Numerical bounds for the distribution of the maximum of a one- or two-parameter process.

Cécile MERCADIER

EVA: August 18, 2005

University of Toulouse
Laboratory of Statistics and Probability
Introduction
 Goal and motivations
 Known Results

Integral Formula
 Formula statement
 Numerical procedure
 Numerical Results
 Comments

Two parameters
 Equivalents
 Extension of the integral formula
 Numerical Procedure and Results
Goal and motivations

X stochastic process, $M_T = \sup_{t \in [0, T]} X_t$.

Goal:
Numerical estimation of $\mathbb{P}(M_T \geq u)$ for every u.

Motivations:
- LRT in non identifiable mixture:
 - Definition of a test,
 - Computation of its power.
- Estimation of the persistence exponent:
 \[
 q(u) = \lim_{T \to +\infty} -\frac{1}{T} \ln \mathbb{P}(M_T < u) .
 \]
- Computation of the significative height of wave.
Known Results

- Comparison Lemma, *Plackett (1954).*
- Some Processes based on the Brownian motion.
- Some stationary Gaussian processes (periodic covariance, OU).
- Rice’s upper bound:

\[
P(M_T \geq u) \leq P(X_0 \geq u) + E(N_u),
\]

where \(N_u \) denotes the number of \(u \)-upcrossings.

- Extreme values:

\[
P(M_T \leq x) \sim_{T \to +\infty} \exp(-\exp(x/a_T + b_T)).
\]

- Rice series, *Azaïs and Wschebor (2002):*

\[
P(M_T \geq u) = P(X_0 \geq 0) + \sum_{m=1}^{+\infty} (-1)^{m+1} \frac{E(U_u^{[m]} \mathbb{1}_{X_0 < u})}{m!}.
\]
Statement of the integral formula

Framework:
X Gaussian with C^1 sample paths and $\sigma_T^2 = \inf_{t \in [0,T]} \text{Var}(X_t) > 0$.

Time of first passage:

$$\tau_u = \inf \{ t \in (0, T), X_s < X_t, \forall s < t, X_t = u \}.$$

Formula:

$$\mathbb{P}(M_T \geq u) = \mathbb{P}(X_0 \geq u) + \mathbb{P}(\tau_u \in (0, T))$$

$$= \mathbb{P}(X_0 \geq u) + \int_0^T \mathbb{E}(X_t' \mathbb{1}_{\{X_s < u, \forall s < t\}} / X_t = u) p_X(u) dt.$$

Remark:

Rychlik (1987) gives density of τ_u.

Numerical bounds for the distribution of the maximum
Numerical procedure

MAGP tool-box gives bounds for $\mathbb{P}(M_T \geq u)$

\textit{rind.m}: WAFO tool-box, Brodtkorb et al. (2000).

Arguments: (T, u, r).

Lower bound: For \(\{t_1, \ldots, t_m\} \) a subdivision of \([0, T]\),

$$1 - \mathbb{P}(X_{t_1} < u, \ldots, X_{t_m} < u).$$

Upper bound: From integral formula

$$\mathbb{P}(X_0 \geq u) + \int_0^T \mathbb{E}(X_t^+ \mathbb{1}_{\{X_{s_k} < u, (s_k)_{k=1,\ldots,m} \in (0,t)\}}) / X_t = u) p_{X_t}(u) dt.$$
Numerical Results

Example: Gaussian process with the arguments $(T, 1, \exp(-t^2/2))$

Application of the Rice’s upper bound

Estimation de $P(M_T > 1)$
Numerical Results

Example: Gaussian process with the arguments \((T, 1, \exp(-t^2/2))\)

Application of the Rice series
Numerical Results

Example: Gaussian process with the arguments \((T, 1, \exp(-t^2/2))\)

Application of the MAGP tool-box

![Graph showing estimated probability of \(M_T > 1\) as a function of \(T\).]
Comments

Error of the procedure:
For $T \leq 25$ and $u \geq 1$ upper bounded by 10^{-3}.

