
COPULAS: TALES AND FACTS†

THOMAS MIKOSCH

“But he does not wear any clothes” said the little child in Hans Christian Andersen’s “The Em-
peror’s New Clothes”.

1. Some preliminary facts

When I started writing the paper [19] in 2003 a Google search of the word “copula” gave 10,000
responses. In September 2005 the same search gives 650,000 responses. There is an explosion of
activity. What is going on?

Many of the web-sites1 found in the Google search are related to mathematical finance, statistics,
extreme value theory, and risk management. Everybody who opens any journal on stochastic
processes, probability theory, statistics, econometrics, risk management, finance, insurance, etc.,
observes that there is a fast growing industry on copulas. The commercial statistics software
Splus provides the module FinMetrics that includes copula fitting which is written by R. Carmona,
see also Carmona [4]. One can also get copula modules in other major software packages (R,
Mathematica, MatLab, etc.). The International Actuarial Association [14] in its hefty paper on
Solvency II2 recommends using copulas for modeling dependence in insurance portfolios. Moody’s
uses Gaussian copulas for modeling credit risk and provides software for it which is used in many
financial institutions. Since Basle II3 copulas are now standard tools in credit risk management.

The main purpose of this paper is to ask some näıve questions about the fast ascent of copula
technology that has become so fashionable. My main concern is that this very simple concept might
be something like the emperor’s new clothes because it promises to solve all problems of stochastic
dependence but it falls short in achieving the goal. Although I do appreciate that practitioners,
in contrast to academic researchers, have to come up with solutions to their risk problems within
deadlines and that “quick and dirty methods” cannot always be avoided. Yet one may of course
ask how much safety the banking and insurance industry (and maybe the rest of the world) really
gains by using the copula concept.

I have been watching my colleagues for some years and have been wondering why more and more
of them became immersed in copulas without discussing the pros and cons of the concept. I suspect
that some include the word “copula” in the title of their papers not because they contribute to the
theory on copulas, but because they believe that one can publish easier. Some have adopted the
language of copulas which has led them to publish papers with complicated technical assumptions,
whereas the results are not new when considered in the usual language of distributions. I also
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observed that my students are likely to be attracted to copulas than to stochastic processes. A
possible reason is that one needs less than 10 minutes to understand the fundamentals of copulas,
but many years of studies in order to get an idea of a genuine stochastic process.

I got the impression that some of those who use copulas or write about them think that all the
world’s problems related to stochastic dependence and multivariate distributions can be solved via
copulas. It is my primary objective to caution this optimism. A second goal is to indicate that
there are statistical problems in handling copulas, one of them being the curse of dimensionality.
A third aim is to indicate that copulas do not really fit into the theory of stochastic processes and
time series analysis. This is a pity because a new strong idea (if it is one) should inherit the main
body of a well established theory in which some of the finest minds of probability theory have been
working for about 100 years.

I am aware that it is difficult to interfere with a development which is already driving at a very
high speed, but an academic person without commercial interests may ask questions which do not
make all people in the community happy. In what follows, I will ask questions about copulas and
what one gains scientifically if one uses them.

2. What is a copula?

We start with a real-valued random variable X with continuous distribution function F which

we also assume to have an inverse F−1 on its support. It is easily checked that X
d
= F−1(U) where

U is uniformly distributed on (0, 1) and F (X)
d
= U and

d
= refers to equality in distribution.

Now consider an R
d-valued random vector X = (X1, . . . , Xd) with respective marginal distribu-

tion functions Fi which are again assumed to be continuous and have inverse on the support of Xi.
4

Then the same arguments as in the one-dimensional case yield

P (X1 ≤ F−1
1 (x1), . . . , Xd ≤ F−1

d (xd)) = P (F1(X1) ≤ x1, . . . , Fd(Xd) ≤ xd)

= C(x1, . . . , xd) ,

where on the right-hand side the d-dimensional distribution function C has support [0, 1]d and
uniform marginal distribution functions. The distribution function C is the copula of the vector X.
On the other hand, given the copula C of X we can reconstruct the distribution function of X by
the distribution functions Fi:

P (X1 ≤ y1, . . . , Xd ≤ yd) = P (F1(X1) ≤ F1(y1), . . . , Fd(Xd) ≤ Fd(yd))

= C(F1(y1), . . . , Fd(yd)) .

