Asymptotic Independence of Stochastic Volatility Models

Anja Janßen (joint project with Holger Drees)

University of Hamburg

University of Copenhagen
Workshop on Extremes in Space and Time
May 2013

Overview

- Stochastic Volatility Models
 - General definition
 - Extremal dependence structure
- Second order behavior
 - Hidden regular variation and coefficient of tail dependence
 - Breiman's lemma for hidden regular variation
- 3 SV models with heavy-tailed volatility sequence

General definition of SV models

Many common models for financial time series are of the form

$$X_t = \sigma_t \epsilon_t, \quad t \in \mathbb{Z},$$

where $\epsilon_t, t \in \mathbb{Z}$, are i.i.d. standardized innovations and $(\sigma_t)_{t \in \mathbb{Z}}$, is referred to as a "volatility" sequence.

Sometimes

$$\sigma_t \in \sigma(X_t, X_{t-1}, \dots, \sigma_{t-1}, \sigma_{t-2}, \dots), \quad t \in \mathbb{Z},$$

e.g. for GARCH models

• Alternative: Volatility sequence $(\sigma_t)_{t \in \mathbb{Z}}$ depends on an additional source of randomness \Rightarrow SV models!

General definition of SV models

Many common models for financial time series are of the form

$$X_t = \sigma_t \epsilon_t, \quad t \in \mathbb{Z},$$

where $\epsilon_t, t \in \mathbb{Z}$, are i.i.d. standardized innovations and $(\sigma_t)_{t \in \mathbb{Z}}$, is referred to as a "volatility" sequence.

Sometimes

$$\sigma_t \in \sigma(X_t, X_{t-1}, \dots, \sigma_{t-1}, \sigma_{t-2}, \dots), \quad t \in \mathbb{Z},$$

e.g. for GARCH models.

• Alternative: Volatility sequence $(\sigma_t)_{t \in \mathbb{Z}}$ depends on an additional source of randomness \Rightarrow SV models!

General definition of SV models

Many common models for financial time series are of the form

$$X_t = \sigma_t \epsilon_t, \quad t \in \mathbb{Z},$$

where $\epsilon_t, t \in \mathbb{Z}$, are i.i.d. standardized innovations and $(\sigma_t)_{t \in \mathbb{Z}}$, is referred to as a "volatility" sequence.

Sometimes

$$\sigma_t \in \sigma(X_t, X_{t-1}, \dots, \sigma_{t-1}, \sigma_{t-2}, \dots), \quad t \in \mathbb{Z},$$

e.g. for GARCH models.

• Alternative: Volatility sequence $(\sigma_t)_{t \in \mathbb{Z}}$ depends on an additional source of randomness \Rightarrow SV models!

Taylor's SV model

A very common specification is

Taylor's lognormal SV model (1982)

$$X_t = \sigma_t \epsilon_t, \quad t \in \mathbb{Z},$$

$$\log(\sigma_t) - \mu = \phi(\log(\sigma_{t-1}) - \mu) + \xi_t, \quad t \in \mathbb{Z},$$

where $\xi_t, t \in \mathbb{Z}$, are i.i.d. standard normal, independent of $(\epsilon_t)_{t \in \mathbb{Z}}$ and $|\phi| < 1$.

⇒ Volatility sequence has a log-normal distribution

With regard to real data examples, heavy-tailed (power law) marginals are a preferable feature of models for financial tim series.

Taylor's SV model

A very common specification is

Taylor's lognormal SV model (1982)

$$X_t = \sigma_t \epsilon_t, \quad t \in \mathbb{Z},$$

$$u = \phi(\log(\sigma_{t-1}), u) + \xi \quad t \in \mathbb{Z}$$

$$\log(\sigma_t) - \mu = \phi(\log(\sigma_{t-1}) - \mu) + \xi_t, \quad t \in \mathbb{Z},$$

where $\xi_t, t \in \mathbb{Z}$, are i.i.d. standard normal, independent of $(\epsilon_t)_{t \in \mathbb{Z}}$ and $|\phi| < 1$.

⇒ Volatility sequence has a log-normal distribution.

With regard to real data examples, heavy-tailed (power law) marginals are a preferable feature of models for financial time series.

Taylor's SV model

A very common specification is

Taylor's lognormal SV model (1982)

$$X_t = \sigma_t \epsilon_t, \quad t \in \mathbb{Z},$$
$$\log(\sigma_t) - \mu = \phi(\log(\sigma_{t-1}) - \mu) + \xi_t, \quad t \in \mathbb{Z},$$

where $\xi_t, t \in \mathbb{Z}$, are i.i.d. standard normal, independent of $(\epsilon_t)_{t \in \mathbb{Z}}$ and $|\phi| < 1$.

⇒ Volatility sequence has a log-normal distribution.

With regard to real data examples, heavy-tailed (power law) marginals are a preferable feature of models for financial time series.

