Space time analysis of extreme values

Gabriel Huerta

Department of Mathematics and Statistics
University of New Mexico
Albuquerque, NM, 87131, U.S.A.
http://www.stat.unm.edu/~ghuerta

4th EVA conference, Gothenburg, August 15-19 2005

aJoint paper with Bruno Sanso, University of California, Santa Cruz, U.S.A
Summary Points

- Models for non-stationary extreme values.
Summary Points

- Models for non-stationary extreme values.
- Space-time formulation for the GEV distribution.
Summary Points

• Models for non-stationary extreme values.
• Space-time formulation for the GEV distribution.
• Dynamic Linear Model (DLM) framework for temporal components.
Summary Points

- Models for non-stationary extreme values.
- Space-time formulation for the GEV distribution.
- Dynamic Linear Model (DLM) framework for temporal components.
- Spatial elements through process convolutions.
Summary Points

- Models for non-stationary extreme values.
- Space-time formulation for the GEV distribution.
- Dynamic Linear Model (DLM) framework for temporal components.
- Spatial elements through process convolutions.
- Model fitting via customized Markov chain Monte Carlo (MCMC) methods.
Summary Points

• Models for non-stationary extreme values.
• Space-time formulation for the GEV distribution.
• Dynamic Linear Model (DLM) framework for temporal components.
• Spatial elements through process convolutions.
• Model fitting via customized Markov chain Monte Carlo (MCMC) methods.
• Extreme values of ozone levels in Mexico City.
Summary Points

- Models for non-stationary extreme values.
- Space-time formulation for the GEV distribution.
- Dynamic Linear Model (DLM) framework for temporal components.
- Spatial elements through process convolutions.
- Model fitting via customized Markov chain Monte Carlo (MCMC) methods.
- Extreme values of ozone levels in Mexico City.
- Extreme values of rainfall in Venezuela.
Figure 1: Daily maximum values of ozone levels.
Extreme Value Modeling
The traditional approach is based on the *Generalized Extreme Value* (GEV) distribution function:

\[
H(z) = \exp \left\{ - \left[1 + \xi \left(\frac{z - \mu}{\sigma} \right) \right]^{-1/\xi} \right\}
\]
Extreme Value Modeling

- The traditional approach is based on the Generalized Extreme Value (GEV) distribution function:

\[H(z) = \exp \left\{ - \left[1 + \xi \left(\frac{z - \mu}{\sigma} \right) \right]^{-1/\xi} \right\} \]

\[-\infty < \mu < \infty; \sigma > 0; -\infty < \xi < \infty. \]
The traditional approach is based on the *Generalized Extreme Value* (GEV) distribution function:

\[
H(z) = \exp \left\{ - \left[1 + \xi \left(\frac{z - \mu}{\sigma} \right) \right]^{1/\xi} \right\}
\]

- \(-\infty < \mu < \infty; \sigma > 0; -\infty < \xi < \infty. \)
- \(+\) denotes the positive part of the argument.
Extreme Value Modeling

- The traditional approach is based on the Generalized Extreme Value (GEV) distribution function:

\[
H(z) = \exp \left\{ - \left[1 + \xi \left(\frac{z - \mu}{\sigma} \right) \right]^{\frac{-1}{\xi}} \right\}
\]

- \(-\infty < \mu < \infty; \sigma > 0; -\infty < \xi < \infty.\)
- \(+\) denotes the positive part of the argument.
- \(\xi > 0\) Fréchet family; \(\xi < 0\) the Weibull family;
 \(\xi \rightarrow 0\) Gumbel family.
The book by Coles (2001) presents a very clear account of statistical inference using the GEV.
The book by Coles (2001) presents a very clear account of statistical inference using the GEV.

A Bayesian analysis can be performed by imposing a prior on \((\mu, \sigma, \xi)\) as in Coles and Tawn (1996).
• The book by Coles (2001) presents a very clear account of statistical inference using the GEV.

• A Bayesian analysis can be performed by imposing a prior on \((\mu, \sigma, \xi)\) as in Coles and Tawn (1996).

• Alternatively, models for exceedances over a high threshold had been proposed.
• The book by Coles (2001) presents a very clear account of statistical inference using the GEV.