Finally, any distribution function with support on [0, 1]d and uniform marginals is called a copula.
Under the given assumptions on the marginal distribution functions Fi, there is a 1-to-1 corre-

spondence between the copula C and the distribution of X. This means, in a sense, that the depen-
dence structure of X1, . . . , Xd can be reconstructed from the copula and the marginal distributions
Fi. But this does not mean that the dependence structures of the vectors X = (X1, . . . , Xd) with
copula C and of the vector Y = (F1(X1), . . . , Fd(Xd)) with distribution function C are the same.
For example, if the correlations of the vector X are defined, they will usually be different from those
of Y. To illustrate this fact more drastically, assume that X1, . . . , Xd is a sample from a second
order stationary process with zero autocorrelations. The corresponding sample F1(X1), . . . , Fd(Xd)
can be highly correlated and will in general not be second order stationary. Similarly, the spectral
measure (which is an extremal dependence measure, see Section 8.2) can make sense for X with
unbounded support, but it does not for Y.

4These assumptions can be weakened but this paper does not aim to discuss the most general setting. See Nelsen
[21] for an introduction to general copulas and their properties.
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3. Why did copulas become popular in risk management?

One of the driving forces for the popularity of copulas is their application in the context of fi-
nancial risk management. Standard theory in mathematical finance prescribes Gaussian processes
among others to log-prices and interest rates.5 This is due to the dominating role of Brownian mo-
tion and martingales in models of mathematical finance. The distribution of a Gaussian process is
determined by its finite-dimensional distributions, which are Gaussian and, in turn, are completely
characterized by their mean values and covariances. In particular, a linear combination of the
components of a mean zero Gaussian vector is Gaussian and its distribution is determined purely
by its covariance matrix and the weights of the linear combination. This is convenient because in
risk management one is often interested in linear combinations of prices or log-prices from different
assets which constitute a portfolio. Quantities such as Value at Risk (VaR — a low quantile of the
Profit and Loss distribution) can be calculated if one knows the covariance matrix and the number
of shares one holds in the various assets.

Unfortunately, real-life data often turn out to be highly non-Gaussian, see for example Chapter 6
in Embrechts et al. [5] or Mikosch [18] for some evidence of Pareto like tails for returns. Returns
(the increments of log-prices over successive periods of time with equal length, such as days) have
heavy-tailed distributions, are dependent through time and may be non-stationary. There is no
simple alternative to the Gaussian distribution in the non-Gaussian world. In particular, one
needs multivariate models for portfolios with different marginal distributions (including different
tail behavior) and a dependence structure which is determined not only by covariances. Many of
the well known multivariate distributions are not flexible enough to allow for different tail behavior
in different components. Therefore copulas seem to be the right tools in order to overcome the
mentioned difficulties: they generate all multivariate distributions with flexible marginals in the
way described in Section 2.

So far so good. But at least at this point any critical person might have some questions. For
example the following one.

4. Why does one transform the marginals to a uniform distribution?

The author has not found a scientific answer to this question. But my optimistic guess is that
this transformation is related to the fact that one can visualize data from a two-dimensional copula
on a computer screen which has some similarity with the unit square [0, 1]2. Such two-dimensional
visualizations have become rather standard as an exploratory tool. Another explanation might be
that the transformation F−1 is well known as the quantile function of F and that the relationship
between the uniform distribution, F and F−1 is part of any advanced probability course, hence
very familiar.

However, what does such a visualization tell or not tell us? It would be useful if one could
interpret the dependence structure of vectors with uniform marginal distributions. But there are
infinitely many such dependencies and to the best of my knowledge there is no way of classifying
or quantifying them. It is even hard to imagine what dependence of two uniformly distributed
random variables means. Hence:

There is no particular mathematical or practical reason for transforming the marginals to the
uniform distribution on (0, 1).

With the same right, one could transform the marginal distributions of a vector to any other nice
continuous distribution function. For example, again assuming X to have a continuous distribution
function F , the transformation − log(1−F (X)) yields a standard exponentially distributed random

5For example, the celebrated Black-Scholes model assumes a Brownian motion; the popular Vasicek interest rate
model requires an Ornstein-Uhlenbeck process.
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variable:

P (− log(1 − F (X)) ≤ x) = P (1 − e −x ≥ F (X)) = 1 − e −x , x > 0 .

Or one can transform the marginal distributions to standard normal ones. Then one will in general
deal with a multivariate distribution which is not Gaussian. Such examples are sometimes con-
sidered in a course on probability theory when one wants to explain the fact that the (Gaussian)
marginals do not determine a multivariate (Gaussian) distribution. A multivariate non-Gaussian
distribution with Gaussian marginal distributions is usually considered pathological and not of
much practical use. But such a distribution corresponds to a copula. Would this copula not be
“pathological” as well?

Later, in Section 7.2, we will discuss Gaussian and t-copulas which are generated from multi-
variate Gaussian and t-distributions, respectively. One wonders why, in this context, one does not
transform the marginals to Gaussian or t-distributions. In contrast to the corresponding copulas
the characteristics of these distributions have a straightforward interpretation.

