On the extremal behavior of random variables observed at renewal times

Bojan Basrak, University of Zagreb

Workshop on Extremes in Space and Time
Copenhagen, May 31, 2013
based on the joint work with
Drago Špoljarić, University of Zagreb

The problem

observations at renewal times

Main assumptions

- $\quad\left(\left(X_{n}, Y_{n}\right)\right)_{n}$ are iid random vectors, with $Y_{n} \geq 0$
- $\quad X_{i} \in \operatorname{MDA}(G)$ (enough to study $G=\Lambda$ or Φ_{α})

For the sequence of interarrival times $\left(Y_{i}\right)$ we study renewal process

$$
\tau(t)=\inf \left\{k: Y_{1}+\cdots+Y_{k}>t\right\}
$$

and partial maxima

$$
M(t)=M^{\tau}(t)=\max _{i=1, \ldots, \tau(t)} X_{i}
$$

Berman and Barndorff-Nielsen in 1960's did the same for more general random variables $\tau(t)$.

Related results

an incomplete list

- Shantikumar and Sumita (1983)
- Anderson (1987)
- Silvestrov and Teugels $(1998,2004)$
- Meerschaert and Scheffler (2004)

Meerschaert and Stoev (2009)
Pancheva, Mitov, Mitov (2009)

Our goal is to move beyond (or rather below) the maximum and understand the asymptotics for all upper order statistics of observations X_{i} until $\tau(t)$ and relax some assumption on the dependence between $\left(X_{n}\right)$ and $\left(Y_{n}\right)$

Since $X_{i} \in \operatorname{MDA}(G)$ there exist functions $\tilde{a}(t)$ and $\tilde{b}(t)$ such that

$$
t P\left(\frac{X_{1}-\tilde{b}(t)}{\tilde{a}(t)}>x\right) \rightarrow-\log G(x)
$$

but for iid (X_{i}) this is known to be equivalent to convergence of point processes

$$
N_{t}=\sum_{i=1}^{\infty} \delta_{\left(\frac{i}{t}, X_{t, i}\right)}
$$

towards

$$
N \sim \operatorname{PRM}\left(L e b \times \mu_{G}\right)
$$

where $X_{t, i}$ represent appropriate affine transformations of the observations and the state space depends on MDA but can be written as

$$
[0, \infty) \times \mathbb{E}
$$

We actually sometimes need more general time normalization, and therefore we consider

$$
N_{t}=\sum_{i=1}^{\infty} \delta_{\left(\frac{i}{g(t)}, X_{t, i}\right)}
$$

where

$$
X_{t, i}=\frac{X_{i}-\tilde{b}(g(t))}{\tilde{a}(g(t))}
$$

for a function $g \nearrow \infty$.

Although, often

$$
g(t)=t
$$

For simplicity we write $a(t)=\tilde{a}(g(t))$ and $b(t)=\tilde{b}(g(t))$.
Clearly

$$
\left\{\frac{M(t)-b(t)}{a(t)} \leq x\right\}=\left\{\max _{i \leq \tau(t)} \frac{X_{i}-b(t)}{a(t)} \leq x\right\}=\left\{\max _{\frac{i}{g(t)} \frac{\leq \pi(t)}{g(t)}} \frac{X_{i}-b(t)}{a(t)} \leq x\right\}
$$

Therefore

$$
P\left(\frac{M(t)-b(t)}{a(t)} \leq x\right)=P\left(\left.N_{t}\right|_{\left[0, \frac{\tau(t)}{g(t)}\right] \times(x, \infty]}=0\right)
$$

On the rhs above we have an object of the form

$$
\left.N_{t}\right|_{\left[0, Z_{t}\right] \times \mathbb{E}}
$$

Since $N_{t} \xrightarrow{d} N$, if this happens jointly with

$$
Z_{t} \xrightarrow{d} Z
$$

one could expect

$$
\left.\left.N_{t}\right|_{\left[0, Z_{t}\right] \times \mathbb{E}} \xrightarrow{d} N\right|_{[0, Z] \times \mathbb{E}}
$$

