Large deviation estimates for exceedances of perpetuity sequences

Jeffrey Collamore

Copenhagen, May 31, 2013

Part l: Exceedances of stochastic fixed point equations

Suppose:

$$
V \stackrel{d}{=} f(V)
$$

Basic problem: Estimate large deviation tail asymptotics for

$$
\mathrm{P}\{V>u\} \quad \text { as } \quad u \rightarrow \infty
$$

Examples and applications

Quasi-linear SFPEs $(V \stackrel{d}{\approx} A V+B)$ arise in many applications:

- Stationary tail for reflected random walk (GI/G/1 queue).
- Ruin problems in non-life insurance.
- Perpetuities (cash flows) in life insurance.
- $\operatorname{GARCH}(1,1)$ and $\operatorname{ARCH}(1)$ processes in finance.
- $A R(1)$ processes with random coefficients.
- Branching processes with random environment.

Related non-homogeneous SFPEs $\left(V \stackrel{d}{=} \sum_{i=1}^{N} A_{i} V_{i}+B\right)$ arise in:
■ Quicksort algorithm in computer science.

- Branching random walk.
- Mandelbrot cascades.

Example: Ruin in insurance.
Lundberg's (1903) insurance model:

$$
X_{t}=u+c t-\sum_{i=1}^{N_{t}} \zeta_{i}
$$

Consider discrete losses at time n :

$$
L_{n}:=-\left(X_{n}-X_{n-1}\right) \quad(=\text { claims losses - premiums income })
$$

Investment returns:

$$
R_{n}=\left(1+r_{n}\right), \quad \text { i.i.d. }
$$

Total capital at time n :

$$
Y_{n}=R_{n} Y_{n-1}-L_{n}, \quad n=1,2, \ldots, \quad Y_{0}=u
$$

Ruin problem (cont.)

Cumulative discounted loss process:

$$
\mathfrak{L}_{n}=L_{1}+A_{1} L_{2}+\cdots+\left(A_{1} \cdots A_{n}\right) L_{n}
$$

where $A_{n}=1 / R_{n}$ are discounted returns. ("Perpetuity seq.")

Probability of ruin (following Cramér, 1930):

$$
\Psi(u):=\mathrm{P}\left\{Y_{n}<0, \text { some } n\right\}=\mathbf{P}\left\{\sup _{n} \mathfrak{L}_{n}>u\right\}
$$

Ruin problem (cont.)

Want to determine tail of $\mathfrak{L}:=\sup _{n} \mathfrak{L}_{n}$ as $u \rightarrow \infty$.
Can show \mathfrak{L} satisfies a stochastic fixed point equation:

$$
\mathfrak{L} \stackrel{d}{=} A \max \{0, \mathfrak{L}\}+L
$$

i.e., a special case of the equation

$$
V \stackrel{d}{=} f(V)
$$

Example: Branching process in random environment

Assume

$$
Z_{n}=\left(\sum_{j=1}^{Z_{n-1}} \xi_{n, j}\right)+Q_{n}
$$

where
$\xi_{n, j} \sim \mathbf{p}\left(\zeta_{n}\right) \quad$-children in $n^{\text {th }}$ generation;

$Q_{n} \sim \mathbf{q}\left(\zeta_{n}\right) \quad$-immigrants in $n^{\text {th }}$ generation.
Here, the distribution functions $\left\{\mathbf{p}\left(\zeta_{n}\right)\right\}$ are random, dependent on i.i.d. environment $\left\{\zeta_{n}\right\}$ (Solomon, Kesten).

Let $\mathfrak{F}_{n}=\sigma\left(\zeta_{0}, \ldots, \zeta_{n}\right)$, and consider

$$
Y_{n}:=\mathbf{E}\left[Z_{n} \mid Z_{n-1}, \mathfrak{F}_{n}\right]=\mathbf{E}\left[\xi_{n, 1} \mid \zeta_{n}\right] Z_{n-1}+\mathbf{E}\left[Q_{n} \mid \zeta_{n}\right] .
$$

Branching in random environment (cont.)