Stationary and non stationary frameworks.

Non differentiable sample paths.

Estimation of the persistence exponent:

$$q(u) = \lim_{T \to +\infty} -\frac{1}{T} \ln \mathbb{P} (M_T < u).$$

Example, $r(t) = (\cosh(t))^{-1}$
- $q(0) \geq 0.25$ Li-Shao (2002).
- $q(0) \geq 0.365$ Dembo, Poonen, Shao and Zeitouni (2002).
- $q(0) \geq 0.371$
Equivalents when \(u \) is large

Framework: \(M_S = \sup_{t \in S} X(t) \),
\(X \) Gaussian process defined on \(S \subset \mathbb{R}^2 \) compact.

References: Adler (1981); Adler and Taylor (2005).

Notations: \(\lambda(S) \) Lebesgue measure of \(S \); \(\Delta = \text{Var}(X'(t)) \).

- **One term:**
 \[
 \frac{\lambda(S)|\det(\Delta)|^{\frac{1}{2}}}{(2\pi)^{\frac{3}{2}}}ue^{-\frac{u^2}{2}} + o\left(u e^{-\frac{u^2}{2}}\right)
 \]

- **Two terms:**
 \[
 \forall \delta > 0 : \quad 1 - \Phi(u) + \left[\frac{T^2|\det(\Delta)|^{\frac{1}{2}}}{(2\pi)^{\frac{3}{2}}} + \frac{T(\Delta_{11}^{\frac{1}{2}} + \Delta_{22}^{\frac{1}{2}})}{2\pi}\right] e^{-\frac{u^2}{2}} + o\left(e^{-(1+\delta)\frac{u^2}{2}}\right)
 \]
Extension of the integral formula

Integral formula:

↩️ Study on the border of S,

↩️ Study of the interior of S.
Extension of the integral formula

Integral formula:
↬ Study on the border of S,
↬ Study of the interior of S.

Past of t:
$$\Gamma_t = \{ s, s_2 \leq t_2 \}$$

Record points:
$$\{ t, X(s) < X(t), \forall s \in \Gamma_t \}.$$
Extension of the integral formula

Integral formula:
✓ Study on the border of S,
✓ Study of the interior of S.

Crossings:
On the border: $X(t) = u$,
In the interior: $\left(X(t), \frac{\partial X}{\partial t_1}(t)\right) = (u, 0)$.

Numerical bounds for the distribution of the maximum
Extension of the integral formula

Integral formula:

⇔ Study on the border of S,

⇔ Study of the interior of S.

First explicit upper bound in the "unit-speed" case:

$$\mathbb{P} \left(M_{[0,T]} \geq u \right) \leq$$

$$1 - \Phi(u) + \frac{T}{\pi} \exp \left(-\frac{u^2}{2} \right) + \frac{T^2}{(2\pi)^{\frac{3}{2}}} \left[c \varphi\left(\frac{u}{c} \right) + u \Phi\left(\frac{u}{c} \right) \right] \exp \left(-\frac{u^2}{2} \right)$$

with $c = \left(\text{Var} \left(X_{20} \right) - 1 \right)^{\frac{1}{2}}$
Numerical Procedure and Results

Upper bound: Integral formula and discretization
Lower bound: discretization

rind.m: WAFO tool-box, Brodtkorb et al. (2000)
Numerical Procedure and Results

Example: $S = [0, T]^2$ and arguments $(10, u, \exp(-\|s-t\|^2/2))$

Application of equivalents
Numerical Procedure and Results

Example: \(S = [0, T]^2 \) and arguments \((10, u, \exp(-\|s - t\|^2/2))\)

Application of the MAGP tool-box

Numerical bounds for the distribution of the maximum
Conclusion and perspectives

Conclusion

⇝ Effective tool of computation.

⇝ Geometry of the problem.

Perspectives

⇝ rind.m and simultaneous statistics.

⇝ Numerical extension $n = 3$.

⇝ Explicit upper bound for all n.