Lemma

Assume

$$
\left(N_{t}, Z_{t}\right) \xrightarrow{d}(N, Z)
$$

as $t \rightarrow \infty$ and

$$
P(N(\{Z\} \times \mathbb{E})>0)=0
$$

then

$$
\left.\left.N_{t}\right|_{\left[0, Z_{t}\right] \times \mathbb{E}} \xrightarrow{d} N\right|_{[0, Z] \times \mathbb{E}}
$$

as $t \rightarrow \infty$.

The finite mean case

Assume $\mu=E Y_{1}<\infty$, the by SLLN

$$
\frac{\tau(t)}{t} \xrightarrow{\text { a.s. }} \frac{1}{\mu},
$$

and therefore for $g(t)=t$

$$
\left(N_{t}, \frac{\tau(t)}{t}\right) \xrightarrow{d}\left(N, \frac{1}{\mu}\right)
$$

Remark i) dependence between X_{i} 's and Y_{i} 's is irrelevant ii) all upper order statistics are covered iii) Y_{i}^{\prime} s do not have to be iid actually

Example

Erdös and Rényi 1970
Note
\triangleright runs of heads $X_{i}^{\prime} \sim \operatorname{Geom}(p)$
\triangleright runs of tails $Y_{i}^{\prime} \sim \operatorname{Geom}(q)$
\triangleright initial $Y_{0}^{\prime} \sim \operatorname{Geom}(q)$ but on $0,1, \ldots$
We study

$$
L_{n}=M_{\tau(n)}=\max \left\{X_{i}^{\prime}: 1 \leq i \leq \tau(n)\right\}
$$

where

$$
\tau(n)=\inf \left\{k: Y_{0}^{\prime}+\sum_{i=1}^{k}\left(X_{i}^{\prime}+Y_{i}^{\prime}\right)>n\right\}
$$

Although geometric rv's do not belong to any MDA, still they are not far since we can always write

$$
X_{i}^{\prime}=\left\lfloor X_{i}\right\rfloor+1
$$

for an iid sequence

$$
X_{i} \sim \operatorname{Exp}(-\ln p)
$$

which satisfies $X_{i} \in \operatorname{MDA}(\Lambda)$

Set $Y_{0}=Y_{0}^{\prime}$ and

$$
Y_{i}=X_{i}^{\prime}+Y_{i}^{\prime}
$$

clearly corresponding renewal process satisfies

$$
\frac{\tau(t)}{t} \xrightarrow{\text { a.s. }} \frac{1}{\mu}
$$

with

$$
\mu=E Y_{1}=\frac{1}{p q}
$$

Finally

$$
M^{\tau}(t)-\log _{1 / p}(n p q) \leq L_{n}-\log _{1 / p}(n p q) \leq M^{\tau}(t)+1-\log _{1 / p}(n p q)
$$

and since the lhs and the rhs converge to G and $G+1$ by our results, it follows that

$$
L_{n}-\log _{1 / p}(n p q)
$$

is tight in distribution and not far from G as well cf. EKM, but much more can be said.

The infinite mean case

As before assume

- $\quad\left(\left(X_{n}, Y_{n}\right)\right)_{n}$ are iid random vectors, with $Y_{n} \geq 0$
- $\quad X_{i} \in \operatorname{MDA}(G)$ (enough to study $G=\Lambda$ or Φ_{α})
- $\quad Y_{i} \sim \operatorname{RV}(\alpha), \alpha \in(0,1)$

Therefore for $\left(d_{n}\right)$ such that

$$
n P\left(Y_{1}>d_{n}\right) \rightarrow 1
$$

we have

$$
d_{n}^{-1}\left(Y_{1}+\cdots+Y_{n}\right) \xrightarrow{d} S_{\alpha}
$$

Moreover

$$
S_{n}(s)=\frac{1}{d_{n}} \sum_{i=1}^{\lfloor n s\rfloor} Y_{i} \xrightarrow{d} S_{\alpha}(s), \quad s \geq 0
$$

in $D[0, \infty)$ with J_{1} metric, for a positive α-stable process $S_{\alpha}(\cdot)$