SV models with heavy-tailed innovation sequence

Breiman's lemma - "the heaviest tail wins"

• If $|\epsilon_t|$ is regularly varying with index $-\alpha$, i.e.

$$c(u)P(|\epsilon_t|>u)\to 1, \quad u\to\infty,$$

for a regularly varying function $c(\cdot)$ with index α

• and $\sigma_t \geq 0$ independent of ϵ_t with $E(\sigma_t^{\alpha+\delta}) < \infty$ for some $\delta > 0$, it holds that

$$c(u)P(\sigma_t|\epsilon_t|>u)\to E(\sigma_t^{\alpha}), \quad u\to\infty,$$

i.e. $|X_t| = \sigma_t |\epsilon_t|$ is tail-equivalent to $|\epsilon_t|$.

 \Rightarrow Common model specification: Taylor's log-normal SV model with heavy-tailed innovations.

SV models with heavy-tailed innovation sequence

Breiman's lemma - "the heaviest tail wins"

• If $|\epsilon_t|$ is regularly varying with index $-\alpha$, i.e.

$$c(u)P(|\epsilon_t|>u)\to 1, \quad u\to\infty,$$

for a regularly varying function $c(\cdot)$ with index α

• and $\sigma_t \geq 0$ independent of ϵ_t with $E(\sigma_t^{\alpha+\delta}) < \infty$ for some $\delta > 0$, it holds that

$$c(u)P(\sigma_t|\epsilon_t|>u)\to E(\sigma_t^{\alpha}), \quad u\to\infty,$$

i.e. $|X_t| = \sigma_t |\epsilon_t|$ is tail-equivalent to $|\epsilon_t|$.

 \Rightarrow Common model specification: Taylor's log-normal SV model with heavy-tailed innovations.

What do we know about joint extremal behavior of

$$\left(\begin{array}{c} X_0 \\ X_h \end{array}\right) = \left(\begin{array}{cc} \sigma_0 & 0 \\ 0 & \sigma_h \end{array}\right) \left(\begin{array}{c} \epsilon_0 \\ \epsilon_h \end{array}\right), \quad h > 0?$$

Multivariate Breiman (Basrak, Davis, Mikosch (2002)

• Random vector $\mathbf{X} \in \mathbb{R}^d$ multivariate regularly varying with index $-\alpha$, i.e.

$$c(u)P(u^{-1}\mathbf{X} \in \cdot) \stackrel{\mathsf{v}}{\to} \mu(\cdot)$$

for a regularly varying function $c(\cdot)$ with index α and a measure μ on $\mathbb{R}^d \setminus \{\mathbf{0}\}$,

• random $q \times d$ matrix **A**, independent of **X**, with $0 < E(\|\mathbf{A}\|^{\alpha+\delta}) < \infty$ for some $\delta > 0$. Then

$$c(u)P(u^{-1}\mathbf{AX}\in\cdot)\overset{v}{\to}\widetilde{\mu}(\cdot):=E\left[\mu\circ\mathbf{A}^{-1}(\cdot)\right].$$

What do we know about joint extremal behavior of

$$\left(\begin{array}{c} X_0 \\ X_h \end{array}\right) = \left(\begin{array}{cc} \sigma_0 & 0 \\ 0 & \sigma_h \end{array}\right) \left(\begin{array}{c} \epsilon_0 \\ \epsilon_h \end{array}\right), \quad h > 0?$$

Multivariate Breiman (Basrak, Davis, Mikosch (2002))

• Random vector $\mathbf{X} \in \mathbb{R}^d$ multivariate regularly varying with index $-\alpha$, i.e.

$$c(u)P(u^{-1}\mathbf{X}\in\cdot)\stackrel{\mathsf{v}}{\to}\mu(\cdot)$$

for a regularly varying function $c(\cdot)$ with index α and a measure μ on $\mathbb{R}^d \setminus \{\mathbf{0}\}$,

• random $q \times d$ matrix **A**, independent of **X**, with $0 < E(\|\mathbf{A}\|^{\alpha+\delta}) < \infty$ for some $\delta > 0$. Then

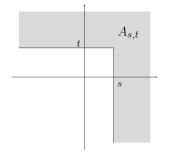
$$c(u)P(u^{-1}\mathbf{AX}\in\cdot)\overset{\mathsf{v}}{ o}\widetilde{\mu}(\cdot):=E\left[\mu\circ\mathbf{A}^{-1}(\cdot)
ight].$$

$$c(u)P(u^{-1}\mathbf{X}\in\cdot)\overset{\nu}{\to}\mu(\cdot)\,\Rightarrow\,c(u)P(u^{-1}\mathbf{A}\mathbf{X}\in\cdot)\overset{\nu}{\to}\tilde{\mu}(\cdot):=E\left[\mu\circ\mathbf{A}^{-1}(\cdot)\right]\,\Big|$$