• A Bayesian analysis can be performed by imposing a prior on \((\mu, \sigma, \xi)\) as in Coles and Tawn (1996).

• Alternatively, models for exceedances over a high threshold had been proposed.

• This leads into the Generalized Pareto Distributions and Point processes approaches. (Pickands 1971 and 1975).
• The book by Coles (2001) presents a very clear account of statistical inference using the GEV.

• A Bayesian analysis can be performed by imposing a prior on \((\mu, \sigma, \xi)\) as in Coles and Tawn (1996).

• Alternatively, models for exceedances over a high threshold had been proposed.

• This leads into the Generalized Pareto Distributions and Point processes approaches. (Pickands 1971 and 1975).

• These ideas had been developed into a Bayesian hierarchical modeling framework. Smith et al. (1997); Assuncao et al. (2004); Casson and Coles (1999); Gilleland et al. (2004).
Extremes for Non-Stationary Data
Extremes for Non-Stationary Data

- Coles (2001) mentions several possibilities.
Extremes for Non-Stationary Data

- Coles (2001) mentions several possibilities.
- Approach: $z_1, z_2, \ldots, z_m; z_t \sim \text{GEV}(\mu_t, \sigma, \xi)$.
Extremes for Non-Stationary Data

• Coles (2001) mentions several possibilities.

• Approach: \(z_1, z_2, \ldots, z_m; z_t \sim GEV(\mu_t, \sigma, \xi) \).

• Deterministic functions: \(\mu_t = \beta_0 + \beta_1 t; \mu_t = \beta_0 + \beta_1 + \beta_2 t + \beta_3 t^2 \) or \(\mu_t = \beta_0 + \beta_1 X_t \).
Extremes for Non-Stationary Data

- Coles (2001) mentions several possibilities.
- Approach: $z_1, z_2, \ldots, z_m; z_t \sim GEV(\mu_t, \sigma, \xi)$.
- Deterministic functions: $\mu_t = \beta_0 + \beta_1 t; \mu_t = \beta_0 + \beta_1 + \beta_2 t + \beta_3 t^2$ or $\mu_t = \beta_0 + \beta_1 X_t$.
- Non-stationarity can also be included for the shape and/or scale parameters: $\sigma_t = exp(\beta_0 + \beta_1 t); \xi_t = \beta_0 + \beta_1 t$ or $\xi_t = \beta_0 + \beta_1 t + \beta_2 t^2$.
Extremes for Non-Stationary Data

- Coles (2001) mentions several possibilities.

- Approach: \(z_1, z_2, \ldots, z_m; \ z_t \sim GEV(\mu_t, \sigma, \xi). \)

- Deterministic functions: \[\mu_t = \beta_0 + \beta_1 t; \quad \mu_t = \beta_0 + \beta_1 + \beta_2 t + \beta_3 t^2 \] or \(\mu_t = \beta_0 + \beta_1 X_t. \)

- Non-stationarity can also be included for the shape and/or scale parameters: \[\sigma_t = \exp(\beta_0 + \beta_1 t); \quad \xi_t = \beta_0 + \beta_1 t \] or \(\xi_t = \beta_0 + \beta_1 t + \beta_2 t^2. \)

- We propose the use of Dynamic Linear Models (DLM) as in West and Harrison (1997) to model the parameter changes in time.
GEV distribution with DLM’s
GEV distribution with DLM's

- For $z_1, z_2, \ldots, z_m, z_t \sim GEV(\mu_t, \sigma, \xi)$

$$H_t(z_t) = \exp \left\{ -[1 + \xi(z_t - \mu_t)/\sigma]_{+}^{-1/\xi} \right\}$$

$$\mu_t = \theta_t + \epsilon_t; \quad \epsilon_t \sim N(0, V)$$

$$\theta_t = \theta_{t-1} + \omega_t; \quad \omega_t \sim N(0, \tau V)$$
For $z_1, z_2, \ldots, z_m, z_t \sim \text{GEV}(\mu_t, \sigma, \xi)$

$$H_t(z_t) = \exp \left\{ -\left[1 + \xi (z_t - \mu_t)/\sigma \right]^{1/\xi} \right\}$$

$$\mu_t = \theta_t + \epsilon_t; \quad \epsilon_t \sim N(0, V)$$

$$\theta_t = \theta_{t-1} + \omega_t; \quad \omega_t \sim N(0, \tau V)$$

Parameters ($t = 0$) are assumed apriori independent.
GEV distribution with DLM’s