It is known that

$$
S_{\alpha}(s)=\sum_{T_{i} \leq s} P_{i}
$$

where

$$
\sum_{i} \delta_{T_{i}, P_{i}} \sim \operatorname{PRM}\left(L e b \times d\left(-u^{-\alpha}\right)\right)
$$

It will be useful to study S_{t} indexed over all $t \in[0, \infty)$, with normalization

$$
d_{t}=d_{\lfloor t\rfloor} .
$$

One can also find an asymptotic inverse \tilde{d} of d such that

$$
d(\widetilde{d}(t)) \sim \widetilde{d}(d(t)) \sim t
$$

see Seneta (1976) for instance.

Recall

$$
\tau(t)=\inf \left\{k: Y_{1}+\cdots+Y_{k}>t\right\} .
$$

thus

$$
\begin{aligned}
& \frac{\tau(t)}{\tilde{d}(t)}=\frac{1}{\tilde{d}(t)} \inf \left\{k: Y_{1}+\cdots+Y_{k}>t\right\} \\
& \quad=\inf \left\{s: \frac{1}{t} \sum_{i=1}^{\lfloor\tilde{d}(t) s\rfloor} Y_{i}>1\right\} \approx S_{\tilde{d}(t)}^{\leftarrow}(1)
\end{aligned}
$$

since $d(\widetilde{d}(t)) \sim t$.

It is known that

$$
S_{t}^{\leftarrow}(1) \xrightarrow{d} W_{\alpha}:=S_{\alpha}^{\leftarrow(1)}
$$

where W_{α} has Mittag-Leffler distribution. This is even true on the level of stoch. processes. Since $\tilde{d}(t) \rightarrow \infty$ also

$$
\frac{\tau(t)}{\tilde{d}(t)} \xrightarrow{d} W_{\alpha} .
$$

Suppose X_{i} and Y_{i} are independent. Then jointly

$$
N_{t} \xrightarrow{d} N \sim \operatorname{PRM}(L e b \times \mu)
$$

and

$$
\frac{\tau(t)}{\tilde{d}(t)} \xrightarrow{d} W_{\alpha},
$$

with N independent of W_{α}.

In particular

$$
P\left(\frac{M(t)-b(t)}{a(t)} \leq x\right)=P\left(\left.N_{t}\right|_{\left[0, \frac{\tau(t)}{d(t)}\right] \times(x, \infty]}=0\right)
$$

as $t \rightarrow \infty$ converges to

$$
P\left(\left.N\right|_{\left[0, W_{\alpha}\right] \times(x, \infty]}=0\right)=\cdots=E\left(G(x)^{W_{\alpha}}\right)
$$

cf. Berman (1962).

Dependence between $\boldsymbol{X}_{\boldsymbol{i}}$ and $\boldsymbol{Y}_{\boldsymbol{i}}$

Define

$$
U_{X}=\frac{1}{1-F_{X}} \text { and } U_{Y}=\frac{1}{1-F_{Y}}
$$

Note that $\widetilde{d}(t) \sim U_{Y}(t)$. One can describe the limit quite precisely even under some sorts of dependence between observations and interarrival times.
\triangleright Asymptotic tail independence

$$
\lim _{x \rightarrow \infty} P\left(X_{1}>U_{X}^{\leftarrow}(x) \mid Y_{1}>U_{Y}^{\leftarrow}(x)\right)=0
$$

\triangleright Asymptotic full tail dependence

$$
\lim _{x \rightarrow \infty} P\left(X_{1}>U_{X}^{\leftarrow}(x) \mid Y_{1}>U_{Y}^{\leftarrow}(x)\right)=1
$$

