Construction of Subsolutions

Efficient Importance Sampling in a Credit Risk Model with Contagion

Henrik Hult

Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden

University of Copenhagen, May 31, 2013 joint work with Pierre Nyquist

KTH Royal Institute of Technology

Henrik Hult

Outline

1 A Simple Credit Risk Model

- A Simple Credit Risk Model with Contagion
- Large Deviations

2 Importance sampling

- Importance Sampling for the Credit Risk Model
- The Credit Risk Model
- The Subsolution Approach
- 3 Construction of Subsolutions
 - One-dimensional illustration
 - Numerical illustration

Henrik Hult

Importance sampling

Construction of Subsolutions

A Simple Credit Risk Model with Contagion

Outline

1 A Simple Credit Risk Model

- A Simple Credit Risk Model with Contagion
- Large Deviations

2 Importance sampling

- Importance Sampling for the Credit Risk Model
- The Credit Risk Model
- The Subsolution Approach
- 3 Construction of Subsolutions
 - One-dimensional illustration
 - Numerical illustration

KTH Royal Institute of Technology

Henrik Hult

Construction of Subsolutions

A Simple Credit Risk Model with Contagion

A Simple Credit Risk Model with Contagion

- A credit portfolio consisting of n obligors is divided into d groups.
- Let w_1, \ldots, w_d be the fraction of obligors in each group, $w_j > 0, \sum w_j = 1.$
- Let $Q^n(t) = (Q_1^n(t), \dots, Q_d^n(t))$ be number of defaults in each group by time *t*.
- Q^n is modeled as a continuous time pure birth Markov chain with intensity $n\lambda(Q^n(t)/n)$ where

$$\lambda(\mathbf{x}) = (\lambda_1(\mathbf{x}), \dots, \lambda_d(\mathbf{x})), \quad \lambda_j(\mathbf{x}) = (\mathbf{w}_j - \mathbf{x}_j) \mathbf{a} \mathbf{e}^{b \sum_{k=1}^d \mathbf{x}_k}.$$

A Simple Credit Risk Model ○○● ○○○

Ī

Importance sampling 000 000 0000 Construction of Subsolutions

A Simple Credit Risk Model with Contagion

A Simple Credit Risk Model with Contagion

Let
$$X^n(t) = Q^n(t)/n$$
.

Objective: Compute the probability that at least a fraction z has defaulted by time 1:

$$p_n = P\Big\{\sum_{j=1}^d Q_j^n(1) \ge nz\Big\} = P\Big\{\sum_{j=1}^d X_j^n(1) \ge z\Big\}.$$

٢

KTH Royal Institute of Technology

Henrik Hult

A Simple Credit Risk Model	
•00	

Large Deviations

Outline

1 A Simple Credit Risk Model

- A Simple Credit Risk Model with Contagion
- Large Deviations

2 Importance sampling

- Importance Sampling for the Credit Risk Model
- The Credit Risk Model
- The Subsolution Approach
- 3 Construction of Subsolutions
 - One-dimensional illustration
 - Numerical illustration

KTH Royal Institute of Technology

Henrik Hult

A Simple	Credit	Risk	Model
000			
000			

Construction of Subsolutions

Large Deviations

Large Deviations

The processes $\{X^n\}$ satisfy a Laplace principle: for any bounded continuous function $h: \mathscr{D}[0, 1] \to \mathscr{R}$

$$\lim_{n\to\infty}-\frac{1}{n}\log E_x[\exp\{-nh(X^n)\}]=\inf_{\psi}\{I_x(\psi)+h(\psi)\},$$

with rate function I_x given by

$$I_{\mathbf{X}}(\psi) = \int_0^1 L(\psi(t), \dot{\psi}(t)) dt,$$

for all nonnegative and absolutely continuous $\psi \in \mathscr{C}[0, 1]$ with $\psi(0) = x$, and

$$L(\mathbf{x}, eta) = \langle eta, \log rac{eta}{\lambda(\mathbf{x})}
angle - \langle eta - \lambda(\mathbf{x}), \mathbf{1}
angle.$$

KTH Royal Institute of Technology

Henrik Hult

A Simple Credit Risk Model	
000	
000	

Construction of Subsolutions

Large Deviations

Large Deviations

In particular, with

$$h(\psi) = \begin{cases} 0, & \text{if } \sum_{j=1}^{d} \psi_j(1) \ge z, \\ \infty, & \text{if } \sum_{j=1}^{d} \psi_j(1) < z, \end{cases}$$

and $B_z = \{\psi : \sum_{j=1}^d \psi_j(1) \ge z\}$ it follows that

$$-\frac{1}{n}\log p_n = -\frac{1}{n}\log P\Big\{\sum_{j=1}^d X_j(1) \ge z\Big\} = \inf_{\psi \in B_z} I_0(\psi) =: \gamma.$$