- For \(z_1, z_2, \ldots, z_m, z_t \sim GEV(\mu_t, \sigma, \xi) \)

\[
H_t(z_t) = \exp \left\{ -\left[1 + \xi(z_t - \mu_t)/\sigma\right]^{1/\xi} \right\}
\]

\[
\mu_t = \theta_t + \epsilon_t; \quad \epsilon_t \sim N(0, V)
\]

\[
\theta_t = \theta_{t-1} + \omega_t; \quad \omega_t \sim N(0, \tau V)
\]

- Parameters \((t = 0)\) are assumed apriori independent.

- \(\pi(\sigma) \sim LN(m_\sigma, s_\sigma) \); \(\pi(\xi) \sim N(m_\xi, s_\xi) \).

- \(\theta_0 \sim N(m_0, C_0) \); \(V \sim IG(\alpha_v, \beta_v) \); \(\tau \sim IG(\alpha_\tau, \beta_\tau) \).
GEV distribution with DLM’s

- For $z_1, z_2, \ldots, z_m, z_t \sim GEV(\mu_t, \sigma, \xi)$

 $$H_t(z_t) = \exp \left\{ -[1 + \xi(z_t - \mu_t)/\sigma]_+^{-1/\xi} \right\}$$

 $$\mu_t = \theta_t + \epsilon_t; \quad \epsilon_t \sim N(0, V)$$

 $$\theta_t = \theta_{t-1} + \omega_t; \quad \omega_t \sim N(0, \tau V)$$

- Parameters ($t = 0$) are assumed apriori independent.

- $\pi(\sigma) \sim LN(m_\sigma, s_\sigma); \pi(\xi) \sim N(m_\xi, s_\xi)$.

- $\theta_0 \sim N(m_0, C_0); V \sim IG(\alpha_v, \beta_v); \tau \sim IG(\alpha_\tau, \beta_\tau)$.

- μ_t follows a first order polynomial DLM with state vector θ_t.
General DLM \((F_t, V, G_t, W)\)
General DLM \((F_t, V, G_t, W) \)

\[
\begin{align*}
\mu_t &= F_t' \theta_t + \epsilon_t; \quad \epsilon_t \sim N(0, V) \\
\theta_t &= G_t \theta_{t-1} + \omega_t; \quad \omega_t \sim N(0, W)
\end{align*}
\]
General DLM \((F_t, V, G_t, W) \)

\[
\begin{align*}
\mu_t &= F_t' \theta_t + \epsilon_t; \quad \epsilon_t \sim N(0, V) \\
\theta_t &= G_t \theta_{t-1} + \omega_t; \quad \omega_t \sim N(0, W)
\end{align*}
\]

- \(\theta_t \) is a \(k \times 1 \) state vector;
- \(F_t \) is a \(k \times 1 \) regressor vector;
- \(G_t \) is a \(k \times k \) evolution matrix;
- \(V \) is an observational variance and
- \(W \) is a \(k \times k \) evolution covariance matrix.
Posterior Inference for DLM-GEV models
Posterior Inference for DLM-GEV models

- Define \(Z = (z_1, z_2, \ldots, z_m) \); \(\mu = (\mu_1, \mu_2, \ldots, \mu_m) \) and \(\theta = (\theta_1, \theta_2, \ldots, \theta_m) \).
Posterior Inference for DLM-GEV models

- Define $Z = (z_1, z_2, \ldots, z_m)$; $\mu = (\mu_1, \mu_2, \ldots, \mu_m)$ and $\theta = (\theta_1, \theta_2, \ldots, \theta_m)$.

- $p(\mu_t | z_t, \sigma, \theta_t, V); t = 1, \ldots, m$ is sampled with a Metropolis-Hastings step.
Posterior Inference for DLM-GEV models

- Define $Z = (z_1, z_2, \ldots, z_m)$; $\mu = (\mu_1, \mu_2, \ldots, \mu_m)$ and $\theta = (\theta_1, \theta_2, \ldots, \theta_m)$.