Then $V_{n}:=\mathrm{E}\left[Z_{n} \mid \mathfrak{F}_{n}\right]$ satisfies the equation

$$
V_{n}=m\left(\zeta_{n}\right) V_{n-1}+\lambda\left(\zeta_{n}\right), \quad n=1,2, \ldots,
$$

where $\left(m\left(\zeta_{n}\right), \lambda\left(\zeta_{n}\right)\right)$ are random. Thus

$$
V \stackrel{d}{=} m(\zeta) V+\lambda(\zeta) \quad \text { "linear recursion," }
$$

i.e. $V \stackrel{d}{=} A V+B$. (Kesten '73, for multi-type BP.)

Closely related: tree-indexed random walk.

Stochastic fixed point equations

In general, would like to solve the SFPE

$$
V \stackrel{d}{=} f(V), \quad f(V) \approx A V+B
$$

Using implicit renewal theory (Kesten '73, Goldie '91):

$$
\mathrm{P}\{V>u\} \sim C u^{-R} \quad \text { as } \quad u \rightarrow \infty
$$

where $R>0$ satisfies $\Lambda_{A}(R)=0$.

Implicit renewal theory

Basic idea: Note

$$
\begin{aligned}
e^{R v} \mathbf{P}\left\{V>e^{v}\right\}= & e^{R v}\left(\mathbf{P}\left\{V>e^{v}\right\}-\mathbf{P}\left\{A V>e^{v}\right\}\right) \\
& +e^{R x} \int_{\mathbb{R}} \mathbf{P}\left\{V>e^{v-x}\right\} d \mu(x),
\end{aligned}
$$

where $\mu \sim \mathcal{L}(\log A)$. That is,

$$
Z(v)=z(v)+Z * \mu_{R}(v), \quad \text { where } \quad d \mu_{R}(x)=e^{R x} d \mu(x)
$$

Many unanswered questions:

- Characterize const. C, where $\mathbf{P}\{V>u\} \sim C u^{-R}$.

■ Extend to more general processes.

- Large deviation path behavior.
- Rare event simulation. Etc.

A new approach

Start with a general SFPE,

$$
V \stackrel{d}{=} F_{Y}(V) .
$$

Begin with quasi-linear recursion (Letac's "Model E"):

$$
V \stackrel{d}{=} A \max \{V, D\}+B, \quad \text { where } Y=(A, B, D) \text {. }
$$

- Includes standard applications
(ruin, branching, $\operatorname{GARCH}(1,1)$, perpetuities).
■ Useful approximation for more general quasi-linear processes: Iterated random maps $V_{n}=G_{n}\left(V_{n-1}\right)$ (Mirek '10) under "cancellation condition"

$$
F_{\tilde{Y}_{n}}(v) \leq G_{n}(v) \leq F_{Y_{n}}(v) .
$$

Letac-Furstenberg principle

The forward recursive sequence generated by $V \stackrel{d}{=} F_{Y}(V)$ is given by

$$
V_{n}(v)=F_{Y_{n}} \circ F_{Y_{n-1}} \circ \cdots \circ F_{Y_{1}}(v), \quad V_{0}=v
$$

The backward recursive seq. generated by this SFPE is

$$
Z_{n}(v)=F_{Y_{1}} \circ F_{Y_{2}} \circ \cdots \circ F_{Y_{n}}(v), \quad V_{0}=v .
$$

Here, $\left\{Y_{n}\right\}$ is the driving sequence and is i.i.d.
Principle: The limiting distribution of $\left\{Z_{n}\right\}$ is unique and is equal to the limiting distribution of $\left\{V_{n}\right\}$.

Forward and backward sequences

Figure: Forward sequence.
Figure: Backward sequence.