Application to Taylor's log-normal SV model:

$$\bullet \left(\begin{array}{c} X_0 \\ X_h \end{array}\right) = \left(\begin{array}{cc} \sigma_0 & 0 \\ 0 & \sigma_h \end{array}\right) \left(\begin{array}{c} \epsilon_0 \\ \epsilon_h \end{array}\right)$$

• (ϵ_0, ϵ_t) bivariate regularly varying with μ on $[-\infty, \infty] \times [-\infty, \infty] \setminus \{(0, 0)\}$ concentrated on the axes $\Rightarrow \mu(A_{s,t}) = c(s^{-\alpha} + t^{-\alpha}).$



 $\Rightarrow (X_0, X_h)$ is regularly varying with

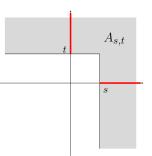
$$\tilde{\mu}(A_{s,t}) = E \left[\mu \circ \begin{pmatrix} \sigma_0^{-1} & 0 \\ 0 & \sigma_h^{-1} \end{pmatrix} (A_{s,t}) \right] = cE(\sigma_h^{\alpha})(s^{-\alpha} + t^{-\alpha})$$

$$c(u)P(u^{-1}\mathbf{X}\in\cdot)\overset{\nu}{\to}\mu(\cdot)\,\Rightarrow\,c(u)P(u^{-1}\mathbf{A}\mathbf{X}\in\cdot)\overset{\nu}{\to}\tilde{\mu}(\cdot):=E\left[\mu\circ\mathbf{A}^{-1}(\cdot)\right]\,\Big|$$

Application to Taylor's log-normal SV model:

$$\bullet \left(\begin{array}{c} X_0 \\ X_h \end{array}\right) = \left(\begin{array}{cc} \sigma_0 & 0 \\ 0 & \sigma_h \end{array}\right) \left(\begin{array}{c} \epsilon_0 \\ \epsilon_h \end{array}\right)$$

• (ϵ_0, ϵ_t) bivariate regularly varying with μ on $[-\infty, \infty] \times [-\infty, \infty] \setminus \{(0, 0)\}$ concentrated on the axes $\Rightarrow \mu(A_{s,t}) = c(s^{-\alpha} + t^{-\alpha}).$



 $\Rightarrow (X_0, X_h)$ is regularly varying with

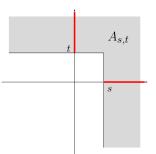
$$\tilde{\mu}(A_{s,t}) = E \begin{bmatrix} \mu \circ \begin{pmatrix} \sigma_0^{-1} & 0 \\ 0 & \sigma_h^{-1} \end{pmatrix} (A_{s,t}) \end{bmatrix} = cE(\sigma_h^{\alpha})(s^{-\alpha} + t^{-\alpha})$$

$$c(u)P(u^{-1}\mathbf{X}\in\cdot)\overset{\nu}{\to}\mu(\cdot)\,\Rightarrow\,c(u)P(u^{-1}\mathbf{A}\mathbf{X}\in\cdot)\overset{\nu}{\to}\tilde{\mu}(\cdot):=E\left[\mu\circ\mathbf{A}^{-1}(\cdot)\right]$$

Application to Taylor's log-normal SV model:

$$\bullet \left(\begin{array}{c} X_0 \\ X_h \end{array}\right) = \left(\begin{array}{cc} \sigma_0 & 0 \\ 0 & \sigma_h \end{array}\right) \left(\begin{array}{c} \epsilon_0 \\ \epsilon_h \end{array}\right)$$

• (ϵ_0, ϵ_t) bivariate regularly varying with μ on $[-\infty, \infty] \times [-\infty, \infty] \setminus \{(0, 0)\}$ concentrated on the axes $\Rightarrow \mu(A_{s,t}) = c(s^{-\alpha} + t^{-\alpha}).$



 $\Rightarrow (X_0, X_h)$ is regularly varying with

$$\widetilde{\mu}(A_{s,t}) = E \left[\mu \circ \begin{pmatrix} \sigma_0^{-1} & 0 \\ 0 & \sigma_h^{-1} \end{pmatrix} (A_{s,t}) \right] = cE(\sigma_h^{\alpha})(s^{-\alpha} + t^{-\alpha})$$

Hidden regular variation and coefficient of tail dependence

Hidden regular variation (Resnick (2002))

A multivariate regularly varying vector $\mathbf{X} \in \mathbb{R}^d_{\perp}$ with limit measure μ concentrated on the axes shows hidden regular variation (HRV) on $(0,\infty]^d$ if a non-zero measure μ^0 on $(0,\infty]^d$ exists, such that

$$c^0(u)P(u^{-1}\mathbf{X}\in\cdot)\stackrel{\nu}{\to}\mu^0(\cdot), \quad u\to\infty,$$

for a regularly varying function $c^0(\cdot)$ with index α^0 .