- $p(\mu_t|z_t, \sigma, \theta_t, V); t = 1, \ldots, m$ is sampled with a Metropolis-Hastings step.

- $p(\sigma|Z, \mu, \xi)$ and $p(\xi|Z, \mu, \sigma)$ are also sampled via M-H.
Posterior Inference for DLM-GEV models

- Define $Z = (z_1, z_2, \ldots, z_m)$; $\mu = (\mu_1, \mu_2, \ldots, \mu_m)$ and $\theta = (\theta_1, \theta_2, \ldots, \theta_m)$.

- $p(\mu_t|z_t, \sigma, \theta_t, V); t = 1, \ldots, m$ is sampled with a Metropolis-Hastings step.

- $p(\sigma|Z, \mu, \xi)$ and $p(\xi|Z, \mu, \sigma)$ are also sampled via M-H.

- V and W are sampled from Inverse Gamma/Wishart distributions.
Posterior Inference for DLM-GEV models

• Define $Z = (z_1, z_2, \ldots, z_m); \mu = (\mu_1, \mu_2, \ldots, \mu_m)$ and $\theta = (\theta_1, \theta_2, \ldots, \theta_m)$.

• $p(\mu_t | z_t, \sigma, \theta_t, V); t = 1, \ldots, m$ is sampled with a Metropolis-Hastings step.

• $p(\sigma | Z, \mu, \xi)$ and $p(\xi | Z, \mu, \sigma)$ are also sampled via M-H.

• V and W are sampled from Inverse Gamma/Wishart distributions.

• For θ_t, we apply Forward Filtering Backward Simulation (FFBS) as in Carter and Kohn or Frühwirth-Schnatter (1994).
Forward in time, we obtain $p(\theta_t | D_t, V, W); t = 1, 2, \ldots, m$
- Forward in time, we obtain \(p(\theta_t|D_t, V, W); t = 1, 2, \ldots, m \)

- Backwards in time, we sample \(p(\theta_m|D_m, V, W) \) and then, recursively we sample from \(p(\theta_t|\theta_{t+1}, D_m, V, W); t = m - 1, \ldots, 1 \)
- Forward in time, we obtain $p(\theta_t|D_t, V, W); t = 1, 2, \ldots, m$

- Backwards in time, we sample $p(\theta_m|D_m, V, W)$ and then, recursively we sample from $p(\theta_t|\theta_{t+1}, D_m, V, W); t = m - 1, \ldots, 1$

- A similar approach is discussed by Gaetan and Grigoletto (2004) *Extremes*.
- Forward in time, we obtain $p(\theta_t|D_t, V, W); t = 1, 2, \ldots, m$

- Backwards in time, we sample $p(\theta_m|D_m, V, W)$ and then, recursively we sample from $p(\theta_t|\theta_{t+1}, D_m, V, W); t = m - 1, \ldots, 1$

* A similar approach is discussed by Gaetan and Grigoletto (2004) *Extremes*.

- Dynamics for scale/shape parameters. Sequential updating with *Particle Filters*.
– Forward in time, we obtain \(p(\theta_t|D_t, V, W); t = 1, 2, \ldots, m \)

– Backwards in time, we sample \(p(\theta_m|D_m, V, W) \) and then, recursively we sample from \(p(\theta_t|\theta_{t+1}, D_m, V, W); t = m - 1, \ldots, 1 \)

• A similar approach is discussed by Gaetan and Grigoletto (2004) *Extremes.*

– Dynamics for scale/shape parameters. Sequential updating with *Particle Filters.*

– Observation variance equals zero.
– Forward in time, we obtain \(p(\theta_t|D_t, V, W); t = 1, 2, \ldots, m \)

– Backwards in time, we sample \(p(\theta_m|D_m, V, W) \) and then, recursively we sample from \(p(\theta_t|\theta_{t+1}, D_m, V, W); t = m - 1, \ldots, 1 \)

• A similar approach is discussed by Gaetan and Grigoletto (2004) *Extremes*.

 – Dynamics for scale/shape parameters. Sequential updating with *Particle Filters*.

