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Why continuous time models?

• Observations are quite often irregularly spaced.

• Observations quite often come in at a very high frequency.

Then a continuous time model may provide a better approxima-
tion to the discrete data than a discrete model.

Aim: Construct continuous time models with features of GARCH.
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The diffusion approximation of Nelson

σ2
n = ω + λσ2

n−1ε
2
n−1 + δσ2

n−1

= ω + (λε2
n−1 + δ)σ2

n−1

Yn = σnεn

where (εn)n∈N i.i.d.: GARCH(1,1) process.

Set

Gn :=

n∑
i=0

Yi, n ∈ N0

Then
Gn −Gn−1 = Yn,

so the increments of (Gn)n∈N0 are a GARCH process, i.e. (Gn)
is “accumulated GARCH”.

Question: Can we find a sequence of processes, whose incre-
ments on finer becoming grids are GARCH processes, such that
the processes converge in distribution to a non-trivial limit pro-
cess?
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Setup:
Take grid width h > 0

hGnh = hG(n−1)h + hσnh · hεnh, n ∈ N,
hσ

2
(n+1)h = ωh +

(
h−1λh · hε

2
nh + δh

)
· hσ

2
nh, n ∈ N0,

( hεnh)n∈N0 i.i.d. N(0, h)

( hσ
2
0, hG0) independent of ( hεnh)n∈N

ωh > 0, λh ≥ 0, δh ≥ 0.

Then ( hGnh − hG(n−1)h)n∈N is GARCH(1,1) process

hGt := hGnh, hσ
2
t := hσ

2
nh, nh ≤ t < (n + 1)h

defines ( hGt, hσ
2
t ) for all t ∈ R+

Question: When does ( hGt, hσ
2
t )t≥0 converge weakly to a

process (G, σ2) as h ↓ 0?

(weak convergence is in the space D(R+,R
2) of càdlàg functions,

endowed with the Borel sets of the Skorohod topology; weak con-
vergence of processes implies in particular convergence of finite
dimensional distributions)
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Theorem: (Nelson, 1990)
Suppose

( hG0, hσ
2
0)

d→ (G0, σ
2
0), h ↓ 0

P (σ2
0 > 0) = 1

lim
h↓0

h−1ωh = ω ≥ 0

lim
h↓0

h−1(1− δh − λh) = θ

lim
h↓0

2h−1λ2
h = λ2 > 0

Then ( hG, hσ
2) converges weakly as h ↓ 0 to the unique solu-

tion (G, σ2) of the diffusion equation

dGt = σt dB
(1)
t , (1)

dσ2
t = (ω − θσ2

t ) dt + λσ2
t dB

(2)
t , (2)

with starting value (G0, σ
2
0), where (B

(1)
t )t≥0 and (B

(2)
t )t≥0 are

independent Brownian motions, independent of (G0, σ
2
0).

If 2θ/λ2 > −1 and ω > 0, then the solution (σ2
t )t≥0 is strictly

stationary iff σ−2
0

d
= Γ(1 + 2θ/λ2, 2ω/λ2)

Example: ωh = ωh, δh = 1− λ
√
h/2− θh, λh = λ

√
h/2
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Interpretation:
The solution of (1) and (2) can be approximated by a GARCH
process in discrete time.

Observe:

• The stationary limiting process σ2 has Pareto like tails.

• The limit (G, σ2) is driven by two independent Brown-
ian motions. The GARCH process has only one source of
randomness!

• The processesG and σ2 are continuous. But empirical volatil-
ity can exhibit jumps.

• Estimation of the parameters of the diffusion limit and of the
discrete GARCH processes may lead to significantly different
results (Wang, 2002)

Further literature: Drost and Werker (1996), Duan (1997)
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The COGARCH(1,1) process
Klüppelberg, Lindner, Maller (2004)

Recall discrete GARCH(1,1):

σ2
n = ω + λY 2

n−1 + δσ2
n−1 = ω + (δ + λε2

n−1)σ2
n−1

...

= ω

n−1∑
i=0

n−1∏
j=i+1

(δ + λε2
j) + σ2

0

n−1∏
j=0

(δ + λε2
j)

=
(
ω

∫ n

0

exp
{
−
bsc∑
j=0

log(δ + λε2
j)︸ ︷︷ ︸

random walk

}
ds + σ2

0

)

× exp
{ n−1∑

j=0

log(δ + λε2
j)︸ ︷︷ ︸

random walk

}

Yn = σnεn = σn

( n∑
j=0

εj −
n−1∑
j=0

εj

)
︸ ︷︷ ︸

increment of random walk

Both appearing random walks are linked
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Idea: Replace appearing random walks by Lévy processes
(= continuous time analogue of random walk)
Replace εj by jumps of a Lévy process L.