General approach

 Observe: $\left\{V_{n}\right\}$ is a Harris rec. Markov chain (while $\left\{Z_{n}\right\}$ is not). Thus, to study the SFPE $V \stackrel{d}{=} F_{Y}(V)$ generate the forward recursive sequence$$
V_{n}:=F_{Y_{n}}\left(V_{n-1}\right), \quad n=1,2, \ldots
$$

Set $V=\lim _{n \rightarrow \infty} V_{n}$, and determine

$$
\lim _{u \rightarrow \infty} \mathrm{P}\{V>u\} \quad \text { as } \quad u \rightarrow \infty
$$

Regeneration

Suppose $\left\{V_{n}\right\}$ is a Markov chain satisfying the minorization condition

$$
\delta \mathbf{1}_{\mathcal{C}}(x) \nu(d y) \leq P(x, d y)
$$

Then:

Lemma (Athreya-Ney, Nummelin '78)

There exists a sequence of random times $0 \leq T_{0}<T_{1}<\cdots$ such that:
(i) $\left\{T_{i}-T_{i-1}\right\}$ is i.i.d.
(ii) The random blocks $\left\{V_{T_{i-1}}, \ldots, V_{T_{i}-1}\right\}$ are independent.
(iii) $V_{T_{i}} \sim \nu$.

Large deviation approach

■ Since $\left\{V_{n}\right\}$ is a Markov chain, "regenerates" at \mathcal{C}, so

$$
\mathbf{P}\{V>u\}=\frac{\mathbf{E}\left[N_{u}\right]}{\mathbf{E}[\tau]} .
$$

Regeneration cycle of $\left\{V_{n}\right\}$ (e.g., returns to 0).
Estimate exceedances above level u :

Large deviation approach (cont.)

- The event $\left\{V_{n}>u\right\}$ is a rare event.

■ Introduce a "stopped" large deviation change of measure to determine this probability:
Let μ denote the probab. law of $(\log A, B, D)$, and set

$$
d \mu_{R}(x, y, z)=e^{R x} d \mu(x, y, z)
$$

when $n \leq \inf \left\{\tilde{n}: V_{\tilde{n}}>u\right\}$.
Here, $R>0$ solves the eqn. $\Lambda_{A}(\alpha)=0$.
(Cramér transform.)

Large deviation approach

The process $\left\{V_{n}\right\}$ under the LD change of measure $\mu^{*} \equiv \mu_{R}($ followed by $\mu)$:

Computing, as $u \rightarrow \infty$,

$$
\mathbf{E}\left[N_{u}\right] \sim \mathbf{E}^{*}\left[W^{R} \mathbf{1}_{\{\tau=\infty\}}\right] \mathbf{E}^{*}\left[N_{u} e^{-R\left(S_{T_{u}}-\log u\right)}\right]
$$

where $S_{T_{u}}=\log V_{T_{u}}$, and we have (approximately) that W is a perpetuity sequence:

$$
Z^{(p)}:=V_{0}+\frac{B_{1}}{A_{1}}+\frac{B_{2}}{A_{1} A_{2}}+\frac{B_{3}}{A_{1} A_{2} A_{3}}+\cdots
$$

(Relates to moments of return time of $\left\{V_{n}\right\}$ to its regeneration set $\underline{\underline{ٍ}}_{\text {. }}$)

Connections with nonlinear renewal theory

$\left\{S_{n}\right\} \equiv\left\{\log V_{n}\right\}$ can be viewed as a perturbed random walk:

$$
S_{n}=\sum_{i=1}^{n} \log A_{i}+\epsilon_{n}, \quad \text { where } \epsilon_{n} \text { "small." }
$$

($\left\{\epsilon_{n}\right\}$ slowly changing, $\epsilon_{n} / n \rightarrow 0$ a.s.)
Nonlinear renewal theory (Siegmund, Lai, Woodroofe) describes

$$
S_{T_{u}}-\log u \quad \text { as } \quad u \rightarrow \infty
$$

and hence

$$
\mathbf{E}^{*}\left[N_{u} e^{-R\left(S_{T_{u}}-\log u\right)}\right] \quad \text { as } \quad u \rightarrow \infty
$$

Main result

Assume $\mathbf{E}[\log A]<0$ and $\mathbf{E}\left[(|B|+A|D|)^{R}\right]<\infty$, etc., and $A>0$ has abs. cont. component.

