma_t \Delta L_t$.

Properties

(1) $(X_t)_{t\geq 0}$ is spectrally negative Lévy process of finite variation with Brownian part 0, drift $(-\log \delta)$ and Lévy measure Π_X :

$$\Pi_X([0,\infty)) = 0$$

$$\Pi_X((-\infty, -x]) = \Pi_L(\{|y| \ge \sqrt{(e^x - 1)\delta/\lambda}\}), \quad x > 0.$$

Proof By definition: $\gamma_X = -\log \delta, \ \tau_X^2 = 0,$

$$\Pi_{X}((-\infty, -x]) = E\left[\sum_{0 < s \le 1} I_{\{-\log(1+(\lambda/\delta)(\Delta L_{s})^{2}) \le -x\}}\right]$$
$$= E\left[\sum_{0 < s \le 1} I_{\{|y| \ge \sqrt{(e^{x}-1)\delta/\lambda}\}}\right], \quad x > 0.$$
$$\int_{|x| < 1} |x| \Pi_{X}(dx) = \int_{|y| \le \sqrt{(e^{x}-1)\delta/\lambda}} \log(1 + \frac{\lambda}{\delta}y^{2}) \Pi_{L}(dy) < \infty.$$

(2) $(\sigma_t^2)_{t\geq 0}$ satisfies the SDE $d\sigma_t^2 = \omega dt + \sigma_t^2 e^{X_{t-}} d(e^{-X_t}), \quad t\geq 0.$

and

$$\sigma_t^2 = \sigma_0^2 + \omega t + \log \delta \int_0^t \sigma_s^2 ds + \frac{\lambda}{\delta} \sum_{0 < s \le t} \sigma_s^2 (\Delta L_s)^2, \quad t \ge 0.$$
(3)

Proof Itô's Lemma.

Compare (3) to discrete-time GARCH(1,1):

$$\sigma_n^2 - \sigma_{n-1}^2 = \omega - (1-\delta)\sigma_{n-1}^2 + \lambda \sigma_{n-1}^2 \varepsilon_{n-1}^2$$
$$\sigma_n^2 = \sigma_0^2 + \omega n - (1-\delta)\sum_{i=1}^{n-1} \sigma_i^2 + \lambda \sum_{i=1}^{n-1} \sigma_i^2 \varepsilon_i^2.$$

(3) Stationarity: Suppose

$$\int_{\mathbb{R}} \log\left(1 + \frac{\lambda}{\delta}x^2\right) \Pi_L(dx) < -\log\delta \tag{4}$$

Then $\sigma_t^2 \xrightarrow{d} \sigma^2 \stackrel{d}{=} \omega \int_0^\infty e^{-X_t} dt$. Otherwise, $\sigma_t^2 \xrightarrow{P} \infty$.

Proof Erickson & Maller (2004)

Example:

L compound Poisson with rate *c* and jump distribution $\varepsilon \implies \Pi_L = cP_{\varepsilon}$

(4)
$$\iff c E \log \left(1 + \frac{\lambda}{\delta}\varepsilon^2\right) < -\log \delta$$

 $\iff -c \log \delta + E \log(\delta + \lambda \varepsilon^2) < -\log \delta$

If c = 1, then

(4)
$$\iff E \log(\delta + \lambda \varepsilon^2) < 0$$

(4) $(\sigma_t^2)_{t\geq 0}$ is a Markov process, hence $(\sigma_t^2)_{t\geq 0}$ is strictly stationary for $\sigma_0^2 \stackrel{d}{=} \sigma^2$.

(5) $(\sigma_t^2, G_t)_{t\geq 0}$ is a bivariate Markov process.

(6) If $(\sigma_t^2)_{t\geq 0}$ is stationary, then $(G_t)_{t\geq 0}$ has stationary increments.

Second order properties of $(\sigma_t^2)_{t\geq 0}$

$$X_t = -t \log \delta - \sum_{s \le t} \log(1 + \frac{\lambda}{\delta} (\Delta L_s)^2), \quad t \ge 0$$

is a Lévy process of finite variation

$$\sigma_t^2 = \left(\omega \int_0^t e^{X_s} ds + \sigma_0^2\right) e^{-X_{t-}}, \quad t \ge 0$$

Define $Ee^{-cX_t} = e^{t\Psi_X(c)}$, then

$$\Psi_X(c) = \log E e^{-cX_1} = c \log \delta + \int_{\mathbb{R}} \left((1 + \frac{\lambda}{\delta} y^2)^c - 1 \right) \Pi_L(dy)$$

For c > 0: $(\sigma_t)_{t \ge 0}$ stationary.

(1) $Ee^{-cX_1} < \infty \iff EL_1^{2c} < \infty \text{ and } |\Psi_X(c)| < \infty$

(2) $EL_1^2 < \infty$ and $\Psi_X(1) < 0 \implies \sigma_t^2 \xrightarrow{d} \sigma^2$ (finite random variable)

(3) $E(\sigma^2)^k < \infty \iff EL_1^{2k} < \infty$ and $\Psi_X(k) < 0$. In that case

$$E\sigma^{2k} = \frac{k!\omega^{k}}{\prod_{l=1}^{k}(-\Psi_{X}(l))}$$

$$\operatorname{cov}(\sigma_{t}^{2}, \sigma_{t+h}^{2}) = \omega^{2} \left(\frac{2}{\Psi_{X}(1)\Psi_{X}(2)} - \frac{1}{(\Psi_{X}(1))^{2}}\right) e^{-h|\Psi_{X}(1)|}$$

(4) $0 < \delta < 1, \lambda > 0 \implies \sigma$ has always infinite moments.