5. Why does one transform the marginals to a standard distribution?

In various situations one can apply increasing transformations to the data without destroying
certain aspects of the underlying dependence structure. This can be advantageous if one gets
simpler representations or more accessible formulas for certain probabilistic quantities. Multivariate
extreme value theory is in part responsible for this approach. Standard multivariate extreme value
theory deals with the vector of component-wise maxima of a sample of iid random vectors and
its limit distribution under affine transformations.6 If the components of these vectors come from
different distributions, the question about the limit distribution of a vector of component-wise
maxima can be rather unpleasant. For example, different marginal distributions require different
normalizations or, if one chooses the normalization from a dominating component, the remaining
components might vanish in the limit. Therefore it has become rather common to assume that one
transforms the components to a standard distribution.7 Those include the uniform distribution, but
also the Pareto, the unit Fréchet distribution Φ1(x) = e−1/x, x > 0, and the Gumbel distribution
Λ(x) = exp{e −x}, x ∈ R. The advantage of choosing the Pareto or the unit Fréchet distributions is
that they allow for an interpretation of the spectral measure, i.e., the distribution of the directions
of multivariate extremes (see Section 8.2) given one believes that, after the transformation to these
standard marginal distributions, the vector has a distribution in the maximum domain of attraction
(MDA) of a suitable multivariate extreme value distribution (EVD).8

Increasing transformations of the marginals make sense in the context of multivariate extreme
value theory. For example, consider the iid R

2-valued vectors (Xi, Yi) and transform the first and
second components by increasing functions f1 and f2, respectively. Then the components of the
transformed vectors (f1(Xi), f2(Yi)) have the same ordering as before, and with the back transfor-
mations f−1

1 and f−1
2 one can reconstruct the distribution of the original vectors (Xi, Yi). Of course,

apart from keeping the order of the components unchanged by these monotone transformations,
one destroys many other aspects of the dependence structure of the points (Xi, Yi).

6This is what the layman thinks about multivariate extreme value theory and he is right when he reads most of the
literature, including textbooks. But component-wise maxima of a multivariate sample give a rather limited picture of
the world of multivariate extremes. In my view, it is more important that the theory provides maximum domain of
attraction (MDA) conditions which justify the assignment of probabilities to multivariate rare events which, possibly,
have not happened before.

7This approach is advocated in Resnick’s monograph [24], where he lays the probabilistic foundations of multi-
variate extreme value theory. It is done by an easy probabilistic argument, but when dealing with data this is hard
statistical work because one does not know the marginal distributions; see e.g. de Haan and de Ronde [11] and the
literature cited therein. The problem is the same when one wants to verify the goodness-of-fit of a copula.

8As most conditions in extreme value statistics these are statistical believes which can hardly be tested on data.
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For many other functions of random vectors increasing transformations of the components do
not really help one to evaluate the distribution of this function. For example, when one is interested
in VaR, see Section 3, i.e., in a certain quantile of a linear combination of the components of a
random vector, increasing transformations of those components are not useful: the copula of the
vector does not help one to evaluate VaR.

However, if one believes in a particular copula C and in particular marginal distributions Fi, then
one can possibly simulate iid copies from the underlying distribution and, in turn, approximate the
distribution of the function by crude Monte Carlo. This method has attracted some attention in
risk management because it gives one a convenient Monte Carlo method for determining the VaR
of a portfolio for a flexible number of shares (portfolio weights).

Of course, this Monte Carlo method also works if one simulates directly from a multivariate
distribution without knowing its copula. Copulas do not solve the problem of simulating from an
arbitrary multivariate distribution. Since one does not understand all dependence structures of a
vector with values in [0, 1]d and uniform marginals, one cannot simulate from any copula C. Most
copulas from which one can simulate are derived from well known multivariate distributions such
as the Gaussian or elliptical distributions (see Section 7.2) and then one can simulate directly from
these distributions.

The crude Monte Carlo method for simulating the quantile VaR is a rather expensive one. One
has to simulate from the whole multivariate distribution in order to calculate the quantile of a
1-dimensional object — a linear combination of the components of the vector. One may wonder
whether there do not exist theoretical means for approximating the VaR for a sufficiently large
class of high-dimensional distributions without knowledge of the distribution in its whole domain.
Or formulated as a question: Given a high-dimensional random vector, which part of its support is
responsible for the far out upper/lower tail of a linear combination of its components? For elliptical
distributions (see Section 7.2) one has explicit formulas for VaR, depending only on the parameters
of the distributions. This fact contributed to the popularity of these distributions.

In a way, the distribution of a linear combination of a high-dimensional vector of prices and
of a composite stock index (such as the Dow Jones, S&P 500, DAX, etc.) are similar objects;
composite stock indices are weighted averages of a large number of speculative prices. Over the last
20 years econometrics has quite successfully developed time series models for returns of speculative
prices and composite stock indices such as the ARCH family and stochastic volatility models.
This development was crowned by two Nobel Prizes for Economics in 2003. Weighted averages of
prices have their own dynamics and lead to interesting space-time dependence structures. If one
believes in the feasibility of the copula approach one might wonder whether it would yield a better
approximation to the marginal distribution of the returns of a composite stock index than what is
obtained by fitting a time series model. To the best of my knowledge such a comparison has not
been provided.