 – Observation variance equals zero.

 – No space or space-time structure.
Figure 2: Posterior mean for μ_t, and 90% probability interval for θ_t; 1990-2002 data
Detecting Trends
Detecting Trends

- Is there an overall decreasing trend in the maxima of the previous figure?
Detecting Trends

- Is there an overall decreasing trend in the maxima of the previous figure?

- One possibility is to add an extra model parameter and estimate incremental growth.
Detecting Trends

- Is there an overall decreasing trend in the maxima of the previous figure?

- One possibility is to add an extra model parameter and estimate incremental growth.

- Alternatively, we considered a regression model on μ_t with time-varying intercept but a constant slope:
Detecting Trends

• Is there an overall decreasing trend in the maxima of the previous figure?

• One possibility is to add an extra model parameter and estimate incremental growth.

• Alternatively, we considered a \textit{regression} model on μ_t with time-varying intercept but a constant slope:

$$ z_t \sim GEV(\mu_t, \sigma, \xi) $$
$$ \mu_t = \theta_t + \beta(t - \bar{t}) + \epsilon_t; \quad \epsilon_t \sim N(0, V) $$
$$ \theta_t = \theta_{t-1} + \omega_t; \quad \omega_t \sim N(0, \tau V) $$
where $\bar{t} = (1/T)(\sum_{t=1}^{T} t)$ and β represents change of level per unit of time.
where \(\bar{t} = \frac{1}{T} \left(\sum_{t=1}^{T} t \right) \) and \(\beta \) represents change of level per unit of time.

- For model fitting, notice that:
where \(\bar{t} = (1/T)(\sum_{t=1}^{T} t) \) and \(\beta \) represents change of level per unit of time.

- For model fitting, notice that:
 - Conditional on \(\theta_t \), the difference \(\mu_t - \theta_t \) follows a regression model.
 - Conditional on \(\beta \), \(\mu_t - \beta(t - \bar{t}) \) follows a first order polynomial DLM.
where $\bar{t} = \frac{1}{T}(\sum_{t=1}^{T} t)$ and β represents change of level per unit of time.

• For model fitting, notice that:

 – Conditional on θ_t, the difference $\mu_t - \theta_t$ follows a regression model.

 – Conditional on β, $\mu_t - \beta(t - \bar{t})$ follows a first order polynomial DLM.

 – This defines a *Gibbs sampler* scheme that produces posterior samples for β and θ_t.
where $\bar{t} = (1/T)(\sum_{t=1}^{T} t)$ and β represents change of level per unit of time.

- For model fitting, notice that:
 - Conditional on θ_t, the difference $\mu_t - \theta_t$ follows a regression model.
 - Conditional on β, $\mu_t - \beta(t - \bar{t})$ follows a first order polynomial DLM.
 - This defines a *Gibbs sampler* scheme that produces posterior samples for β and θ_t.

- In fact, $Pr(\beta < 0|Z) \approx 0.79$ indication of a decreasing trend.
Figure 3: Posterior distribution for β; ozone data 1990-2002.
Maxima monthly rainfall values in Venezuela
Maxima monthly rainfall values in Venezuela

- Measurements were taken at the Maiquetía station located at the Simon Bolivar Airport near Caracas (Y_t).
Maxima monthly rainfall values in Venezuela

- Measurements were taken at the Maiquetía station located at the Simon Bolivar Airport near Caracas (Y_t).

- The monthly North Atlantic Oscillation (NAO) index is considered as a covariate (X_t).
Maxima monthly rainfall values in Venezuela

• Measurements were taken at the Maiquetía station located at the Simon Bolivar Airport near Caracas (Y_t).

• The monthly North Atlantic Oscillation (NAO) index is considered as a covariate (X_t).

