A Spatial Bayesian Hierarchical Model for a Precipitation Return Levels Map

Daniel Cooley1,2

Douglas Nychka2, Philippe Naveau2,3

1Department of Applied Mathematics, University of Colorado at Boulder
2Geophysical Statistics Project, National Center for Atmospheric Research
3Laboratoire des Sciences du Climat et de l’Environnement, IPSL-CNRS, Gif-sur-Yvette, Fr
Project Background

Goal: To produce a map which describes potential extreme precipitation for Colorado’s Front Range.

- Part of a larger NCAR project on flooding
- 1973 NOAA/NWS Precipitation Atlas is currently used
 - no uncertainty estimates
 - outdated extremes techniques
 - 30 more years of data
- Current NWS effort to produce updated maps
 - maps produced for two US regions (not Colorado)
 - using RFA methodology of Hoskings and Wallis
- Precipitation atlases provide return levels measures
Data: 56 weather stations, 12-53 years of data/station, Apr 1 - Oct 31, 24 hour precipitation measurements
Weather, Climate and Spatial Extremes

- Modeling observations.
- Characterizing spatial dependence in the data.
- Short-range dependence.

- Modeling return levels.
- Characterizing dependence in the distributions.
- Longer-range dependence.

Max Daily Prcp 2000

<table>
<thead>
<tr>
<th>Location</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ft. Collins</td>
<td>2.3 cm</td>
</tr>
<tr>
<td>Greeley</td>
<td>4.8 cm</td>
</tr>
<tr>
<td>Boulder</td>
<td>3.6 cm</td>
</tr>
<tr>
<td>Denver</td>
<td>4.6 cm</td>
</tr>
</tbody>
</table>

25 Year Return Level

<table>
<thead>
<tr>
<th>Location</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ft. Collins</td>
<td>9.4 cm</td>
</tr>
<tr>
<td>Greeley</td>
<td>6.1 cm</td>
</tr>
<tr>
<td>Boulder</td>
<td>8.6 cm</td>
</tr>
<tr>
<td>Denver</td>
<td>8.4 cm</td>
</tr>
</tbody>
</table>
Modeling Climatological Extremes

- We use a POT approach, and assume exceedances over a threshold u are described by a $GPD(\sigma_u, \xi)$.

- We assume the climatological extreme precipitation is characterized by a latent process – σ_u and ξ are functions of location.

- Return levels:

$$z_r(x) = u(x) + \frac{\sigma_u(x)}{\xi(x)} \left[(rn_y\zeta_u(x))^{\xi(x)} - 1 \right].$$

- n_y is the number of observations in a year.
- $\zeta_u(x)$ is the probability an observation exceeds u.
Model Goals

- Utilize extreme value theory (GPD)
- Pool the data from the stations into one model – different from RFA
- Model should have spatial coherence
- Should utilize available covariates – elevation and mean Apr-Oct precipitation
- Should be flexible enough to be able to compare models
- Produce measures of uncertainty

Spatial Bayesian Hierarchical Models:
Independent 3-layer (data, process, prior) models for threshold exceedances and exceedance rates.
Let $Z_j(x_i)$ be the precipitation amount recorded at the station located at x_i on day j. We assume that precipitation events $Z_j(x_i)$ which exceed a threshold $u = .45$ inches are GPD, whose parameters depend on the station’s location.

$$P\{Z_j(x_i) - u > z|Z_j(x_i) > u\} = \left(1 + \frac{\xi(x_i)z}{\exp \phi(x_i)}\right)^{-1/\xi(x_i)}$$
Exceedances Model - Process Level

\(\phi(x) \): Modeled with standard geophysical methods \(\rightarrow \) Gaussian process

\[
\mu_\phi(x) = f(\alpha_\phi, \text{covariates}(x)) = \alpha_{\phi,0} + \alpha_{\phi,1}(\text{elevation}) \text{ (for example)}
\]

\[
k_\phi(x, x') = \beta_{\phi,0} \ast \exp(-\beta_{\phi,1} \ast ||x - x'||_2)
\]
Exceedances Model - Process Level