It is not only the ordering of a sample that is preserved under increasing transformations. Var-
ious quantities of interest are invariant under increasing transformations. Among those are some
quantities which depend only on 2-dimensional distributions and which are considered as some kind
of dependence measure: the tail dependence parameter (see Section 8.1), the concordance measures
Kendall’s τ and Spearman’s ρ (see Nelsen [21], Section 5.1). One says that two points (a, b) and
(c, d) in R

2 are concordant if (a− c)(b−d) > 0 and discordant otherwise. If one transforms the first
or second coordinates by increasing functions, the resulting points remain concordant or discordant.
Since τ and ρ measure the degree of concordance of a 2-dimensional random vector they remain
unchanged under increasing transformations of its components and only depend on the copula.

The mentioned concordance measures do not characterize the dependence of a 2-dimensional
vector with uniform marginals; they describe a very particular geometric property of an iid or
strictly stationary ergodic sequence of 2-dimensional random vectors. The rank correlations τ and
ρ are often mentioned in the literature on risk management as alternative measures to covariances
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and correlations. They are not relevant for measuring dependence and risk because they do not
depend on the magnitude of the data and therefore they neglect large and small values.

In the history of probability theory a whole universe of dependence measures of random vectors,
stochastic processes and their distributions has been developed which describe very different aspects
of stochastic dependence. Among them is the classical theory of probability metrics and distances
as presented in the work of Zolotarev and summarized in his monograph [27]. As a matter of fact,
there has always been some interest in a probabilistic theory of distributions with fixed marginals;
for recent contributions see the work by Rüschendorf and his co-authors.

6. How does one fit the marginal distributions and the copula?

In classical statistics one fits a multivariate distribution by extracting information out of the data
about the distribution as an entity, e.g. by using maximum likelihood for a multivariate parametric
family of distributions. The copula technology is different since it suggests the possibility of a two
stage statistical procedure: estimate the marginal distributions and the copula function separately
from each other. By the choice of the marginal distributions one determines the copula, hence the
chosen dependence structure, and therefore different statistical tools for fitting the marginals may
generate distinct dependencies.

In most parts of the existing literature the question about the fit of the marginals is not discussed.
An exception is Section 5.5 in McNeil et al. [17] where three possible approaches are mentioned:

(1) Fit parametric distributions to the marginals.

(2) Replace the marginal distributions Fi by their empirical distributions F
(n)
i .

(3) Replace the marginal distributions Fi by their empirical counterparts F
(n)
i and add some

tails, e.g. generalized Pareto distribution (GPD) tails from above or below a certain thresh-
old.

From 1-dimensional statistical theory it is known that any of these approaches can go terribly
wrong. For example, if one wants to estimate high or low quantiles the empirical distribution can
be a poor guide, even when the sample size is large. If one estimates the marginal distributions by
its empirical counterparts the estimation of the copula is entirely based on the relative ranks of the
components: the data can be multiplied or divided by 1050 and the statistical analysis will be the
same. Can the estimation of the dependence structure only be a matter of relative ranks?

From a 1-dimensional extreme value point of view the approximation of the tails of the marginal
distributions by GPDs might be appropriate if one is interested in an extreme value problem, but
the estimation of the copula depends on all data, not just on the extremes, even if the copula comes
from an EVD.

Any of these approaches will only work under particular mathematical conditions. None of these
methods can be trusted unless a rigorous mathematical proof is given. There exists very little
statistical theory about fitting multivariate data by using copulas and about their goodness-of-fit;
most papers focus on some particular 2-dimensional copulas (Archimedean, Gaussian, t-copula,
etc.); see e.g. Genest and Rivest [9] or Song et al. [26]. For statistical applications it is not enough
to prove that maximum likelihood estimation works for some parametric families of copulas and
marginal distributions. A major problem is the goodness-of-fit of a copula which critically depends
on the fit of the marginal distributions. In financial applications copulas are often used for high-
dimensional data (e.g. Moody’s credit risk models), and it is not clear what is the trade-off between
the sample size and the dimension. The number of parameters might be larger than the sample
size. Of course, the same problem occurs if one fits a Gaussian distribution in a näıve way to two
years of return data, a sample of 500 points say, to a portfolio which consists of 200 assets, i.e., the
return data are 200-dimensional. It is hard to believe that any copula technique will sweep away
these statistical problems.
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The separation of marginal distributions and dependence function when using distributions gen-
erated from a copula implies a much higher statistical uncertainty than usually encountered when
fitting a distribution. Instead of fitting one multivariate distribution as an entity to the data, one
has to fit all marginal distributions as well as the copula by using one sample. This increases the
usual estimation efforts by far. It is unclear how sensitive the estimation techniques for the copula
are to the estimation of the marginal distributions. It is also unclear how sensitive the estimation
of the distribution of the multivariate data is to the estimation of the marginal distributions and
the copula. Here is a natural question:

Given the fitted marginal distributions and copulas are “close” in some sense to their counterparts
in the distribution of the data, how “close” is the estimated distribution (generated by the fitted

marginal distributions and estimated copula) to the distribution of the data?