• The model is:

$$Y_t \sim GEV(\mu_t, \sigma, \xi)$$

$$\mu_t = \theta_t + \beta_t X_t + \epsilon_t$$

$$\theta_t = \theta_{t-1} + \omega_{1t}$$

$$\beta_t = \beta_{t-1} + \omega_{2t}$$
Figure 4: Maxima monthly rainfall values in Venezuela and NAO index

(a) Time

0 40 80 120

(b) Time

−4 −2 0 2 4

NAO index

Time

Rainfall
Figure 5: Posterior median and 90% probability intervals for β_t
Space-time model with Process Convolutions
Space-time model with Process Convolutions

- Consider data $y_t = (y_{1,t}, \ldots, y_{n_t,t})'$ which is recorded at sites s_1, \ldots, s_{n_t}.
Space-time model with Process Convolutions

- Consider data \(y_t = (y_{1,t}, \ldots, y_{n,t})' \) which is recorded at sites \(s_1, \ldots, s_{n_t} \).

- A possible model (Higdon 2002) is

 \[
 y_t = K^t x_t + \epsilon_t \\
 x_t = x_t + \nu_t
 \]
Space-time model with Process Convolutions

- Consider data $y_t = (y_{1,t}, \ldots, y_{n_t,t})'$ which is recorded at sites s_1, \ldots, s_{n_t}.

- A possible model (Higdon 2002) is

$$y_t = K^t x_t + \epsilon_t$$
$$x_t = x_t + \nu_t$$

K^t is a $n_t \times \kappa$ matrix given by

$$K^t_{ij} = k(s_i - \omega_j), \ t = 1, \ldots, m$$

$$\epsilon_t \sim N(0, \sigma^2_{\epsilon}), \ t = 1, \ldots, m$$

$$\nu_t \sim N(0, \sigma^2_{\nu}), \ t = 1, \ldots, m$$

$$x_1 \sim N(0, \sigma^2_x I_{\kappa})$$
- $k(\cdot - \omega_j)$ defines a smoothing kernel.

- $\omega_1, \ldots, \omega_\kappa$ are spatial sites where kernels are centered.

- x_t is interpreted as a **latent process**

\[
y(s, t) = \sum_j k(s - \omega_j)x_{jt}
\]
• $k(\cdot - \omega_j)$ defines a smoothing kernel.

• $\omega_1, \ldots, \omega_\kappa$ are spatial sites where kernels are centered.

• x_t is interpreted as a latent process

$$y(s, t) = \sum_j k(s - \omega_j)x_{jt}$$

• Possible kernels are:

 – **Gaussian**: $k(s) \propto \exp \left\{ -\|s\|^2/2\eta \right\}$ ($\eta > 0$).

 – **Exponential**: $k(s) \propto \exp \left\{ -\|s\|/\eta \right\}$ ($\eta > 0$).

 – **Spherical**: $k(s) \propto \left(1 - \frac{\|s\|^3}{r^3} \right)^3 I[s \leq r]$.
A Spatio-Temporal Model for the GEV distribution
A Spatio-Temporal Model for the GEV distribution

- Assume $y_{s,t} \sim GEV(\mu_{s,t}, \sigma, \xi); s = 1, \ldots, S, t = 1, \ldots, m$

$$H_{s,t}(y_{s,t}; \mu_{s,t}, \xi, \sigma) = \exp \left\{ - \left[1 + \xi \left(\frac{y_{s,t} - \mu_{s,t}}{\sigma} \right) \right]^{-1/\xi} \right\}$$
A Spatio-Temporal Model for the GEV distribution

- Assume \(y_{s,t} \sim GEV(\mu_{s,t}, \sigma, \xi); \ s = 1, \ldots, S, \ t = 1, \ldots, m \)

\[
H_{s,t}(y_{s,t}; \mu_{s,t}, \xi, \sigma) = \exp \left\{ - \left[1 + \xi \left(\frac{y_{s,t} - \mu_{s,t}}{\sigma} \right) \right]^{1/\xi} \right\}
\]

- For each \(t, \mu_t = (\mu_{1,t}, \mu_{2,t}, \ldots, \mu_{S,t})' \). \((\sigma, \xi)\) constant in time.
A Spatio-Temporal Model for the GEV distribution

- Assume $y_{s,t} \sim GEV(\mu_{s,t}, \sigma, \xi); \ s = 1, \ldots, S, \ t = 1, \ldots, m$

$$H_{s,t}(y_{s,t}; \mu_{s,t}, \xi, \sigma) = \exp \left\{ - \left[1 + \xi \left(\frac{y_{s,t} - \mu_{s,t}}{\sigma} \right) \right]^{1/\xi} \right\}$$

- For each t, $\mu_t = (\mu_{1,t}, \mu_{2,t}, \ldots, \mu_{S,t})'$. (σ, ξ) constant in time.

