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The problem
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observations at renewal times
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Main assumptions

I ((Xn, Yn))n are iid random vectors, with Yn ≥ 0

I Xi ∈ MDA(G) (enough to study G = Λ or Φα)
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For the sequence of interarrival times (Yi) we study renewal process

τ (t) = inf{k : Y1 + · · · + Yk > t}.

and partial maxima

M(t) = M τ(t) = max
i=1,...,τ(t)

Xi ,

Berman and Barndorff-Nielsen in 1960’s did the same for more general
random variables τ (t).
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Related results
an incomplete list

I Shantikumar and Sumita (1983)

I Anderson (1987)

I Silvestrov and Teugels (1998, 2004)

I Meerschaert and Scheffler (2004)

I Meerschaert and Stoev (2009)

I Pancheva, Mitov, Mitov (2009)
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Our goal is to move beyond (or rather below) the maximum and understand
the asymptotics for all upper order statistics of observations Xi until τ (t)
and relax some assumption on the dependence between (Xn) and (Yn)
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Since Xi ∈MDA(G) there exist functions ã(t) and b̃(t) such that

tP

(
X1 − b̃(t)
ã(t)

> x

)
→ − logG(x),

but for iid (Xi) this is known to be equivalent to convergence of point
processes

Nt =
∞∑
i=1

δ( it ,Xt,i)

towards
N ∼ PRM(Leb× µG)

where Xt,i represent appropriate affine transformations of the observations
and the state space depends on MDA but can be written as

[0,∞)× E
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We actually sometimes need more general time normalization, and therefore
we consider

Nt =
∞∑
i=1

δ( i
g(t) ,Xt,i)

where

Xt,i =
Xi − b̃(g(t))

ã(g(t))
.

for a function g ↗∞.

Although, often
g(t) = t
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For simplicity we write a(t) = ã(g(t)) and b(t) = b̃(g(t)).

Clearly{
M(t)− b(t)

a(t)
≤ x

}
=

{
max
i≤τ(t)

Xi − b(t)
a(t)

≤ x

}
=

{
max
i

g(t)≤
τ(t)
g(t)

Xi − b(t)
a(t)

≤ x

}

Therefore

P

(
M(t)− b(t)

a(t)
≤ x

)
= P

(
Nt

∣∣
[0, τ(t)g(t) ]×(x,∞]

= 0

)
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On the rhs above we have an object of the form

Nt

∣∣
[0,Zt]×E

Since Nt
d→ N , if this happens jointly with

Zt
d→ Z

one could expect

Nt

∣∣
[0,Zt]×E

d→ N
∣∣
[0,Z]×E
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Lemma

Assume
(Nt, Zt)

d−→ (N,Z)

as t→∞ and
P (N({Z} × E) > 0) = 0

then
Nt|[0,Zt]×E

d→ N |[0,Z]×E
as t→∞.
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vague convergence of restricted point process
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The finite mean case
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Assume µ = EY1 <∞, the by SLLN

τ (t)

t
a.s.→ 1

µ
,

and therefore for g(t) = t

(Nt,
τ (t)

t
)

d→ (N,
1

µ
)

Remark i) dependence between Xi’s and Yi’s is irrelevant ii) all upper order
statistics are covered iii) Y ′i s do not have to be iid actually
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Example
Erdös and Rényi 1970

Note

B runs of heads X ′i ∼ Geom(p)

B runs of tails Y ′i ∼ Geom(q)

B initial Y ′0 ∼ Geom(q) but on 0, 1, . . .

We study
Ln = Mτ(n) = max{X ′i : 1 ≤ i ≤ τ (n)}

where

τ (n) = inf{k : Y ′0 +
k∑
i=1

(X ′i + Y ′i ) > n}
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longest run of heads
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Although geometric rv’s do not belong to any MDA, still they are not far
since we can always write

X ′i = bXic + 1

for an iid sequence
Xi ∼ Exp(− ln p)

which satisfies Xi ∈ MDA(Λ)
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Set Y0 = Y ′0 and
Yi = X ′i + Y ′i

clearly corresponding renewal process satisfies

τ (t)

t
a.s.→ 1

µ

with

µ = EY1 =
1

pq
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Finally

M τ(t)− log1/p(npq) ≤ Ln − log1/p(npq) ≤M τ(t) + 1− log1/p(npq)

and since the lhs and the rhs converge to G and G + 1 by our results, it
follows that

Ln − log1/p(npq)

is tight in distribution and not far from G as well cf. EKM, but much more
can be said.
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The infinite mean case
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As before assume

I ((Xn, Yn))n are iid random vectors, with Yn ≥ 0

I Xi ∈ MDA(G) (enough to study G = Λ or Φα)

I Yi ∼ RV(α), α ∈ (0, 1)
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Therefore for (dn) such that

nP (Y1 > dn)→ 1

we have
d−1n (Y1 + · · · + Yn)

d→ Sα

Moreover

Sn(s) =
1

dn

bnsc∑
i=1

Yi
d→ Sα(s), s ≥ 0

in D[0,∞) with J1 metric, for a positive α-stable process Sα(·)
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It is known that

Sα(s) =
∑
Ti≤s

Pi

where ∑
i

δTi,Pi ∼ PRM(Leb× d(−u−α))
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It will be useful to study St indexed over all t ∈ [0,∞), with normalization

dt = dbtc .