7. How does one choose a copula?

The copula C of a random vector X is a transformation of the distribution of X. As for the
distribution of X we have infinitely many choices for C. If one chooses a copula it should be related
to the problem at hand. For example, if we are interested in multivariate extremes the copula
should be related to multivariate extreme value theory; see Section 8 for some discussion in this
context.

In the literature various families of copula families with a name have been introduced. Their
choice is not always based on reasoning but on mathematical convenience. In what follows, we
comment on some of the popular copula families.

7.1. The Archimedean copula. This copula has attracted a lot of attention, see e.g. Nelsen
[21], Chapter 4. In its simplest form it is defined as follows: let ψ : [0, 1] → [0,∞] be a continuous
decreasing function such that ψ(0) = ∞ and ψ(1) = 0. Moreover, for d > 2 the function ψ−1 on
[0,∞] also has to be completely comonotonic.9 Then the following function on [0, 1]d is a copula,
see Nelsen [21], Theorem 4.6.2 on p. 122:

C(x1, . . . , xd) = ψ−1

(
d∑

i=1

ψ(xi)

)
.

Calculation yields

P (X1 ≤ x1, . . . , Xd ≤ xd) = C(F1(x1), . . . , Fd(xd)) = ψ−1

(
n∑

i=1

ψ(Fi(xi))

)

= ψ−1 (− log [P (Y1 ≤ x1) · · ·P (Yd ≤ xd)]) ,

where Y = (Y1, . . . , Yd) is a vector with independent components with distribution functions

P (Yi ≤ x) = e−ψ(Fi(x)) , i = 1, . . . , d .

This means that the distribution function of X is a monotone transformation of the distribution
function of a vector Y with independent components.

The Archimedean copula is a textbook toy example where one can explain various theoretical
properties of a copula and calculate quantities such as the rank correlations. However, in view of
the above calculation one may ask:

In which practical situation would one choose an Archimedean copula for modeling genuine
dependence in the vector X?

9ψ−1 is completely monotonic on [0,∞] if (−1)kdkψ−1(t)/dtk ≥ 0 for all t ∈ (0,∞) and k = 0, 1, 2, . . .; see Nelsen
[21], p. 122.
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7.2. The Gaussian, t- and other copulas of elliptical distributions. The Gaussian copula
is perhaps the most popular distribution in applications. It is simply derived from a multivariate
Gaussian distribution function ΦΣ with mean zero and correlation matrix Σ by transforming the
marginals by the inverse of the standard normal distribution function Φ:

C(x1, . . . , xd) = ΦΣ(Φ−1(x1), . . . ,Φ
−1(xd)) .

The t-copula is another popular model. It is derived in the same way as the Gaussian copula. Given
a multivariate centered t-distribution function tΣ,ν with correlation matrix Σ, ν degrees of freedom
and with marginal distribution function tν , this copula is given by

C(x1, . . . , xd) = tΣ,ν(t
−1
ν (x1), . . . , t

−1
ν (xd)) .

The Gaussian and t-copulas are copulas of elliptical distributions; they are not elliptical distributions

themselves. A vector X with an elliptical distribution in R
d satisfies the identity in law X

d
= RAS,

where S is uniformly distributed on the unit sphere {x : |x| = 1} with respect to the Euclidean
norm | · |, R ≥ 0 is a radial random variable, independent of S, AA′ = Σ and Σ is a correlation
matrix.

One may wonder how flexible and reasonable elliptical distributions and copulas are for the
purposes of risk modeling. The multiplicative shock R is present in all components of X with the
same magnitude. This would also imply that any observation Xi from such a distribution would be
equally important for statistical analyses, independently of the order of magnitude of |Xi|. Such an
approach is in contrast to the usual reasoning in extreme value statistics, where one first separates
the data in the center of the distribution from those far away from zero and then conducts distinct
statistical analyses in the different parts of the sample.

The vector AS determines the likelihood of the directions of X. Since S is uniformly distributed
on the unit sphere of R

d, the distribution of AS is also smoothly distributed in space; in partic-
ular extremes of an iid sample X1 = X, . . . ,Xn may occur in all directions whereas pronounced
directions for extremes are excluded in these models.