Coefficient of tail dependence (Ledford & Tawn (1998))

If **X** is standardized to index -1 of regular variation, we call $\eta = 1/\alpha^0 \in (0,1]$ the coefficient of tail dependence.

 \Rightarrow Stochastic independence of X_1, X_2 implies $\eta = 1/2$ for (X_1, X_2) \biguplus

Hidden regular variation and coefficient of tail dependence

Hidden regular variation (Resnick (2002))

A multivariate regularly varying vector $\mathbf{X} \in \mathbb{R}^d_{\perp}$ with limit measure μ concentrated on the axes shows hidden regular variation (HRV) on $(0,\infty]^d$ if a non-zero measure μ^0 on $(0,\infty]^d$ exists, such that

$$c^0(u)P(u^{-1}\mathbf{X}\in\cdot)\stackrel{\mathbf{v}}{\to}\mu^0(\cdot), \quad u\to\infty,$$

for a regularly varying function $c^0(\cdot)$ with index α^0 .

Coefficient of tail dependence (Ledford & Tawn (1998))

If **X** is standardized to index -1 of regular variation, we call $\eta = 1/\alpha^0 \in (0,1]$ the coefficient of tail dependence.

 \Rightarrow Stochastic independence of X_1, X_2 implies $\eta = 1/2$ for (X_1, X_2) since $c^0(u) = (P(X_1 > u)P(X_2 > u))^{-1}$ is regularly varying with index 2.

8 / 19

- Remember the multivariate version of Breiman's lemma for a multivariate regularly varying vector and a random matrix. Does there exist an analogue for HRV?
- In the MRV setting, sets must be bounded away from $\mathbf{0}$, for HRV they must be bounded away from the axes. Set $\mathbb{R}^d \{\mathbf{v} \in \mathbb{R}^d : \min(\mathbf{v}_1, \dots, \mathbf{v}_d) = 0\}$

$$\mathbb{F}^d = \{ \mathbf{x} \in \mathbb{R}_{0,+}^d : \min(x_1, \dots, x_d) = 0 \}.$$

• Define $d(\mathbf{x}, B) := \min_{\mathbf{y} \in B} \|\mathbf{x} - \mathbf{y}\|$ for $\mathbf{x} \in \mathbb{R}^d, B \subset \mathbb{R}^d$, and $\mathcal{N}^d := \{\mathbf{x} \in \mathbb{R}^d_{0,+} : d(\mathbf{x}, \mathbb{F}^d) = 1\}.$ \Rightarrow For a $d \times d$ matrix \mathbf{A} define

$$\tau(\mathbf{A}) := \sup_{\mathbf{x} \in \mathcal{N}^d} d(\mathbf{A}\mathbf{x}, \mathbb{F}^d) \in [0, \infty].$$

- Remember the multivariate version of Breiman's lemma for a multivariate regularly varying vector and a random matrix. Does there exist an analogue for HRV?
- In the MRV setting, sets must be bounded away from 0, for HRV they must be bounded away from the axes. Set

$$\mathbb{F}^d = \{ \mathbf{x} \in \mathbb{R}_{0,+}^d : \min(x_1, \dots, x_d) = 0 \}.$$

• Define $d(\mathbf{x}, B) := \min_{\mathbf{y} \in B} \|\mathbf{x} - \mathbf{y}\|$ for $\mathbf{x} \in \mathbb{R}^d, B \subset \mathbb{R}^d$, and $\mathcal{N}^d := \{\mathbf{x} \in \mathbb{R}^d_{0,+} : d(\mathbf{x}, \mathbb{F}^d) = 1\}.$ \Rightarrow For a $d \times d$ matrix \mathbf{A} define

$$au(\mathbf{A}) := \sup_{\mathbf{x} \in \mathcal{N}^d} d(\mathbf{A}\mathbf{x}, \mathbb{F}^d) \in [0, \infty].$$

- Remember the multivariate version of Breiman's lemma for a multivariate regularly varying vector and a random matrix. Does there exist an analogue for HRV?
- In the MRV setting, sets must be bounded away from 0, for HRV they must be bounded away from the axes. Set

$$\mathbb{F}^d = \{ \mathbf{x} \in \mathbb{R}^d_{0,+} : \min(x_1, \dots, x_d) = 0 \}.$$

• Define $d(\mathbf{x}, B) := \min_{\mathbf{y} \in B} \|\mathbf{x} - \mathbf{y}\|$ for $\mathbf{x} \in \mathbb{R}^d, B \subset \mathbb{R}^d$, and $\mathcal{N}^d := \{\mathbf{x} \in \mathbb{R}^d_{0,+} : d(\mathbf{x}, \mathbb{F}^d) = 1\}.$ \Rightarrow For a $d \times d$ matrix \mathbf{A} define

$$au(\mathbf{A}) := \sup_{\mathbf{x} \in \mathcal{N}^d} d(\mathbf{A}\mathbf{x}, \mathbb{F}^d) \in [0, \infty].$$

