
Large deviation estimates for exceedances of
perpetuity sequences

Jeffrey Collamore

Copenhagen, May 31, 2013



Part I: Exceedances of stochastic fixed point equations

Suppose:

V
d
= f (V ).

Basic problem: Estimate large deviation tail asymptotics for

P {V > u} as u →∞.



Examples and applications

Quasi-linear SFPEs (V
d
≈ AV + B) arise in many applications:

Stationary tail for reflected random walk (GI/G/1 queue).
Ruin problems in non-life insurance.
Perpetuities (cash flows) in life insurance.
GARCH(1,1) and ARCH(1) processes in finance.
AR(1) processes with random coefficients.
Branching processes with random environment.

Related non-homogeneous SFPEs (V d
=
∑N

i=1 AiVi + B) arise in:
Quicksort algorithm in computer science.
Branching random walk.
Mandelbrot cascades.



Example: Ruin in insurance.
Lundberg’s (1903) insurance model:

Xt = u + ct −
Nt∑
i=1

ζi .

Consider discrete losses at time n:

Ln := −(Xn − Xn−1) (= claims losses - premiums income).

Investment returns:

Rn = (1 + rn), i.i.d.

Total capital at time n:

Yn = RnYn−1 − Ln, n = 1, 2, . . . , Y0 = u.



Ruin problem (cont.)
Cumulative discounted loss process:

Ln = L1 + A1L2 + · · ·+ (A1 · · ·An)Ln,

where An = 1/Rn are discounted returns. (“Perpetuity seq.”)

← Ln

Probability of ruin (following Cramér, 1930):

Ψ(u) := P {Yn < 0, some n} = P
{
sup
n

Ln > u
}
.



Ruin problem (cont.)

Want to determine tail of L := supn Ln as u →∞.
Can show L satisfies a stochastic fixed point equation:

L
d
= Amax {0,L}+ L,

i.e., a special case of the equation

V
d
= f (V ).



Example: Branching process in random environment

Assume

Zn =

Zn−1∑
j=1

ξn,j

+ Qn

where

ξn,j ∼ p(ζn) –children in nth generation;

Qn ∼ q(ζn) –immigrants in nth generation.

Here, the distribution functions {p(ζn)} are random, dependent on
i.i.d. environment {ζn} (Solomon, Kesten).

Let Fn = σ(ζ0, . . . , ζn), and consider

Yn := E [Zn|Zn−1,Fn] = E [ξn,1|ζn]Zn−1 + E [Qn|ζn] .



Branching in random environment (cont.)
Then Vn := E[Zn|Fn] satisfies the equation

Vn = m(ζn)Vn−1 + λ(ζn), n = 1, 2, . . . ,

where (m(ζn), λ(ζn)) are random. Thus

V
d
= m(ζ)V + λ(ζ) “linear recursion,”

i.e. V d
= AV + B . (Kesten ’73, for multi-type BP.)

Closely related: tree-indexed random walk.



Stochastic fixed point equations
In general, would like to solve the SFPE

V
d
= f (V ), f (V ) ≈ AV + B.

Using implicit renewal theory (Kesten ’73, Goldie ’91):

P {V > u} ∼ Cu−R as u →∞,

where R > 0 satisfies ΛA(R) = 0.

ΛA(α) = log E
[
eα log A

]



Implicit renewal theory
Basic idea: Note

eRvP {V > ev} = eRv
(
P {V > ev} − P {AV > ev}

)
+ eRx

∫
R
P
{
V > ev−x

}
dµ(x),

where µ ∼ L(logA). That is,

Z (v) = z(v) + Z ∗ µR(v), where dµR(x) = eRxdµ(x).

Many unanswered questions:

Characterize const. C , where P {V > u} ∼ Cu−R .
Extend to more general processes.
Large deviation path behavior.
Rare event simulation. Etc.



A new approach
Start with a general SFPE,

V
d
= FY (V ).

Begin with quasi-linear recursion (Letac’s “Model E”):

V
d
= Amax{V ,D}+B, where Y = (A,B,D).

Includes standard applications
(ruin, branching, GARCH(1,1), perpetuities).

Useful approximation for more general quasi-linear processes:
Iterated random maps Vn = Gn(Vn−1) (Mirek ’10) under
“cancellation condition”

FỸn
(v) ≤ Gn(v) ≤ FYn(v).



Letac-Furstenberg principle

The forward recursive sequence generated by V
d
= FY (V )

is given by

Vn(v) = FYn ◦ FYn−1 ◦ · · · ◦ FY1(v), V0 = v .

The backward recursive seq. generated by this SFPE is

Zn(v) = FY1 ◦ FY2 ◦ · · · ◦ FYn(v), V0 = v .

Here, {Yn} is the driving sequence and is i.i.d.

Principle: The limiting distribution of {Zn} is unique and is equal
to the limiting distribution of {Vn}.



Forward and backward sequences

Figure : Forward sequence. Figure : Backward sequence.



General approach
Observe: {Vn} is a Harris rec. Markov chain (while {Zn} is not).
Thus, to study the SFPE V

d
= FY (V ), generate the forward

recursive sequence

Vn := FYn(Vn−1), n = 1, 2, . . . .