The dependence in elliptical distributions is essentially determined by covariances. Covariances
are rather poor tools for describing dependence for non-Gaussian distributions, in particular for
their extremal dependence; see Embrechts et al. [6] for a critique of using covariances in risk
modeling and Glasserman [7] for advocating t-distributions for risk management.

7.3. Extreme value copulas. An extreme value copula is derived from a multivariate EVD by
transforming its marginals to the unit cube [0, 1]n. Multivariate EVDs occur as weak limits of
affinely transformed vectors of component-wise maxima of iid random variables; see Resnick [24],
Chapter 5. The marginal distributions are necessarily one-dimensional EVDs: they are either of
the type Fréchet, Gumbel or Weibull.

A popular extreme value copula is the Gumbel copula

C(x1, . . . , xd) = exp

{
−

(
d∑

i=1

(− log xi)
1/α

)α}
,

for some α ∈ (0, 1]. Writing Λ(x) = exp{−e −x}, x ∈ R, for the Gumbel distribution function, the
corresponding EVD is obtained by the transformation

C(Λ(x1), . . . ,Λ(xd)) = exp

{
−

(
d∑

i=1

e−xi/α

)α}
.

Other named (parametric) multivariate EVDs are given for example in Galambos [8], Chapter 5, or
in Kotz and Nadarajah [15], Chapter 3. However, there exist infinitely many distinct multivariate
EVDs with Gumbel, Fréchet or Weibull marginal distributions and therefore it is not quite clear
why the Gumbel copula in particular has gained such popularity; it may perhaps be because it is
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also an Archimedean copula. As explained above, such copulas describe a rather limited kind of
dependence structure of a random vector.

Extreme value copulas are not EVDs themselves, i.e., one loses the interpretation of an EVD
as a max-stable distribution. EVDs should be fitted to data only if the data are generated by an
“extremal mechanism”, i.e., if they can be interpreted as component-wise maxima of iid random
vectors. In the one-dimensional case, the method of annual maxima (see e.g. Embrechts et al. [5], p.
317) is known to create such maxima. The method straightforwardly extends to higher dimensions.
However, in the context of risk management it is less likely that, for example, daily return data of
speculative prices are generated by an extremal mechanism, i.e., it is difficult to interpret them as
maxima. For example, the use of extreme value copulas for the calculation of functionals such as
VaR is out of context.

8. Upper tail dependence and multivariate extremes

If one browses on the Internet and searches for papers on copulas, one often finds arguments
for discriminating between different distributions based on the value of the upper tail dependence
parameter. For example, “the t-copula allows for upper tail dependence whereas the Gaussian copula
does not and therefore the t-copula is better for modeling dependence of multivariate extremes” or
“the upper tail parameter of the Gumbel copula is smaller than that of the t-copula and therefore
the t-copula models stronger extremal dependence”. In what follows, we will shed some light on
these statements.

8.1. The tail dependence parameter. We start by defining the upper tail dependence param-

eter:10 given a 2-dimensional vector (X,Y ) with X
d
= Y and right endpoint xF of the underlying

distribution, assume that the following limit exists

λ = lim
u↑xF

P (Y > u | X > u) .

The parameter λ is called the upper tail dependence parameter. If λ > 0 then X and Y are
upper tail dependent and asymptotically independent otherwise. If X and Y do not have identical
distributions, one can also define λ via the copula C of (X,Y ):

λ = lim
u↑1

1 − 2u+ C(u, u)

1 − u
= 1 + lim

u↑1

C(u, u) − u

1 − u
,(8.1)

although it is not clear what one gains if one does this. In what follows, we will assume that X
d
= Y .

A sufficient condition for the existence of λ is regular variation of (f(X), f(Y )) for some increasing
transformation f ; see Section 8.2 for a description and Resnick [23, 24, 25] for a rigorous definition
of multivariate regular variation. It can be relaxed to the weaker notion of hidden regular variation,
see Heffernan and Resnick [12], Maulik and Resnick [16].

The quantity λ lies between zero (e.g. when X and Y are independent) and 1 (e.g. when
X = Y ). It is is not very informative as regards the joint extremal behavior of the vector (X,Y ).
In particular, it is restricted to the 2-dimensional case. Of course, in certain circumstances one can
calculate the dependence parameters λij in a pairwise fashion between the components Xi and Xj

of the vector X = (X1, . . . , Xd), but these numbers do not determine the (extremal) dependence
structure of the vector; for any set of upper tail dependence parameters one can find infinitely many
vectors with the same parameters λij .

11 Since the tail dependence parameter can be expressed only
by the copula without knowing the marginals, see (8.1), the value λ is not a genuine extreme value
concept which would have to take into account both the magnitude and the direction of extremes.