Recall: A stochastic process (Lt)t≥0 is a Lévy process iff

• it has independent increments:
for 0 ≤ a < b ≤ c < d: Ld−Lc and Lb−La are independent

• it has stationary increments:
the distribution of Lt+s − Lt does not depend on t

• it is stochastically continuous

• with probability one it has right-continuous paths with finite
left-limits (càdlàg paths)

• L0 = 0 a.s.
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Examples

• Brownian motion (has normal increments)

• Compound Poisson process:
(εn)n∈N i.i.d. sequence, independent of (vn)n∈N i.i.d. with ex-
ponential distribution with mean c

Tn :=

n∑
j=1

vn

Nt := max{n ∈ N0 : Tn ≤ t}

Lt :=

Nt∑
j=1

εj

Note: All Lévy processes apart from Brownian motion have
jumps.
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Lévy-Kintchine formula

(Lt)t≥0 Lévy process:

EeisLt = etχL(s), s ∈ R,

χL(s) = iγLs−τ 2
L

s2

2
+

∫
R

(eisx−1−isx1{|x|<1})ΠL(dx), s ∈ R.

• (γL, τL,ΠL) characteristic triplet

• τ 2
L ≥ 0 Brownian part

• ΠL Lévy measure:∫
|x|<1

x2ΠL(dx) <∞,
∫
|x|≥1

ΠL(dx) <∞

• If
∫
|x|<1 |x|ΠL(dx) <∞ and τ 2

L = 0: finite variation case.

χL(s) = iγL,0s− τ 2
L

s2

2
+

∫
R

(eisx − 1)ΠL(dx) s ∈ R.

γL,0 drift of L
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Jumps of Lévy processes

• ∆Lt := Lt − Lt− jumps

• totally described by the Lévy measure

• ΠL infinite (not compound Poisson) =⇒ almost surely, (Lt)t≥0

has infinitely many jumps in finite time intervals

•
∑

0<s≤t |∆Ls| <∞ ⇐⇒
∫
|x|<1 |x|ΠL(dx) <∞

• Always:
∑

0<s≤t |∆Ls|2 <∞ almost surely.
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COGARCH(1,1) - definition

For ΠL 6= 0, δ > 0, λ ≥ 0 define auxiliary Lévy process

Xt = −t log δ −
∑

0<s≤t
log(1 +

λ

δ
(∆Ls)

2), t ≥ 0.

For ω > 0 and a finite random variable σ2
0 independent of (Lt)t≥0

define the volatility process

σ2
t =

(
ω

∫ t

0

eXsds + σ2
0

)
e−Xt−, t ≥ 0.

Define COGARCH(1,1) (Gt)t≥0 by

G0 = 0, dGt = σtdLt, t ≥ 0.

Note:
G jumps at the same times as L with jump size ∆Gt = σt∆Lt.
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Properties

(1) (Xt)t≥0 is spectrally negative Lévy process of finite vari-
ation with Brownian part 0, drift (− log δ) and Lévy measure
ΠX :

ΠX([0,∞)) = 0

ΠX((−∞,−x]) = ΠL({|y| ≥
√

(ex − 1)δ/λ}), x > 0.

Proof By definition: γX = − log δ, τ 2
X = 0,

ΠX((−∞,−x]) = E
[ ∑

0<s≤1

I{− log(1+(λ/δ)(∆Ls)2)≤−x}

]
= E

[ ∑
0<s≤1

I{|y|≥
√

(ex−1)δ/λ}

]
, x > 0.∫

|x|<1

|x|ΠX(dx) =

∫
|y|≤
√

(ex−1)δ/λ

log(1 +
λ

δ
y2) ΠL(dy) <∞.
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(2) (σ2
t )t≥0 satisfies the SDE

dσ2
t = ωdt + σ2

t e
Xt−d(e−Xt), t ≥ 0.

and

σ2
t = σ2

0 + ωt + log δ

∫ t

0

σ2
sds +

λ

δ

∑
0<s≤t

σ2
s(∆Ls)

2, t ≥ 0. (3)

Proof Itô’s Lemma. 2

Compare (3) to discrete-time GARCH(1,1):

σ2
n − σ2

n−1 = ω − (1− δ)σ2
n−1 + λσ2

n−1ε
2
n−1

=⇒ σ2
n = σ2

0 + ωn− (1− δ)
n−1∑
i=1

σ2
i + λ

n−1∑
i=1

σ2
i ε

2
i .
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(3) Stationarity: Suppose∫
R

log

(
1 +

λ

δ
x2

)
ΠL(dx) < − log δ (4)

Then σ2
t

d→ σ2 d
= ω

∫∞
0 e−Xtdt . Otherwise, σ2

t
P→∞.