Now we need to include interarrival times in the point processes and define

$$
N_{t}=\sum_{i=1}^{\infty} \delta_{\left(\frac{i}{d(t)}, X_{t, i}, Y_{t, i}\right)}
$$

with

$$
Y_{t, i}=\frac{Y_{i}}{t}
$$

Tail independence

In this case (see Thm 6.2.3 in de Haan \& Ferreira)

$$
\widetilde{d}(t) P\left(\left(X_{t, i}, Y_{t, i}\right) \in \cdot\right) \xrightarrow{v} \mu_{0}(\cdot)
$$

for a measure μ_{0} concentrated on the axes and given as

$$
\mu_{0}\left(([-\infty, x] \times[0, y])^{c}\right)=e^{-x}+y^{-\alpha} .
$$

if $X_{1} \in \operatorname{MDA}(\Lambda)$ or as

$$
\mu_{0}\left(([0, x] \times[0, y])^{c}\right)=x^{-\beta}+y^{-\alpha} .
$$

if $X_{1} \in \operatorname{MDA}\left(\Phi_{\beta}\right)$

Recall that

$$
\widetilde{d}(t) P\left(\left(X_{t, i}, Y_{t, i}\right) \in \cdot\right) \xrightarrow{v} \mu_{0}(\cdot)
$$

is necessary and sufficient for

$$
N_{t} \xrightarrow{d} N,
$$

where N is $\operatorname{PRM}\left(\lambda \times \mu_{0}\right)$

Similarly as before we obtain the joint convergence

$$
\left(N_{t}, \frac{\tau(t)}{\tilde{d}(t)}\right) \xrightarrow{d}\left(N, W_{\alpha}\right)
$$

with $W_{\alpha}=$ the first hitting time of the level 1 by a positive α-stable process S_{α} (note $\tau(t) / \tilde{d}(t)$ is just a transformation of N_{t})

Moreover, if

$$
N=\sum_{i} \delta_{T_{i}, P_{i}^{X}, P_{i}^{Y}}
$$

then

$$
N^{\prime}=\sum_{i} \delta_{T_{i}, P_{i}^{X}} \text { and } W_{\alpha}
$$

are independent.

Therefore

$$
P\left(\frac{M(t)-b(t)}{a(t)} \leq x\right)=P\left(\left.N_{t}^{\prime}\right|_{\left[0, \frac{\tau(t)}{d(t)}\right] \times(x, \infty]}=0\right)
$$

as $t \rightarrow \infty$ converges to

$$
E\left(G(x)^{W_{\alpha}}\right)
$$

as before.

Full dependence

```
de Haan & Resnick 1977
```

Again

$$
N_{t} \xrightarrow{d} N,
$$

where N is $\operatorname{PRM}\left(\lambda \times \mu_{0}\right)$ with μ_{0} concentrated on the set

$$
\begin{aligned}
& C=\left\{(u, v) \in(-\infty, \infty) \times(0, \infty): e^{-u}=v^{-\alpha}\right\}, \quad \text { if } G_{1}=\Lambda \\
& C=\left\{(u, v) \in(0, \infty) \times(0, \infty): u^{-\beta}=v^{-\alpha}\right\}, \quad \text { if } G_{1}=\Phi_{\beta} .
\end{aligned}
$$

and

$$
\mu_{0}(\{(u, v):(u, v) \in C, v>y\})=y^{-\alpha},
$$

for $y>0$.

Again

$$
\left(N_{t}, \frac{\tau(t)}{\tilde{d}(t)}\right) \xrightarrow{d}\left(N, W_{\alpha}\right)
$$

However, N^{\prime} and W_{α} are not independent, just the opposite since if $X_{i}, Y_{i} \in$ $\operatorname{MDA}(\alpha)$ for instance, then

$$
N=\delta_{T_{i}, P_{i}, P_{i}}
$$

Conclusion

\triangleright point processes approach turns out to be simple and very efficient all upper order statistics are covered extremal process can be understood as well