10The lower tail dependence parameter limu↓0 P (Y ≤ u | X ≤ u) is defined in an analogous way.
11Assuming a multivariate regularly varying vector X, this claim follows from the representation (8.4) of λ.
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8.2. The maximum domain of attraction (MDA) of the multivariate Fréchet distribu-
tion. The upper tail dependence parameter describes only one aspect of the problem of extremal
dependence, and it is restricted to the 2-dimensional case. By its definition, the parameter λ mea-
sures the relative deviation of the probabilities P (X > u, Y > u) = P ((X,Y ) ∈ u (1,∞]2) from the
probability P (X > u) = P ((X,Y ) ∈ u (1,∞] × [0,∞]) for large u. For an R

d-valued vector X it is
much more informative to consider the relative deviation of the probability P (X ∈ uA) from the
probability P (X ∈ uB) for any two sets A and B bounded away from zero and for large u. This
includes the 2-dimensional case with A = (1,∞]2, B = (1,∞] × [0,∞].

If B is fixed — it is common to choose the set

B = {x : |x| > 1} for a given norm | · |;(8.2)

a reasonable assumption (given the components of X have unbounded support) for conducting
extreme value analysis is to require that the limits

λB(A) = lim
u→∞

P (X ∈ uA)

P (X ∈ uB)
(8.3)

exist for smooth12 sets A bounded away from zero and are non-zero for some A 6= B. The quantities
λB(A) constitute a measure λB on the Borel sets of (R ∪ {∞,−∞})d\{0} and one necessarily has
λB(tA) = t−αλB(A), t > 0, for some α > 0, see Hult and Lindskog [13]. The condition (8.3) is
referred to as (multivariate) regular variation. It is slightly more general than the condition of the
same name used as the MDA condition for multivariate EVDs with Fréchet marginals Φα(x) =

e−x−α

, x > 0, where one assumes that X has non-negative components; see Resnick [23, 24, 25].
For the 2-dimensional vector (X,Y ) the upper tail dependence parameter λ is obtained by

specifying A = (1,∞]2 and B = (1,∞] × [0,∞], hence

λ = λ(1,∞]×[0,∞]((1,∞]2) .(8.4)

In contrast to the measure λB, this number gives a rather limited view at 2-dimensional extremes
which are required to assume values in (u,∞]2 for large u. For example, the existence of the limit
λ > 0 does not imply that multivariate extremes have a limit distribution under affine transforma-
tions, i.e., in general the distribution of (X,Y ) is not in the MDA of a 2-dimensional EVD because
the considered events {(X,Y ) ∈ (u,∞]2} for large u contain rather restricted information about
the location of extremes in R

2.13

If we specify the set B as in (8.2), a measure theoretic argument shows that multivariate regular
variation is equivalent to the existence of the limits

t−αG(S) = lim
u→∞

P (|X| > tu ,X/|X| ∈ S)

P (|X| > u)
, t > 0 ,

for smooth14 sets S ⊂ {s : |s| = 1} and a probability distribution G on {s : |s| = 1}. This
distribution is called the spectral measure of X. It has interpretation as the limit distribution of
the direction X/|X| of X, conditional on |X| > u as u→ ∞.

Relation (8.3) offers a näıve means for approximating probabilities of rare events. For example,
for positive t and an iid or weakly dependent stationary sample X1 = X, . . . ,Xn,

P (X ∈ tuA) ∼ t−αλB(A)P (|X| > u)

≈ t−bα λ̂B(A)n−1
n∑

i=1

I(u,∞)(|Xi|) .(8.5)

12This means that λB(∂A) = 0.
13This means that the sets (u,∞]2 do not generate the vague convergence relation (8.3) on the Borel σ-field of

[0,∞]2\{0}.
14This means that G(∂S) = 0.
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The right-hand expressions in (8.5) are estimators of the corresponding deterministic quantities.
This simple-minded approach is similar to the GPD approximation by peaks over thresholds in the
1-dimensional case. In addition to the 1-dimensional difficulties (trade-off between bias and variance
of the estimators depending on the threshold u) the complexity of estimation in higher dimensions
increases enormously since one also has to estimate the measure λB (or the corresponding spectral
measure).

8.3. Are copulas suitable for modeling multivariate extremes? Copulas generate any mul-
tivariate distribution. If one wants to make an honest analysis of multivariate extremes the distri-
butions used should be related to extreme value theory in some way. In Section 7.3 we have briefly
discussed extreme value copulas which correspond to multivariate EVDs. They are not appropri-
ate, unless one believes that the underlying data are generated by some extremal mechanism. For
financial or insurance data this assumption is questionable.