- We define a DLM on μ_t:

$$\mu_t = K'\theta_t + \epsilon_t;$$

$$\theta_t = \theta_{t-1} + \nu_t$$
• $\theta_t = (\theta_{t,1}, \ldots, \theta_{t,\kappa})'$, $\epsilon_t = (\epsilon_{t,1}, \ldots, \epsilon_{t,\kappa})'$, $\nu_t = (\nu_{t,1}, \ldots, \nu_{t,\kappa})'$.
\[\theta_t = (\theta_{t,1}, \ldots, \theta_{t,\kappa})', \ \epsilon_t = (\epsilon_{t,1}, \ldots, \epsilon_{t,\kappa})', \ \nu_t = (\nu_{t,1}, \ldots, \nu_{t,\kappa})'. \]

\[\epsilon_t \sim N(0, \sigma^2_\epsilon I_{\kappa \times \kappa}); \ \nu_t \sim N(0, \sigma^2_\nu I_{\kappa \times \kappa}) \]
• \(\theta_t = (\theta_{t,1}, \ldots, \theta_{t,\kappa})' \), \(\epsilon_t = (\epsilon_{t,1}, \ldots, \epsilon_{t,\kappa})' \), \(\nu_t = (\nu_{t,1}, \ldots, \nu_{t,\kappa})' \).

• \(\epsilon_t \sim N(0, \sigma^2_\epsilon I_{\kappa \times \kappa}) \); \(\nu_t \sim N(0, \sigma^2_\nu I_{\kappa \times \kappa}) \)

• With a Gaussian kernel, \(K' \) is an \(S \times \kappa \) matrix with entries:

\[
K'_{ij} = K(s_i - \omega_j);
\]

\[
K(s_i - \omega_j) \propto \exp(-d||s_i - \omega_j||^2/2)
\]

• \(s_i \) is the position of station \(i \).

• \(\omega_j \) is the position of the kernel \(j = 1, \ldots, \kappa \).
\(\theta_t = (\theta_{t,1}, \ldots, \theta_{t,\kappa})', \epsilon_t = (\epsilon_{t,1}, \ldots, \epsilon_{t,\kappa})', \nu_t = (\nu_{t,1}, \ldots, \nu_{t,\kappa})' \).

\(\epsilon_t \sim N(0, \sigma_\epsilon^2 I_{\kappa \times \kappa}); \nu_t \sim N(0, \sigma_\nu^2 I_{\kappa \times \kappa}) \)

With a Gaussian kernel, \(K' \) is an \(S \times \kappa \) matrix with entries:

| \(K'_{ij} = K(s_i - \omega_j); \) \\
| \(K(s_i - \omega_j) \propto \exp(-d||s_i - \omega_j||^2/2) \) |

- \(s_i \) is the position of station \(i \).
- \(\omega_j \) is the position of the kernel \(j = 1, \ldots, \kappa \).
- \(d \) is a range parameter; \(d = c\phi; 1/2 < c < 2; \phi = \text{knot distance} \).
• 1st stage priors: \(\pi(\sigma) \sim LN(\mu_\sigma, s_\sigma) \) and \(\pi(\xi) \sim N(\mu_\xi, s_\xi) \) are th
• 1st stage priors: $\pi(\sigma) \sim LN(\mu_\sigma, s_\sigma)$ and $\pi(\xi) \sim N(\mu_\xi, s_\xi)$ are th

• 2nd stage priors: $\theta_0 \sim N(0, \sigma_\theta^2 I_{K\times K})$; $1/\sigma_\epsilon^2 \sim Gamma(\alpha_\epsilon, \beta_\epsilon)$; $1/\sigma_\nu^2 \sim Gamma(\alpha_\nu, \beta_\nu)$ and $1/\sigma_\theta^2 \sim Gamma(\alpha_\theta, \beta_\theta)$.
• 1st stage priors: $\pi(\sigma) \sim LN(\mu_\sigma, s_\sigma)$ and $\pi(\xi) \sim N(\mu_\xi, s_\xi)$ are th

• 2nd stage priors: $\theta_0 \sim N(0, \sigma_\theta^2 I_{\kappa \times \kappa})$; $1/\sigma_\epsilon^2 \sim Gamma(\alpha_\epsilon, \beta_\epsilon)$; $1/\sigma_\nu^2 \sim Gamma(\alpha_\nu, \beta_\nu)$ and $1/\sigma_\theta^2 \sim Gamma(\alpha_\theta, \beta_\theta)$.