One can also find an asymptotic inverse d̃ of d such that

d(d̃(t)) ∼ d̃(d(t)) ∼ t

see Seneta (1976) for instance.
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Recall
τ (t) = inf{k : Y1 + · · · + Yk > t}.

thus

τ (t)

d̃(t)
=

1

d̃(t)
inf{k : Y1 + · · · + Yk > t}

= inf{s :
1

t

bd̃(t)sc∑
i=1

Yi > 1} ≈ S←
d̃(t)

(1)

since d(d̃(t)) ∼ t.
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It is known that
S←t (1)

d→ Wα := S←α (1)

where Wα has Mittag-Leffler distribution. This is even true on the level of
stoch. processes. Since d̃(t)→∞ also

τ (t)

d̃(t)

d→ Wα .
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Suppose Xi and Yi are independent. Then jointly

Nt
d→ N ∼ PRM(Leb× µ)

and
τ (t)

d̃(t)

d→ Wα ,

with N independent of Wα.
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In particular

P

(
M(t)− b(t)

a(t)
≤ x

)
= P

(
Nt

∣∣
[0, τ(t)

d̃(t)
]×(x,∞]

= 0

)
as t→∞ converges to

P
(
N
∣∣
[0,Wα]×(x,∞]

= 0
)

= · · · = E
(
G(x)Wα

)
cf. Berman (1962).
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Dependence between Xi and Yi
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Define

UX =
1

1− FX
and UY =

1

1− FY
Note that d̃(t) ∼ UY (t). One can describe the limit quite precisely even
under some sorts of dependence between observations and interarrival times.

B Asymptotic tail independence

lim
x→∞

P (X1 > U←X (x)|Y1 > U←Y (x)) = 0 .

B Asymptotic full tail dependence

lim
x→∞

P (X1 > U←X (x)|Y1 > U←Y (x)) = 1 .
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Now we need to include interarrival times in the point processes and define

Nt =
∞∑
i=1

δ( i

d̃(t)
,Xt,i,Yt,i

)
with

Yt,i =
Yi
t
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Tail independence

In this case (see Thm 6.2.3 in de Haan & Ferreira)

d̃(t)P ((Xt,i, Yt,i) ∈ ·)
v→ µ0(·)

for a measure µ0 concentrated on the axes and given as

µ0(([−∞, x]× [0, y])c) = e−x + y−α .

if X1 ∈ MDA(Λ) or as

µ0(([0, x]× [0, y])c) = x−β + y−α .

if X1 ∈ MDA(Φβ)
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Recall that

d̃(t)P ((Xt,i, Yt,i) ∈ ·)
v→ µ0(·)

is necessary and sufficient for

Nt
d→ N ,

where N is PRM(λ× µ0)

34



Similarly as before we obtain the joint convergence

(Nt,
τ (t)

d̃(t)
)

d→ (N,Wα)

with Wα = the first hitting time of the level 1 by a positive α-stable process
Sα (note τ (t)/d̃(t) is just a transformation of Nt)

Moreover, if
N =

∑
i

δTi,PXi ,P Yi

then
N

′
=
∑
i

δTi,PXi and Wα

are independent.
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Therefore

P

(
M(t)− b(t)

a(t)
≤ x

)
= P

(
N ′t
∣∣
[0, τ(t)

d̃(t)
]×(x,∞]

= 0

)
as t→∞ converges to

E
(
G(x)Wα

)
as before.
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Full dependence

de Haan & Resnick 1977

Again

Nt
d→ N ,

where N is PRM(λ× µ0) with µ0 concentrated on the set

C = {(u, v) ∈ (−∞,∞)× (0,∞) : e−u = v−α}, if G1 = Λ

C = {(u, v) ∈ (0,∞)× (0,∞) : u−β = v−α}, if G1 = Φβ .

and
µ0({(u, v) : (u, v) ∈ C, v > y}) = y−α ,

for y > 0.
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Again

(Nt,
τ (t)

d̃(t)
)

d→ (N,Wα)

However, N ′ and Wα are not independent, just the opposite since if Xi, Yi ∈
MDA(α) for instance, then

N = δTi,Pi,Pi

38



Conclusion

B point processes approach turns out to be simple and very efficient

B all upper order statistics are covered

B extremal process can be understood as well
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