\(\phi(x) \): Modeled with standard geophysical methods \(\rightarrow \) Gaussian process

\[
\mu_\phi(x) = f(\alpha_\phi, \text{covariates}(x)) \\
= \alpha_{\phi,0} + \alpha_{\phi,1}(\text{elevation}) \quad \text{(for example)}
\]

\[
k_\phi(x,x') = \beta_{\phi,0} \ast \exp(-\beta_{\phi,1} \ast \|x - x'|_2)
\]

\(\xi(x) \): Modeled in three ways

1. as a single value \(\xi \) for the whole region
2. as separate values \(\xi_{\text{mtn}}, \xi_{\text{plains}} \)
3. as a Gaussian process as above
Exceedances Model - Priors

Priors for $\alpha_{\phi,\cdot}$: Non-informative

$$\alpha_{\phi,\cdot} \sim \text{Unif}(-\infty, \infty)$$
Exceedances Model - Priors

Priors for \(\alpha_{\phi} \): Non-informative

\[
\alpha_{\phi} \sim Unif(-\infty, \infty)
\]

Priors for \(\beta_{\phi} \): Based on empirical information – difficult to elicit prior information

\[
\beta_{\phi,0} \sim Unif(0.005, 0.03) \\
\beta_{\phi,1} \sim Unif(1, 6)
\]
Model Schematic

\[\phi(x) \xrightarrow{} Z_j(x) \xrightarrow{} \xi(x) \]
Model Schematic

\[\phi(x) \rightarrow Z_j(x) \rightarrow \xi(x) \]

Prior \(\alpha_\phi \)

Prior \(\beta_\phi \)

Prior \(\alpha_\xi \)

Prior \(\beta_\xi \)
Model Schematic

Model assumes that the observations are temporally and spatially independent (conditional on the stations’ parameters).
Climate Space

Problem: Difficult to obtain convergence for $\beta_{\phi,1}$.

Ion/lat space

longitude

latitude

-106.0 -105.0

37 38 39 40

Ft. Collins
Greeley
Boulder
Denver
Colo Spgs
Pueblo

climate space

trans msp

trans elev

1 2 3 4

2 4 6 8

1500 2000 2500 3000 3500

13
Simulation experiment: Parameter bias least if threshold is chosen in the middle of the precision interval.

Threshold chosen at .45 inches for all stations
⇒ \(\zeta_u(\mathbf{x}) \) modeled spatially
⇒ Exceedance Rate Model
Exceedance Rate Model

Data Layer: Assume each station’s number of exceedances N_i is a binomial random variable with m_i trials each with a probability of $\zeta(x_i)$

Process Layer: Assume $\text{logit}(\zeta(x))$ is a Gaussian process, with mean and covariance

$$\mu_\zeta(x) = f_\zeta(\alpha_\zeta, \text{covariates}(x))$$

$$\text{Cov}(\zeta(x), \zeta(x')) = k_\zeta(x, x') = \beta_{\zeta,0} \ast \exp(-\beta_{\zeta,1} \ast ||x - x'||_2)$$

Priors:

- $\alpha_\zeta \sim \text{Unif}(-\infty, \infty)$,
- $\beta_{\zeta,0} \sim \text{Unif}(0.005, .2)$
- $\beta_{\zeta,1} \sim \text{Unif}(1, 6)$
Model Schematic for Return Levels

Exceedances Model

\[\phi(x) \rightarrow z_T(x) \rightarrow \xi(x) \]

\[\alpha_\phi \quad \beta_\phi \quad \alpha_\xi \quad \beta_\xi \]

Prior

Exceedance Rate Model

\[\alpha_\zeta \quad \beta_\zeta \]

Prior

Prior

Prior
Interpolation Method

Draw values from $[\phi(x) | \phi(x_1), \ldots, \phi(x_{56}), \alpha_\phi, \beta_\phi]$.
Exceedance Models Tested

<table>
<thead>
<tr>
<th>Baseline Model</th>
<th>\bar{D}</th>
<th>p_D</th>
<th>DIC</th>
</tr>
</thead>
</table>
| Model 0: $\phi = \phi$
$\xi = \xi$ | 112264.2 | 2.0 | 112266.2 |