Second order properties of $(G_t)_{t\geq 0}$

 $\begin{array}{l} dG_t = \sigma_t dL_t \\ \Longrightarrow \quad G \text{ jumps at the same times as } L \text{ does: } \Delta G_t = \sigma_t \Delta L_t \\ \Longrightarrow \quad \forall t > 0 \text{ fix } : \quad E(\Delta G_t)^k = 0 \end{array}$

Define for r > 0 fix :

$$G_t^{(r)} = G_{t+r} - G_t = \int_{(t,t+r]} \sigma_s dL_s$$

Take $(\sigma_t^2)_{t\geq 0}$ stationary $\implies (G_t^{(r)})_{t\geq 0}$ stationary.

Theorem (ACF of $(G_t^{(r)})$) $(L_t)_{t\geq 0}$ pure jump process $(\tau_L^2 = 0)$, $EL_1^2 < \infty$, $EL_1 = 0$, $\Psi_X(1) < 0$. Then

$$EG_{t}^{(r)} = 0$$

$$E(G_{t}^{(r)})^{2} = \frac{\omega r}{-\Psi_{X}(1)}EL_{1}^{2}$$

$$cov(G_{t}^{(r)}, G_{t}^{(r+h)}) = 0$$

If
$$EL_1^4 < \infty$$
, $\Psi(2) < 0$, then
 $\operatorname{cov}((G_t^{(r)})^2, (G_t^{(r+h)})^2)$
 $= \left(e^{r|\Psi_X(1)|} - 1\right) \frac{EL_1^2}{|\Psi_X(1)|} \operatorname{cov}(\sigma_r^2, G_r^2) e^{-h|\psi_X(1)|}.$ (5)
If $EL_1^8 < \infty$, $\Psi(4) < 0$, $\int_{\mathbb{R}} x^3 \Pi_L(dx) = 0 \implies (5) > 0.$

21

Theorem (Tail behaviour):
Suppose for
$$D := \{d \in [0, \infty) : E|L_1|^{2d} < \infty\}$$
 we have
 $\sup D \notin D$
 $\implies \exists C > 0, \kappa \in D : \lim_{x \to \infty} x^{\kappa} P(\sigma^2 > x) = C$
If furthermore: $\exists \alpha > 4\kappa : E|L_1|^{\alpha} < \infty$ and
 $(L_t)_{t \ge 0}$ of finite variation and not negative of a subordinator
 $\implies \forall t > 0 \exists C_t > 0 : \lim_{x \to \infty} x^{2\kappa} P(G_t > x) = C_{1,t}$

Proof:

$$\sigma_1^2 = e^{-X_{1-}} \sigma_0^2 + \omega \int_0^1 e^{X_s - X_{1-}} \, ds,$$

 σ_0^2 independent of $\left(e^{-X_{1-}}, \omega \int_0^1 e^{X_s - X_{1-}} ds\right)$. Hence for stationary solution σ^2 a random fixed point equation

$$\sigma^2 \stackrel{d}{=} M\sigma^2 + Q,$$
$$M \stackrel{d}{=} e^{-X_1}, \quad Q \stackrel{d}{=} \omega \int_0^1 e^{-X_s} \, ds.$$

Then apply Theorem of Goldie (1991).

References

Drost, F. and Werker, B. (1996) Closing the GARCH gap: continuous time GARCH modelling. J. Econometrics **74**, 31–57.

Duan, J.-C. (1997) Augmented GARCH(p, q) process and its diffusion limit. J. Econometrics **79**, 97-127.

Erickson, B. and Maller, R. (2004) Generalised Ornstein-Uhlenbeck processes and the convergence of Lévy integrals. *Séminaire des Probabilités*, to appear.

Klüppelberg, C., Lindner, A. and Maller, R. (2004a) A continuous time GARCH process driven by a Lévy process: stationarity and second order behaviour. *J. Appl. Probab.* **41**, 601–622.

Klüppelberg, C., Lindner, A. and Maller, R. (2004b) Continuous time volatility modelling. COGARCH versus Ornstein-Uhlenbeck models. *Invited paper* for the Bachelier Colloquium 2005

Nelson, D. (1990) ARCH models as diffusion approximations. J. Econometrics 45, 7–38.

Wang, Y. (2002) Asymptotic nonequivalence of GARCH models and diffusions. *Ann. Statist.* **30**, 754–783.

Figure 1: Simulated compound Poisson process $(L_t)_{0 \le t \le 10\,000}$ with rate 1 and standard normally distributed jump sizes (*first*) with corresponding COGARCH process (G_t) (*second*), volatility process (σ_t) (*third*) and differenced COGARCH process ($G_t^{(1)}$) of order 1, where $G_t^{(1)} = G_{t+1} - G_t$ (*last*). The parameters were: $\beta = 1$, $\delta = 0.95$ and $\lambda = 0.045$. The starting value was chosen as $\sigma_0 = 10$.

Figure 2: Sample autocorrelation functions of σ_t (top left), σ_t^2 (top right), $G_t^{(1)}$ (bottom left) and $(G_t^{(1)})^2$ (bottom right), for the process simulated in Figure 1. The dashed lines in the bottom graphs show the confidence bounds $\pm 1.96/\sqrt{9999}$.