Proof Erickson & Maller (2004) 2

Example:
L compound Poisson with rate c and jump distribution ε
=⇒ ΠL = cPε

(4) ⇐⇒ cE log

(
1 +

λ

δ
ε2

)
< − log δ

⇐⇒ −c log δ + E log(δ + λε2) < − log δ

If c = 1, then
(4)⇐⇒ E log(δ + λε2) < 0
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(4) (σ2
t )t≥0 is a Markov process, hence (σ2

t )t≥0 is strictly sta-

tionary for σ2
0
d
= σ2.

(5) (σ2
t , Gt)t≥0 is a bivariate Markov process.

(6) If (σ2
t )t≥0 is stationary, then (Gt)t≥0 has stationary incre-

ments.
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Second order properties of (σ2
t )t≥0

Xt = −t log δ −
∑
s≤t

log(1 +
λ

δ
(∆Ls)

2), t ≥ 0

is a Lévy process of finite variation

σ2
t =

(
ω

∫ t

0

eXsds + σ2
0

)
e−Xt−, t ≥ 0

Define Ee−cXt = etΨX(c), then

ΨX(c) = logEe−cX1 = c log δ +

∫
R

(
(1 +

λ

δ
y2)c − 1

)
ΠL(dy)

18



For c > 0: (σt)t≥0 stationary.

(1) Ee−cX1 <∞ ⇐⇒ EL2c
1 <∞ and |ΨX(c)| <∞

(2) EL2
1 < ∞ and ΨX(1) < 0 =⇒ σ2

t
d→ σ2 (finite

random variable)

(3) E(σ2)k <∞ ⇐⇒ EL2k
1 <∞ and ΨX(k) < 0.

In that case

Eσ2k =
k!ωk∏k

l=1(−ΨX(l))

cov(σ2
t , σ

2
t+h) = ω2

(
2

ΨX(1)ΨX(2)
− 1

(ΨX(1))2

)
e−h|ΨX(1)|

(4) 0 < δ < 1, λ > 0 =⇒ σ has always infinite moments.
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Second order properties of (Gt)t≥0

dGt = σtdLt
=⇒ G jumps at the same times as L does: ∆Gt = σt∆Lt
=⇒ ∀t > 0 fix : E(∆Gt)

k = 0

Define for r > 0 fix :

G
(r)
t = Gt+r −Gt =

∫
(t,t+r]

σsdLs

Take (σ2
t )t≥0 stationary =⇒ (G

(r)
t )t≥0 stationary.
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Theorem (ACF of (G
(r)
t ))

(Lt)t≥0 pure jump process (τ 2
L = 0),

EL2
1 <∞, EL1 = 0, ΨX(1) < 0.

Then

EG
(r)
t = 0

E(G
(r)
t )2 =

ωr

−ΨX(1)
EL2

1

cov(G
(r)
t , G

(r+h)
t ) = 0

If EL4
1 <∞, Ψ(2) < 0, then

cov((G
(r)
t )2, (G

(r+h)
t )2)

=
(
er|ΨX(1)| − 1

) EL2
1

|ΨX(1)|
cov(σ2

r , G
2
r)e
−h|ψX(1)|. (5)

If EL8
1 <∞, Ψ(4) < 0,

∫
R
x3ΠL(dx) = 0 =⇒ (5) > 0.
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Theorem (Tail behaviour):
Suppose for D := {d ∈ [0,∞) : E|L1|2d <∞} we have

supD 6∈ D

=⇒ ∃C > 0, κ ∈ D : lim
x→∞

xκP (σ2 > x) = C

If furthermore: ∃α > 4κ : E|L1|α <∞ and
(Lt)t≥0 of finite variation and not negative of a subordinator

=⇒ ∀ t > 0 ∃ Ct > 0 : lim
x→∞

x2κP (Gt > x) = C1,t
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Proof:

σ2
1 = e−X1−σ2

0 + ω

∫ 1

0

eXs−X1− ds,

σ2
0 independent of

(
e−X1−, ω

∫ 1

0 e
Xs−X1− ds

)
.

Hence for stationary solution σ2 a random fixed point equation

σ2 d
= Mσ2 + Q,

M
d
= e−X1, Q

d
= ω

∫ 1

0

e−Xs ds.

Then apply Theorem of Goldie (1991).
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Figure 1: Simulated compound Poisson process (Lt)0≤t≤10 000 with rate 1 and standard normally dis-
tributed jump sizes (first) with corresponding COGARCH process (Gt) (second), volatility process (σt)

(third) and differenced COGARCH process (G
(1)
t ) of order 1, where G

(1)
t = Gt+1−Gt (last). The param-

eters were: β = 1, δ = 0.95 and λ = 0.045. The starting value was chosen as σ0 = 10.
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Figure 2: Sample autocorrelation functions of σt (top left), σ2
t (top right), G

(1)
t (bottom left) and (G

(1)
t )2

(bottom right), for the process simulated in Figure 1. The dashed lines in the bottom graphs show the
confidence bounds ±1.96/

√
9999.
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