Theorem (J.C.-A.Vidyashankar '13)

We have

$$
\mathbf{P}\{V>u\} \sim C u^{-R} \quad \text { as } \quad u \rightarrow \infty
$$

where

$$
C=\frac{1}{R \lambda^{\prime}(R) \mathbf{E}[\tau]} \mathbf{E}^{*}\left[W_{n}^{R}\right]+o\left(e^{-\epsilon n}\right)
$$

and $W_{n}:=\left(Z_{n}^{(p)}-Z_{n}^{(c)}\right)^{+} 1_{\{\tau>n\}}$.
The constant C is explicit and computable.
"Usually" $Z^{(c)} \equiv 0$, leaving the "perpetuity seq."

$$
Z^{(p)}:=V_{0}+\frac{B_{1}}{A_{1}}+\frac{B_{2}}{A_{1} A_{2}}+\frac{B_{3}}{A_{1} A_{2} A_{3}}+\cdots, \quad V_{0} \sim \nu
$$

Extensions

■ Lundberg-type strict upper bound for $\mathbf{P}\{V>u\}$.

- General random maps: $V_{n}=G_{n}\left(V_{n-1}\right)$.
- Markov-dependent recursions.

■ Importance sampling: exact computational est. for $\mathbf{P}\{V>u\}$.

- With some modifications, non-homogeneous recursions:

$$
V \stackrel{d}{=} \sum_{i=1}^{N} A_{i} V_{i}+B_{i}
$$

See J.C.-A.Vidyashankar '13 (several papers), J.C. '09 (Markov case).

Extensions (cont.)

Extremal index: For forward process $V_{n}=F_{Y_{n}}\left(V_{n-1}\right)$, obtain closed-form expression:

$$
\Theta=\frac{1-\mathbf{E}\left[e^{R S_{\tau^{*}}}\right]}{\mathbf{E}\left[\tau^{*}\right]},
$$

where $\tau^{*}=\inf \left\{n \geq 1: S_{n} \leq 0\right\}$ and $S_{n}^{*}=\sum_{i=1}^{n} \log A_{i}$ (cf. Iglehart '72).

In contrast, for $V_{n}=A_{n} V_{n-1}+B_{n}$, de Haan et al. ' 89 showed:

$$
\Theta=\int_{1}^{\infty} \mathbf{P}\left\{\bigvee_{j=1}^{\infty} \prod_{i=1}^{j} A_{i} \leq y^{-1}\right\} R y^{-R-1} d y
$$

Extensions: importance sampling

Goal: to simulate the "rare event" tail probability

$$
\mathbf{P}\{V>u\}, \quad \text { for large } u,
$$

where $V \stackrel{d}{=} A \max \{V, D\}+B$.

■ Rare event probability: suggests importance sampling, i.e., simulate under a different distribution than true probability distribution.

- We simulate forward process generated by given SFPE.
- The "dual" change of measure (for theoretical estimate) yields an efficient importance sampling algorithm.

COLLAMORE, J.F. and VIDYASHANKAR, A.N. (2013). Tail estimates for stochastic fixed point equations via nonlinear renewal theory. Stoch. Process. Appl. 123 3378-3429.

COLLAMORE, J.F. (2009). Random recurrence equations and ruin in a Markov-dependent stochastic economic environment. Ann. Appl. Probab. 19 1404-1458. (Markov version of Goldie's Theorem.)

COLLAMORE, J.F. and VIDYASHANKAR, A.N. (2013). Large deviation tail estimates and related limit laws for stochastic fixed point equations. In Random Matrices and Iterated Random Functions (Alsmeyer, Löwe, eds.), Springer. (Markov and explosive cases.)

COLLAMORE, J.F., DIAO, G., VIDYASHANKAR, A.N. (2013). Rare event simulation for processes generated via stochastic fixed point equations. Submitted, 37 pp.

Part II: Path properties of perpetuity sequences

Now specialize to perpetuity sequence,

$$
Z_{n}=B_{1}+A_{1} B_{2}+\cdots+\left(A_{1} \cdots A_{n-1}\right) B_{n}
$$

Thus, in particular,

$$
Z_{\infty} \stackrel{d}{=} A Z_{\infty}+B
$$

What is the large deviation path behavior of $\left\{Z_{n}\right\}$?
(Cf. J.C.'98 and several classical large deviation papers.)

See our forthcoming paper:
COLLAMORE, J.F., DAMEK, E., BURACZEWSKI, D., ZIENKIEWICZ, J. (2013). Ruin times and related large deviation path behavior of perpetuity sequences. In preparation.