• The log-likelihood is equal to

$$l(\theta) = -mS \log \sigma - \sum_{t=1}^{m} \sum_{s=1}^{S} \left[1 + \xi \left(\frac{z_{s,t} - \mu_{s,t}}{\sigma} \right) \right]^{-1/\xi} +$$

$$- \left(1 + \frac{1}{\sigma} \right) \sum_{t=1}^{m} \sum_{s=1}^{S} \log \left[1 + \xi \left(\frac{y_{s,t} - \mu_{s,t}}{\sigma} \right) \right] +$$
Posterior Inference and Simulation for Space-Time Model
Posterior Inference and Simulation for Space-Time Model

- Follows similar lines as for the GEV time model.
Posterior Inference and Simulation for Space-Time Model

- Follows similar lines as for the GEV time model.
- The full conditional for $\mu_{t,s}$, σ and ξ are sampled through a Metropolis-Hastings step.
Posterior Inference and Simulation for Space-Time Model

- Follows similar lines as for the GEV time model.
- The full conditional for $\mu_{t,s}$, σ and ξ are sampled through a Metropolis-Hastings step.
- θ_t is sampled with Forward Filtering Backward Simulation.
Posterior Inference and Simulation for Space-Time Model

- Follows similar lines as for the GEV time model.

- The full conditional for $\mu_{t,s}$, σ and ξ are sampled through a Metropolis-Hastings step.

- θ_t is sampled with Forward Filtering Backward Simulation.

- The full conditionals of σ^2_ϵ; σ^2_ν and σ^2_θ are sampled with Inverse Gamma distributions.
Posterior Inference and Simulation for Space-Time Model

- Follows similar lines as for the GEV time model.
- The full conditional for $\mu_{t,s}$, σ and ξ are sampled through a Metropolis-Hastings step.
- θ_t is sampled with Forward Filtering Backward Simulation.
- The full conditionals of σ_c^2; σ_ν^2 and σ_θ^2 are sampled with Inverse Gamma distributions.
- The range parameter d is assumed fixed, $d = c\phi$.
Figure 6: RAMA stations, kernel and interpolation grid positions.
Figure 7: Daily maxima for 1999 and posterior estimates of 0.5 quantile.

AZC

XAL

TPN

TAX
Figure 8: Posterior estimate of the 0.5 quantile of the space-time GEV distribution for a 50×50 resolution grid.
Figure 9: $u_t = G(y_t)$ diagnostics based on leaving one station out
Discussion
Discussion

- GEV distribution with a location parameter that varies in time and space.
Discussion

- GEV distribution with a location parameter that varies in time and space.
- Inference for space-time quantiles is straightforward.
Discussion

• GEV distribution with a location parameter that varies in time and space.

• Inference for space-time quantiles is straightforward.

• Extension: space-time changes for scale and shape parameters.
Discussion

- GEV distribution with a location parameter that varies in time and space.
- Inference for space-time quantiles is straightforward.
- Extension: space-time changes for scale and shape parameters.
 - Station by station analysis of Mexico City data provided no grounds for such extension.
Discussion

- GEV distribution with a location parameter that varies in time and space.

- Inference for space-time quantiles is straightforward.

- Extension: space-time changes for scale and shape parameters.
 - Station by station analysis of Mexico City data provided no grounds for such extension.

- Extension: consider time-varying or spatial dependent thresholds.
Discussion

- GEV distribution with a location parameter that varies in time and space.
- Inference for space-time quantiles is straightforward.
- Extension: space-time changes for scale and shape parameters.
 - Station by station analysis of Mexico City data provided no grounds for such extension.
- Extension: consider time-varying or spatial dependent thresholds.