KTH Royal Institute of Technology

Henrik Hult

Importance sampling ••• ••• ••• ••• Construction of Subsolutions

Importance Sampling for the Credit Risk Model

Outline

1 A Simple Credit Risk Model

- A Simple Credit Risk Model with Contagion
- Large Deviations

2 Importance sampling

- Importance Sampling for the Credit Risk Model
 - The Credit Risk Model
- The Subsolution Approach
- 3 Construction of Subsolutions
 - One-dimensional illustration
 - Numerical illustration

KTH Royal Institute of Technology

Henrik Hult

Importance sampling

Construction of Subsolutions

Importance Sampling for the Credit Risk Model

Importance Sampling

- Sample $\widetilde{X}_1^n, \ldots, \widetilde{X}_N^n$ from \widetilde{F}_n with $F_n \ll \widetilde{F}_n$ on B.
- Form the weighted empirical measure

$$\widetilde{\mathbf{F}}_{n}^{w}(\cdot) = \frac{1}{N} \sum_{k=1}^{N} \frac{dF_{n}}{d\widetilde{F}_{n}} (\widetilde{X}_{k}^{n}) \delta_{\widetilde{X}_{k}^{n}} (\cdot).$$

Use the plug-in estimator

$$\widehat{p}_n = \widetilde{\mathbf{F}}_n^w(B).$$

٢

KTH Royal Institute of Technology

Henrik Hult

Importance sampling ○○● ○○○ Construction of Subsolutions

Importance Sampling for the Credit Risk Model

Efficient Importance Sampling

- The choice of sampling distribution F_n is good if $Std(\hat{p}_n)$ is of roughly the same size as p_n .
- We say that \tilde{F}_n is efficient if

$$\lim_{n\to\infty}-\frac{1}{n}\log\widetilde{E}[\widehat{p}_n^2]=2\gamma.$$

Note that since $\widetilde{E}[\widehat{p}_n^2] \ge p_n^2$ it is sufficient to show

$$\liminf_{n\to\infty}-\frac{1}{n}\log\widetilde{E}[\widehat{p}_n^2]\geq 2\gamma.$$

٢

KTH Royal Institute of Technology

Henrik Hult

Importance sampling

Construction of Subsolutions

The Credit Risk Model

1 A Simple Credit Risk Model

- A Simple Credit Risk Model with Contagion
- Large Deviations

2 Importance sampling

- Importance Sampling for the Credit Risk Model
- The Credit Risk Model
- The Subsolution Approach
- 3 Construction of Subsolutions
 - One-dimensional illustration
 - Numerical illustration

KTH Royal Institute of Technology

Henrik Hult

Importance sampling

Construction of Subsolutions

The Credit Risk Model

The Credit Risk Model

- In the credit risk example {Xⁿ} is a continuous time Markov chain.
- The only way to select the sampling distribution F_n is to use transition intensities $\tilde{\lambda}(x, t)$ in place of $\lambda(x)$, at state $X^n(t) = x$.
- Challenge: how to find appropriate $\tilde{\lambda}$?

Importance sampling

Construction of Subsolutions

The Credit Risk Model

Some Remarks

- This model has been studied by R. Carmona and S. Crépey (Int. J. Theor. Appl. Fin., 2010).
- They apply a state-independent change of measure and show by numerical experiments that importance sampling performs poorly in the presence of contagion (b > 0).
- We will solve the problem by means of the subsolution approach developed by P. Dupuis and H. Wang (Brown U.).

The Subsolution Approach

1 A Simple Credit Risk Model

- A Simple Credit Risk Model with Contagion
- Large Deviations

2 Importance sampling

- Importance Sampling for the Credit Risk Model
- The Credit Risk Model
- The Subsolution Approach
- 3 Construction of Subsolutions
 - One-dimensional illustration
 - Numerical illustration

KTH Royal Institute of Technology

Henrik Hult

Construction of Subsolutions

The Subsolution Approach

The Subsolution Approach

- View the change of measure as a control problem.
- The value function of the control problem satisfies a dynamic programming principle.
- Send $n \rightarrow \infty$ and derive a limiting control problem.
- The value function of the limiting control problem W satisfies a partial differential equation (Isaacs equation).
- By constructing a subsolution W
 to the PDE a change of measure can be based on DW
 (x, t) (gradient) and the performance of the corresponding algorithm is given by W
 (0,0).
- The algorithm based on a subsolution \bar{W} is asymptotically optimal if $\bar{W}(0,0) = 2\gamma$.