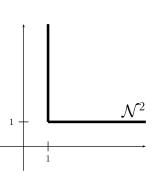
- Remember the multivariate version of Breiman's lemma for a multivariate regularly varying vector and a random matrix. Does there exist an analogue for HRV?
- In the MRV setting, sets must be bounded away from 0, for HRV they must be bounded away from the axes. Set

$$\mathbb{F}^d = \{ \mathbf{x} \in \mathbb{R}^d_{0,+} : \min(x_1, \dots, x_d) = 0 \}.$$

• Define $d(\mathbf{x}, B) := \min_{\mathbf{y} \in B} \|\mathbf{x} - \mathbf{y}\|$ for $\mathbf{x} \in \mathbb{R}^d, B \subset \mathbb{R}^d$, and $\mathcal{N}^d := \{\mathbf{x} \in \mathbb{R}^d_{0+} : d(\mathbf{x}, \mathbb{F}^d) = 1\}.$

$$\Rightarrow$$
 For a $d \times d$ matrix **A** define

matrix \mathbf{A} define $au(\mathbf{A}) := \sup_{\mathbf{x} \in \mathcal{N}^d} d(\mathbf{A}\mathbf{x}, \mathbb{F}^d) \in [0, \infty].$



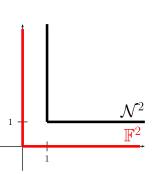
- Remember the multivariate version of Breiman's lemma for a multivariate regularly varying vector and a random matrix. Does there exist an analogue for HRV?
- In the MRV setting, sets must be bounded away from 0, for HRV they must be bounded away from the axes. Set

$$\mathbb{F}^d = \{ \mathbf{x} \in \mathbb{R}^d_{0,+} : \min(x_1, \dots, x_d) = 0 \}.$$

• Define $d(\mathbf{x}, B) := \min_{\mathbf{y} \in B} \|\mathbf{x} - \mathbf{y}\|$ for $\mathbf{x} \in \mathbb{R}^d, B \subset \mathbb{R}^d$, and $\mathcal{N}^d := \{\mathbf{x} \in \mathbb{R}^d_{0+} : d(\mathbf{x}, \mathbb{F}^d) = 1\}.$

$$\Rightarrow$$
 For a $d \times d$ matrix **A** define

$$au(\mathbf{A}) := \sup_{\mathbf{x} \in \mathcal{N}^d} d(\mathbf{A}\mathbf{x}, \mathbb{F}^d) \in [0, \infty].$$



Multivariate Breiman for hidden regular variation (J. (2011))

• Random vector $\mathbf{X} \in \mathbb{R}^d_+$ showing hidden regular variation on $(0,\infty]^d$ with index $-\alpha^0$ such that

$$c^0(u)P(u^{-1}\mathbf{X}\in\cdot)\stackrel{\mathsf{v}}{\to}\mu^0(\cdot)$$

• random invertible $d \times d$ matrix **A**, independent of **X** with $\tau(\mathbf{A}) > 0$ almost surely and $E(\tau(\mathbf{A})^{\alpha^0 + \delta}) < \infty$ for some $\delta > 0$. Then

$$c^0(u)P(u^{-1}\mathbf{AX} \in \cdot) \stackrel{\mathsf{v}}{ o} \widetilde{\mu}^0(\cdot) := E\left[\mu^0 \circ \mathbf{A}^{-1}(\cdot)\right].$$

Implications for "classical" SV models

- Let $(\sigma_t)_{t\in\mathbb{Z}}$ a light-tailed volatility sequence and $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. standardized regularly varying innovations independent of the volatilities.
- For h > 0, vector (ϵ_0, ϵ_h) shows HRV with coefficient of tail dependence $\eta = 1/2$ $(\alpha^0 = 2)$.
- For invertible 2×2 -matrix $\mathbf{\Sigma}_h = \begin{pmatrix} \sigma_0 & 0 \\ 0 & \sigma_h \end{pmatrix}$ one can show that $\tau(\mathbf{\Sigma}_h) = \max(\sigma_0, \sigma_h)$, thus $E(\tau(\mathbf{\Sigma}_h)^{2+\delta})$ exists for light-tailed volatilities.
- ⇒ Aforementioned result implies that
 - $\begin{pmatrix} X_0 \\ X_h \end{pmatrix} = \begin{pmatrix} \sigma_0 & 0 \\ 0 & \sigma_h \end{pmatrix} \begin{pmatrix} \epsilon_0 \\ \epsilon_h \end{pmatrix} \text{ has the same coefficient of }$