Set V = limn→∞ Vn, and determine

lim
u→∞

P {V > u} as u →∞.



Regeneration

Suppose {Vn} is a Markov chain
satisfying the minorization condition

δ1C(x)ν(dy) ≤ P(x , dy).

Then:

Lemma (Athreya-Ney, Nummelin ’78)
There exists a sequence of random times 0 ≤ T0 < T1 < · · · such
that:
(i) {Ti − Ti−1} is i.i.d.
(ii) The random blocks

{
VTi−1 , . . . ,VTi−1

}
are independent.

(iii) VTi
∼ ν.



Large deviation approach
Since {Vn} is a Markov chain, “regenerates” at C, so

P {V > u} =
E [Nu]

E [τ ]
.

Regeneration cycle of
{Vn} (e.g., returns to 0).

Estimate exceedances
above level u:



Large deviation approach (cont.)
The event {Vn > u} is a rare event.
Introduce a “stopped” large deviation change of measure to
determine this probability:
Let µ denote the probab. law of (logA,B,D), and set

dµR(x , y , z) = eRxdµ(x , y , z)

when n ≤ inf {ñ : Vñ > u}.
Here, R > 0 solves the eqn. ΛA(α) = 0.

(Cramér transform.)



Large deviation approach

The process {Vn}
under the LD
change of measure
µ∗ ≡ µR (followed by µ):

Computing, as u →∞,

E [Nu] ∼ E∗
[
W R1{τ=∞}

]
E∗
[
Nue

−R(STu−log u)
]
,

where STu = logVTu , and we have (approximately) that W is a
perpetuity sequence:

Z (p) := V0 +
B1

A1
+

B2

A1A2
+

B3

A1A2A3
+ · · · .

(Relates to moments of return time of {Vn} to its regeneration set.)



Connections with nonlinear renewal theory
{Sn} ≡ {logVn} can be viewed as a perturbed random walk:

Sn =
n∑

i=1

logAi + εn, where εn “small.”

({εn} slowly changing, εn/n→ 0 a.s.)
Nonlinear renewal theory (Siegmund, Lai, Woodroofe) describes

STu − log u as u →∞,

and hence
E∗
[
Nue

−R(STu−log u)
]

as u →∞.



Main result
Assume E

[
logA

]
< 0 and E

[
(|B|+ A|D|)R

]
<∞, etc.,

and A > 0 has abs. cont. component.

Theorem (J.C.-A.Vidyashankar ’13)
We have

P {V > u} ∼ Cu−R as u →∞,

where
C =

1
Rλ′(R)E[τ ]

E∗
[
W R

n

]
+ o(e−εn)

and Wn :=
(
Z

(p)
n − Z

(c)
n

)+
1{τ>n}.

The constant C is explicit and computable.
“Usually” Z (c) ≡ 0, leaving the “perpetuity seq.”

Z (p) := V0+
B1

A1
+

B2

A1A2
+

B3

A1A2A3
+· · · , V0 ∼ ν.



Extensions
Lundberg-type strict upper bound for P {V > u}.
General random maps: Vn = Gn(Vn−1).
Markov-dependent recursions.
Importance sampling: exact computational est. for P {V > u}.
With some modifications, non-homogeneous recursions:

V
d
=

N∑
i=1

AiVi + Bi .

See J.C.-A.Vidyashankar ’13 (several papers),
J.C. ’09 (Markov case).



Extensions (cont.)
Extremal index: For forward process Vn = FYn(Vn−1), obtain
closed-form expression:

Θ =
1− E

[
eRSτ∗

]
E[τ∗]

,

where τ∗ = inf{n ≥ 1 : Sn ≤ 0} and S∗n =
∑n

i=1 logAi

(cf. Iglehart ’72).

In contrast, for Vn = AnVn−1 + Bn, de Haan et al. ’89 showed:

Θ =

∫ ∞
1

P


∞∨
j=1

j∏
i=1

Ai ≤ y−1

Ry−R−1dy .



Extensions: importance sampling
Goal: to simulate the “rare event” tail probability

P {V > u} , for large u,

where V
d
= Amax{V ,D}+ B .

Rare event probability: suggests importance sampling, i.e.,
simulate under a different distribution than true probability
distribution.
We simulate forward process generated by given SFPE.
The “dual" change of measure (for theoretical estimate) yields
an efficient importance sampling algorithm.
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Part II: Path properties of perpetuity sequences

Now specialize to perpetuity sequence,

Zn = B1 + A1B2 + · · ·+ (A1 · · ·An−1)Bn.

Thus, in particular,
Z∞

d
= AZ∞ + B.

What is the large deviation path behavior of {Zn}?
(Cf. J.C.’98 and several classical large deviation papers.)

See our forthcoming paper:

COLLAMORE, J.F., DAMEK, E., BURACZEWSKI, D.,
ZIENKIEWICZ, J. (2013). Ruin times and related large deviation
path behavior of perpetuity sequences. In preparation.