<table>
<thead>
<tr>
<th>Models in Latitude/Longitude Space</th>
<th>\bar{D}</th>
<th>p_D</th>
<th>DIC</th>
</tr>
</thead>
</table>
| Model 1: $\phi = \phi + \epsilon_\phi$
$\xi = \xi$ | 98533.2 | 33.8 | 98567.0 |
| Model 2: $\phi = \alpha_0 + \alpha_1(msp) + \epsilon_\phi$
$\xi = \xi$ | 98532.3 | 33.8 | 98566.1 |
| Model 3: $\phi = \alpha_0 + \alpha_1(elev) + \epsilon_\phi$
$\xi = \xi$ | 98528.8 | 30.4 | 98559.2 |
| Model 4: $\phi = \alpha_0 + \alpha_1(elev) + \alpha_2(msp) + \epsilon_\phi$
$\xi = \xi$ | 98529.7 | 29.6 | 98559.6 |

<table>
<thead>
<tr>
<th>Models in Climate Space</th>
<th>\bar{D}</th>
<th>p_D</th>
<th>DIC</th>
</tr>
</thead>
</table>
| Model 5: $\phi = \phi + \epsilon_\phi$
$\xi = \xi$ | 98524.3 | 27.3 | 98551.6 |
| Model 6: $\phi = \alpha_0 + \alpha_1(elev) + \epsilon_\phi$
$\xi = \xi$ | 98526.0 | 25.8 | 98551.8 |
| **Model 7:** $\phi = \alpha_0 + \alpha_1(elev) + \epsilon_\phi$
$\xi = \xi_{\text{mtn}}, \xi_{\text{plains}}$ | **98524.0** | **26.0** | **98550.0** |
| Model 8: $\phi = \alpha_0 + \alpha_1(elev) + \epsilon_\phi$
$\xi = \xi + \epsilon_\xi$ | 98518.5 | 79.9 | 98598.4 |

$\epsilon \sim \text{MVN}(0, \Sigma)$ where $[\sigma]_{i,j} = \beta_{.0} \exp(-\beta_{.1} |x_i - x_j|)$
Posterior Distributions

phi

Density

<table>
<thead>
<tr>
<th>Value</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>0.05</td>
</tr>
<tr>
<td>3.5</td>
<td>0.05</td>
</tr>
<tr>
<td>3.6</td>
<td>0.10</td>
</tr>
<tr>
<td>3.7</td>
<td>0.15</td>
</tr>
<tr>
<td>3.8</td>
<td>0.05</td>
</tr>
<tr>
<td>3.9</td>
<td>0.05</td>
</tr>
</tbody>
</table>

xi

Density

<table>
<thead>
<tr>
<th>Value</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.4</td>
</tr>
<tr>
<td>0.10</td>
<td>0.8</td>
</tr>
<tr>
<td>0.15</td>
<td>0.0</td>
</tr>
</tbody>
</table>

beta_0 (Sill)

Density

<table>
<thead>
<tr>
<th>Value</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
</tr>
</tbody>
</table>

beta_1 (Range)

Density

<table>
<thead>
<tr>
<th>Value</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>0.010</td>
<td>0.4</td>
</tr>
<tr>
<td>0.020</td>
<td>0.8</td>
</tr>
<tr>
<td>0.030</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Spatial Coherence of ϕ
Traditional vs Climate Space

25-year Return Level Point Estimate

Longitude

-106.0
-105.0
37 38 39 40

Latitude

37 38 39 40

Ft. Collins
Greeley
Boulder
Denver
Colo Spgs
Pueblo
Results for Model 3: Return Level Uncertainty
• Renormalized *annual max* data.

• Shows very short range dependence in annual max observations.

• Like to apply the madogram to GPD data.
Conclusions and Future Work

- Used a Bayesian hierarchical model to produce maps which characterize *climatological* extreme precipitation.
- Method accounts for uncertainty due to both parameter estimation and interpolation.
- Dealt with issue of low precision by modeling exceedance rate spatially.
- Performed spatial analysis in a non-traditional climate space.
- Extend idea to other data (ozone levels).
- Model for all duration periods.