Implications for "classical" SV models

- Let $(\sigma_t)_{t\in\mathbb{Z}}$ a light-tailed volatility sequence and $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. standardized regularly varying innovations independent of the volatilities.
- For h > 0, vector (ϵ_0, ϵ_h) shows HRV with coefficient of tail dependence $\eta = 1/2$ $(\alpha^0 = 2)$.
- For invertible 2×2 -matrix $\mathbf{\Sigma}_h = \begin{pmatrix} \sigma_0 & 0 \\ 0 & \sigma_h \end{pmatrix}$ one can show that $\tau(\mathbf{\Sigma}_h) = \max(\sigma_0, \sigma_h)$, thus $E(\tau(\mathbf{\Sigma}_h)^{2+\delta})$ exists for light-tailed volatilities.
- \Rightarrow Aforementioned result implies that

$$\begin{pmatrix} X_0 \\ X_h \end{pmatrix} = \begin{pmatrix} \sigma_0 & 0 \\ 0 & \sigma_h \end{pmatrix} \begin{pmatrix} \epsilon_0 \\ \epsilon_h \end{pmatrix}$$
 has the same coefficient of tail dependence $\eta = 1/2$.

- Thus, classic stochastic volatility models lead to $\eta=1/2$ ("complete" asymptotic independence) while $\eta=1$ for GARCH(p,q) models (asymptotic dependence).
- However, estimators of η for real data see η somewhere between those two values (project of Holger Drees).
- Are there models which allow for more flexibility in the modelling of η ?
- ⇒ A heavy-tailed volatility sequence and light-tailed innovations would offer us more flexibility with respect to the finer modeling of the extremal dependence structure. cf. also Mikosch and Rezapur (2013)

- Thus, classic stochastic volatility models lead to $\eta=1/2$ ("complete" asymptotic independence) while $\eta=1$ for GARCH(p,q) models (asymptotic dependence).
- However, estimators of η for real data see η somewhere between those two values (project of Holger Drees).
- Are there models which allow for more flexibility in the modelling of η ?
- ⇒ A heavy-tailed volatility sequence and light-tailed innovations would offer us more flexibility with respect to the finer modeling of the extremal dependence structure. cf. also Mikosch and Rezapur (2013)

- Thus, classic stochastic volatility models lead to $\eta=1/2$ ("complete" asymptotic independence) while $\eta=1$ for GARCH(p,q) models (asymptotic dependence).
- However, estimators of η for real data see η somewhere between those two values (project of Holger Drees).
- Are there models which allow for more flexibility in the modelling of η ?
- ⇒ A heavy-tailed volatility sequence and light-tailed innovations would offer us more flexibility with respect to the finer modeling of the extremal dependence structure. cf. also Mikosch and Rezapur (2013)

- Thus, classic stochastic volatility models lead to $\eta=1/2$ ("complete" asymptotic independence) while $\eta=1$ for GARCH(p,q) models (asymptotic dependence).
- However, estimators of η for real data see η somewhere between those two values (project of Holger Drees).
- Are there models which allow for more flexibility in the modelling of η ?
- ⇒ A heavy-tailed volatility sequence and light-tailed innovations would offer us more flexibility with respect to the finer modeling of the extremal dependence structure. cf. also Mikosch and Rezapur (2013)

Weibull-type log-volatilities

Assume that

$$X_t = \sigma_t \epsilon_t, \quad t \in \mathbb{Z},$$

$$\log(\sigma_t) - \mu = \sum_{j=0}^{\infty} \alpha_j \xi_{t-j}, \quad t \in \mathbb{Z}.$$

- Innovations $\epsilon_t, t \in \mathbb{Z}$, i.i.d. such that $E(|\epsilon_t|^{1+\delta}) < \infty$.
- $\xi_t, t \in \mathbb{Z}$, i.i.d. and independent of (ϵ_t) with distribution such that

$$P(\xi_t > z) \sim Kz^{\alpha}e^{-z}, \quad z \to \infty,$$

for a real constant $\alpha \neq -1$ and a positive constant K and $P(\xi_t < z) = o(e^z), z \to -\infty$ (i.e. Exponential distribution)

• with $\alpha_i \in [0,1]$, $\max_{i \in \mathbb{N}} \{\alpha_i\} = 1$, $\alpha_i = o(i^{-\theta})$, $i \to \infty$ for some $\theta > 1$.

Weibull-type log-volatilities

Assume that

$$X_t = \sigma_t \epsilon_t, \quad t \in \mathbb{Z},$$

$$\log(\sigma_t) - \mu = \sum_{j=0}^{\infty} \alpha_j \xi_{t-j}, \quad t \in \mathbb{Z}.$$

- Innovations $\epsilon_t, t \in \mathbb{Z}$, i.i.d. such that $E(|\epsilon_t|^{1+\delta}) < \infty$.
- $\xi_t, t \in \mathbb{Z}$, i.i.d. and independent of (ϵ_t) with distribution such that

$$P(\xi_t > z) \sim Kz^{\alpha}e^{-z}, \quad z \to \infty,$$

for a real constant $\alpha \neq -1$ and a positive constant K and $P(\xi_t < z) = o(e^z), z \to -\infty$ (i.e. Exponential distribution).