Importance sampling

Construction of Subsolutions

The Subsolution Approach

The Isaac's Equation for the Credit Risk Problem

In the credit risk problem the Isaac's equation reduces to a Hamilton-Jacobi equation:

$$W_t(x,t) - 2H(x,-DW(x,t)/2) = 0,$$

 $W(x,1) = 0, ext{ for } \sum_{j=1}^d x_j \ge z,$

where the Hamiltonian is

$$H(\boldsymbol{x},\boldsymbol{p}) = \sum_{j=1}^{d} \lambda_j(\boldsymbol{x})(\boldsymbol{e}^{\boldsymbol{p}_j} - 1).$$

Henrik Hult

A Simple Credit Risk Model	
000	

Construction of Subsolutions

The Subsolution Approach

Subsolutions

• We aim to find a subsolution $\overline{W}(x, t)$, i.e., a continuously differentiable function such that

$$ar{W}_t(x,t)-2H(x,-Dar{W}(x,t)/2)\geq 0,$$

 $ar{W}(x,1)\leq 0, ext{ for } \sum_{j=1}^d x_j\geq z, ext{ and }$
 $ar{W}(0,0)\geq 2\gamma.$

The corresponding importance sampling algorithm uses the intensity $\tilde{\lambda}(x, t) = \lambda(x) \exp\{-D\bar{W}(x, t)/2\}$.

Henrik Hult

One-dimensional illustration

Outline

1 A Simple Credit Risk Model

- A Simple Credit Risk Model with Contagion
- Large Deviations

2 Importance sampling

- Importance Sampling for the Credit Risk Model
- The Credit Risk Model
- The Subsolution Approach

3 Construction of Subsolutions

- One-dimensional illustration
- Numerical illustration

KTH Royal Institute of Technology

Henrik Hult

Importance sampling

Construction of Subsolutions

One-dimensional illustration

Finding a Subsolition

One-dimensional case

Candidate subsolution is of the form:

$$\overline{W}(x,t;\mu) = 2\int_x^z \log\left(1+\frac{\mu}{\lambda(y)}\right)dy - 2\mu(1-t).$$

It has

$$W_t(x,t) = 2\mu, \quad DW(x,t) = -2\log\Big(1+\frac{\mu}{\lambda(x)}\Big),$$

and

$$ar{W}_t(x,t;\mu)-2\mathcal{H}(x,-Dar{W}(x,t;\mu)/2)=0,\ ar{W}(x,1;\mu)=0, ext{ for } x\geq z.$$

KTH Royal Institute of Technology

Henrik Hult

One-dimensional illustration

Finding a Subsolution One-dimensional case

The optimal candidate is found by maximizing $\overline{W}(0,0;\mu)$ over μ :

$$\mu^* = ext{argmax} \; ar{W}(0,0;\mu) = ext{argmax} \; 2 \int_0^z \log \Big(1 + rac{\mu}{\lambda(m{y})} \Big) dm{y} - 2 \mu.$$

■ We claim that $\overline{W}(0,0;\mu^*) = 2\gamma$. That is, $\overline{W}(x,t;\mu^*)$ determines an asymptotically optimal importance sampling algorithm.

٢

KTH Royal Institute of Technology

Henrik Hult

Importance sampling

Construction of Subsolutions

Numerical illustration

A Simple Credit Risk Model

- A Simple Credit Risk Model with Contagion
- Large Deviations

2 Importance sampling

- Importance Sampling for the Credit Risk Model
- The Credit Risk Model
- The Subsolution Approach

3 Construction of Subsolutions

- One-dimensional illustration
- Numerical illustration

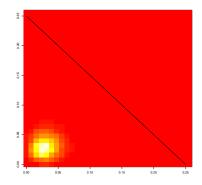
KTH Royal Institute of Technology

Construction of Subsolutions

Numerical illustration

Illustration - Monte Carlo *a* = 0.01, *b* = 5, *d* = 2, *z* = 0.25, *N* = 10000

Location of the outcomes



KTH Royal Institute of Technology

Henrik Hult

Importance sampling

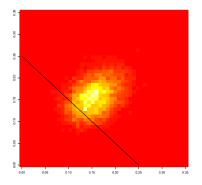
Construction of Subsolutions

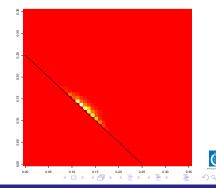
Numerical illustration

Illustration - Importance Sampling a = 0.01, b = 5, d = 2, z = 0.25, N = 10000

Location of the outcomes

Weighted empirical measure





KTH Royal Institute of Technology

Importance Sampling for Credit Risk