An alternative approach may be based on distributions in the MDA of an EVD. Then the
data are not necessarily created by an extremal mechanism; see Section 8.2. Such an approach
requires estimation of the measure λB or of the spectral measure G. These are not easy tasks, but
they reflect the difficulty of multivariate analyses in general. In particular, large sample sizes are
required. Statistical analyses have been performed and statistical theory has been provided in the
2- and 3-dimensional cases; see de Haan and Resnick [10], de Haan and de Ronde [11], Einmahl et
al. [22]. Applications of the statistical theory for copulas (see e.g. Genest and Rivest [9] or Song
et al. [26]) are also restricted to low-dimensional settings. The statistical problems mentioned will
not be swept away by using copulas.

In some parts of the literature the notion of copula domain of attraction has been coined, see
e.g. p. 315 in McNeil et al. [17]. Assume Y1, . . . ,Yn is an iid sample whose common distribution
is a copula C. Write Mn for the vector of component-wise maxima of those vectors and Cn for

the copula of Mn. Then C is in the copula domain of attraction of some extreme value copula C̃

if Cn(x1, . . . , xd) = Cn(x
1/n
1 , . . . , x

1/n
d ) converges weakly to C̃ (Cn

w
→ C̃). This notion is redundant

since it is equivalent to the concept of the MDA of a multivariate EVD. To see this, transform
the marginals of C e.g. to unit Fréchet ones and denote the resulting multivariate distribution by

F . Then Cn
w
→ C̃ is equivalent to the fact that F is in the MDA of a multivariate EVD with

unit Fréchet marginals; see Galambos [8], Theorem 5.2.3. There is no reason to introduce copula
domains of attraction; they only create theoretical confusion and one does not gain new information
about multivariate extremes.

9. How do copulas fit into the models of time series analysis and the theory of
stochastic processes?

Consider one of the standard time series models such as FARIMA, linear processes, GARCH, etc.;
see Brockwell and Davis [2, 3] and Mikosch [18] for definitions and properties of these models. Then
it is in general impossible to say anything about the distribution of the lagged vector (X1, . . . , Xn).
Well known exceptions are linear processes with Gaussian or infinite variance stable innovations.

In general we do not even know the marginal distributions of a GARCH or an ARMA process
and it can even be hard work to find asymptotic expressions for the tails of these distributions.
In the case of regularly varying tails for linear processes (including ARMA) under the weakest
possible conditions, see Mikosch and Samorodnitsky [20], and Basrak et al. [1] for power law tails
of GARCH processes.

The same statement can be made about any standard stochastic process such as Markov pro-
cess, martingale, diffusion, Lévy process, random measure, any interesting process which has been
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considered in the history of stochastic processes. Copulas completely fail15 in describing complex
space-time dependence structures. Their focus is on spatial dependence and the related statis-
tics (mostly parametric maximum likelihood) are aimed at iid data. It is contradictory that in
risk management, where one observes a lot of dependence through time, copulas are applied most
frequently.

10. Do copulas avoid the curse of dimensionality?

Since a copula is only a reformulation of the original distributional problem one cannot expect
that a copula does better than any other high-dimensional model. Copulas will usually even increase
the number of parameters to be fitted. For example, for the t-distribution one needs to estimate
the underlying correlation matrix Σ and the degrees of freedom ν > 0; see Section 7.2. For a model
generated by the t-copula one needs in addition to estimate the parameters of the underlying
marginal distributions.

If one has deeper insight into the underlying dependence structure of the data one can try to
reduce the dimension d of a parametric model (such as the Gaussian copula) by assuming functional
dependencies between the parameters (e.g. the covariances), or one might want to use dimension
reduction techniques. The problem of reducing dimensions for distributions related to multivariate
extreme value theory is an important unsolved problem: why should one deal with the extremes in
all components of a multivariate sample if some of the components dominate the others?

11. The copula fashion — the emperor’s new clothes?

Here are some final remarks which summarize my opinion about copulas.

• There is no particular advantage of using copulas when dealing with multivariate distribu-
tions. Instead one can and should use any multivariate distribution which is suited to the
problem at hand and which can be treated by statistical techniques.

• The marginal distributions and the copula of a multivariate distribution are inextricably
linked. The main selling point of the copula technology — separation of the copula (de-
pendence function) from the marginal distributions — leads to a biased view of stochastic
dependence, in particular when one fits a model to the data.

• Various copula models (Archimedean, t-, Gaussian, elliptical, extreme value) are mostly
chosen because they are mathematically convenient; the rationale for their applications is
murky.

• Copulas are considered as an alternative to Gaussian models in a non-Gaussian world. Since
copulas generate any distribution the class is too big to be understood and to be useful.

• There is little statistical theory for copulas. Sensitivity studies of estimation procedures
and goodness-of-fit tests for copulas are unknown. It is unclear whether a good fit of the
copula of the data yields a good fit to the distribution of the data.

• Copulas do not contribute to a better understanding of multivariate extremes.
• Copulas do not fit into the existing framework of stochastic processes and time series anal-

ysis; they are essentially static models and are not useful for modeling dependence through
time.
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