• with $\alpha_i \in [0,1]$, $\max_{i \in \mathbb{N}} \{\alpha_i\} = 1$, $\alpha_i = o(i^{-\theta})$, $i \to \infty$ for some $\theta > 1$.

Weibull-type log-volatilities

Assume that

$$X_t = \sigma_t \epsilon_t, \quad t \in \mathbb{Z},$$

$$\log(\sigma_t) - \mu = \sum_{j=0}^{\infty} \alpha_j \xi_{t-j}, \quad t \in \mathbb{Z}.$$

- Innovations $\epsilon_t, t \in \mathbb{Z}$, i.i.d. such that $E(|\epsilon_t|^{1+\delta}) < \infty$.
- $\xi_t, t \in \mathbb{Z}$, i.i.d. and independent of (ϵ_t) with distribution such that

$$P(\xi_t > z) \sim Kz^{\alpha}e^{-z}, \quad z \to \infty,$$

for a real constant $\alpha \neq -1$ and a positive constant K and $P(\xi_t < z) = o(e^z), z \to -\infty$ (i.e. Exponential distribution).

• with $\alpha_i \in [0,1]$, $\max_{i \in \mathbb{N}} {\{\alpha_i\}} = 1$, $\alpha_i = o(i^{-\theta})$, $i \to \infty$ for some $\theta > 1$.

Special case: Weibull-type AR(1) log-volatilities

Assume that

$$X_t = \sigma_t \epsilon_t, \quad t \in \mathbb{Z},$$

$$\log(\sigma_t) - \mu = \phi(\log(\sigma_{t-1}) - \mu) + \xi_t, \quad t \in \mathbb{Z}.$$

with the same assumptions on the distributions of $\epsilon_t, \xi_t, t \in \mathbb{Z}$ as before and $\phi \in (0,1)$.

 This may be regarded as an extension of Taylor's "standard" SV model.

Stationary distribution of this model

• It follows from Rootzén (1986) that the corresponding $MA(\infty)$ process is well defined and that

$$P(\ln(\sigma_t) - \mu > z) \sim \hat{K} z^{\hat{\alpha}} e^{-z}, \quad z \to \infty,$$

for certain constants $\hat{K} > 0, \hat{\alpha} \in \mathbb{R}$.

- Thus, σ_t is regularly varying with index -1 (model can be generalized to index $-\alpha$ by writing $\frac{1}{\alpha}\xi_t$ instead ξ_t).
- Extremal behavior? Follows again from Rootzén that $(\ln(\sigma_0), \ln(\sigma_h))$ is asymptotically independent for all h > 0, same holds true for (σ_0, σ_h) and then by multivariate Breiman also for (X_0, X_h)

Stationary distribution of this model

• It follows from Rootzén (1986) that the corresponding $MA(\infty)$ process is well defined and that

$$P(\ln(\sigma_t) - \mu > z) \sim \hat{K} z^{\hat{\alpha}} e^{-z}, \quad z \to \infty,$$

for certain constants $\hat{K} > 0, \hat{\alpha} \in \mathbb{R}$.

- Thus, σ_t is regularly varying with index -1 (model can be generalized to index $-\alpha$ by writing $\frac{1}{\alpha}\xi_t$ instead ξ_t).
- Extremal behavior? Follows again from Rootzén that $(\ln(\sigma_0), \ln(\sigma_h))$ is asymptotically independent for all h > 0, same holds true for (σ_0, σ_h) and then by multivariate Breiman also for (X_0, X_h)

Stationary distribution of this model

• It follows from Rootzén (1986) that the corresponding $MA(\infty)$ process is well defined and that

$$P(\ln(\sigma_t) - \mu > z) \sim \hat{K} z^{\hat{\alpha}} e^{-z}, \quad z \to \infty,$$

for certain constants $\hat{K} > 0, \hat{\alpha} \in \mathbb{R}$.

- Thus, σ_t is regularly varying with index -1 (model can be generalized to index $-\alpha$ by writing $\frac{1}{\alpha}\xi_t$ instead ξ_t).
- Extremal behavior? Follows again from Rootzén that $(\ln(\sigma_0), \ln(\sigma_h))$ is asymptotically independent for all h > 0, same holds true for (σ_0, σ_h) and then by multivariate Breiman also for (X_0, X_h)

Second order behavior of this model

• We are interested in the asymptotic behavior of

$$P(\sigma_{t} > x, \sigma_{t+h} > x)$$

$$\stackrel{\mu=0}{=} P\left(e^{\sum_{j=0}^{\infty} \xi_{t-j}\alpha_{j}} > x, e^{\sum_{j=0}^{\infty} \xi_{t+h-j}\alpha_{j}} > x\right)$$

$$= P\left(\prod_{j=0}^{\infty} \left(e^{\xi_{t-j}}\right)^{\alpha_{j}} > x, \prod_{j=0}^{\infty} \left(e^{\xi_{t+h-j}}\right)^{\alpha_{j}} > x\right),$$

where we know that e^{ξ_t} , $t \in \mathbb{Z}$, are i.i.d. regularly varying with index -1.

Asymptotic Independence of SV Models

A general result for weighted power products

Let $Y_1, Y_2,...$ be i.i.d. regularly varying random variables with index -1. Let $\alpha_i, \beta_i, i \in \mathbb{N}$, be two non-negative sequences. Then

$$P(\prod_{i=1}^{\infty} Y_i^{\alpha_i} > x, \prod_{j=1}^{\infty} Y_j^{\beta_j} > x) \sim cP(Y_s > x^{\kappa_s})P(Y_t > x^{\kappa_t})$$

where $s,t\in\mathbb{N},\kappa_s,\kappa_t\geq 0$ are such that

$$\alpha_s \kappa_s + \alpha_t \kappa_t \ge 1, \ \beta_s \kappa_s + \beta_t \kappa_t \ge 1$$

and

$$\kappa_s + \kappa_t \rightarrow \min!$$

if a unique solution to this optimization problem exists.

The *most efficient* tail combination wins"

 \Rightarrow In our AR(1) model, this gives us that the coefficient of tail dependence for vectors of lag h is equal to $\frac{1}{2 + mh} \cdot (2 + mh) \cdot (2 + mh)$

A general result for weighted power products

Let $Y_1, Y_2,...$ be i.i.d. regularly varying random variables with index -1. Let $\alpha_i, \beta_i, i \in \mathbb{N}$, be two non-negative sequences. Then

$$P(\prod_{i=1}^{\infty} Y_i^{\alpha_i} > x, \prod_{j=1}^{\infty} Y_j^{\beta_j} > x) \sim cP(Y_s > x^{\kappa_s})P(Y_t > x^{\kappa_t})$$

where $s,t\in\mathbb{N},\kappa_s,\kappa_t\geq 0$ are such that

$$\alpha_s \kappa_s + \alpha_t \kappa_t \ge 1, \ \beta_s \kappa_s + \beta_t \kappa_t \ge 1$$

and

$$\kappa_s + \kappa_t \rightarrow \min!$$

if a unique solution to this optimization problem exists.

"The *most efficient* tail combination wins".

 \Rightarrow In our AR(1) model, this gives us that the coefficient of tail dependence for vectors of lag h is equal to $\frac{1}{2 + mh} \cdot (2 + mh) \cdot (2 + mh)$

A general result for weighted power products

Let $Y_1, Y_2,...$ be i.i.d. regularly varying random variables with index -1. Let $\alpha_i, \beta_i, i \in \mathbb{N}$, be two non-negative sequences. Then

$$P(\prod_{i=1}^{\infty} Y_i^{\alpha_i} > x, \prod_{j=1}^{\infty} Y_j^{\beta_j} > x) \sim cP(Y_s > x^{\kappa_s})P(Y_t > x^{\kappa_t})$$

where $s, t \in \mathbb{N}, \kappa_s, \kappa_t \geq 0$ are such that

$$\alpha_s \kappa_s + \alpha_t \kappa_t \ge 1, \ \beta_s \kappa_s + \beta_t \kappa_t \ge 1$$

and

$$\kappa_s + \kappa_t \rightarrow \min!$$

if a unique solution to this optimization problem exists.

"The most efficient tail combination wins".

 \Rightarrow In our AR(1) model, this gives us that the coefficient of tail dependence for vectors of lag h is equal to $\frac{1}{2-\partial h}$.

Résumé

- "Classic" SV models with heavy-tailed innovations are (just like GARCH(p, q) models) limited to a very specific range of extremal behavior.
- SV models with heavy-tailed volatility sequence share nice probabilistic properties of well-known models while allowing for a finer modelling of the extremal dependence structure.

Literature

Basrak, B., Davis, R. A. and Mikosch, T.

Regular variation of GARCH processes

Stoch. Proc. Appl. 99, 95-115 (2002)

Ledford, A.W. and Tawn, J.A.

Statistics for near independence in multivariate extreme values

Biometrika 83, 169-187 (1996)

Resnick. S.I.:

Hidden regular variation, second order regular variation and asymptotic independence.

Extremes, 5, 303-336 (2002)

Rootzén, H.:

Extreme value theory for moving average processes.

Ann. Probab. 14, 612-652 (1986)

