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EIGENVALUES AND EIGENVECTORS OF HEAVY-TAILED SAMPLE

COVARIANCE MATRICES WITH GENERAL GROWTH RATES: THE IID

CASE

JOHANNES HEINY AND THOMAS MIKOSCH

Abstract. In this paper we study the joint distributional convergence of the largest eigenvalues
of the sample covariance matrix of a p-dimensional time series with iid entries when p converges
to infinity together with the sample size n. We consider only heavy-tailed time series in the sense
that the entries satisfy some regular variation condition which ensures that their fourth moment is
infinite. In this case, Soshnikov [31, 32] and Auffinger et al. [2] proved the weak convergence of the
point processes of the normalized eigenvalues of the sample covariance matrix towards an inhomo-
geneous Poisson process which implies in turn that the largest eigenvalue converges in distribution
to a Fréchet distributed random variable. They proved these results under the assumption that
p and n are proportional to each other. In this paper we show that the aforementioned results
remain valid if p grows at any polynomial rate. The proofs are different from those in [2, 31, 32];
we employ large deviation techniques to achieve them. The proofs reveal that only the diagonal
of the sample covariance matrix is relevant for the asymptotic behavior of the largest eigenvalues
and the corresponding eigenvectors which are close to the canonical basis vectors. We also discuss
extensions of the results to sample autocovariance matrices.

1. Introduction

In recent years we have seen a vast increase in the number and sizes of data sets. Science
(meteorology, telecommunications, genomics, . . . ), society (social networks, finance, military and
civil intelligence, . . . ) and industry need to extract valuable information from high-dimensional
data sets which are often too large or complex to be processed by traditional means. In order
to explore the structure of data one often studies the dependence via (sample) covariances and
correlations. Often dimension reduction techniques facilitate further analyzes of large data matrices.
For example, principal component analysis (PCA) transforms the data linearly such that only a
few of the resulting vectors contain most of the variation in the data. These principal component
vectors are the eigenvectors associated with the largest eigenvalues of the sample covariance matrix.

The aim of this paper is to investigate the asymptotic properties of the largest eigenvalues and
their corresponding eigenvectors for sample covariance matrices of high-dimensional heavy-tailed
time series with iid entries. Special emphasis is given to the case when the dimension p and the
sample size n tend to infinity simultaneously, not necessarily at the same rate.

Throughout we consider the p× n data matrix

Z = Zn =
(
Zit
)
i=1,...,p;t=1,...,n

A column of Z represents an observation of a p-dimensional time series. We assume that the entries
Zit are real-valued, independent and identically distributed (iid), unless stated otherwise. We write
Z for a generic element and assume E[Z] = 0 and E[Z2] = 1 if the first and second moments of
Z are finite, respectively. We are interested in limit theory for the eigenvalues λ1, . . . , λp of the
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sample covariance matrix ZZ′ and their ordered values

λ(1) ≥ · · · ≥ λ(p) . (1.1)

In this notation we suppress the dependence of (λi) on n. We will only discuss the case when
p→∞; for the finite p case we refer to [1, 26].

1.1. The light-tailed case. In random matrix theory a lot of attention has been given to the
empirical spectral distribution function of the sequence (n−1ZZ′):

Fn−1ZZ′(x) =
1

p
#{1 ≤ j ≤ p : n−1λj ≤ x}, x ≥ 0 , n ≥ 1.

In the literature convergence results for (Fn−1ZZ′) are established under the assumption that p and
n grow at the same rate:

p

n
→ γ for some γ ∈ (0,∞). (1.2)

Suppose that the iid entries Zit have mean 0 and variance 1. If (1.2) holds then, with probability
one, (Fn−1ZZ′) converges to the Marčenko–Pastur law with absolutely continuous part given by the
density,

fγ(x) =

{
1

2πxγ

√
(b− x)(x− a) , if a ≤ x ≤ b,

0 , otherwise,
(1.3)

where a = (1−√γ)2 and b = (1+
√
γ)2. For γ > 1 the Marčenko–Pastur law has an additional point

mass 1−1/γ at the origin; see Bai and Silverstein [3, Chapter 3]. This mass is intuitively explained
by the fact that, with probability 1, min(p, n) eigenvalues λi are non-zero. When n = (1/γ) p and
γ > 1 the fraction of non-zero eigenvalues is 1/γ while the fraction of zero eigenvalues is 1− 1/γ.

The moment condition E[Z2] <∞ is crucial for deriving the Marčenko–Pastur limit law. When
studying the largest eigenvalues of the sample covariance matrix ZZ′ the moment condition E[Z4] <
∞ plays a similarly important role; we assume it in the remainder of this subsection. If (1.2) holds
and the iid entries Zit have zero mean and unit variance, Geman [19] showed that

λ(1)

n

a.s.→
(
1 +
√
γ
)2
, n→∞ . (1.4)

This means that λ(1)/n converges to the right endpoint of the Marčenko–Pastur law in (1.3).
Johnstone [23] complemented this strong law of large numbers by the corresponding central limit
theorem in the special case of iid standard normal entries:

λ(1) − µn,p
σn,p

d→ ξ, (1.5)

where the limiting random variable has a Tracy–Widom distribution of order 1 and the centering
and scaling constants are

µn,p = (
√
n− 1 +

√
p)2, σn,p = (

√
n− 1 +

√
p)
( 1√

n− 1
+

1
√
p

)1/3
;

see Tracy and Widom [35] for details. Ma [25] showed Berry–Esseen-type bounds for (1.5).
Asymptotic theory for the largest eigenvalues of sample covariance matrices with non-Gaussian

entries is more complicated; pioneering work is due to Johansson [22]. Johnstone’s result was
extended to matrices Z with iid non-Gaussian entries by Tao and Vu [33, Theorem 1.16], assuming
that the first four moments of Z match those of the normal distribution. Tao and Vu’s result
is a consequence of the so-called Four Moment Theorem which describes the insensitivity of the
eigenvalues with respect to changes in the distribution of the entries. To some extent (modulo the
strong moment matching conditions) it shows the universality of Johnstone’s limit result (1.5).
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In the light-tailed case little is known when p and n grow at different rates, i.e., lim p/n ∈ {0,∞}.
Notable exceptions are El Karoui [16] who proved that Johnstone’s result (assuming iid standard
normal entries) remains valid when p/n→ 0 or n/p→∞, and Péché [28] who showed universality
results for the largest eigenvalues of some sample covariance matrices with non-Gaussian entries.

1.2. The heavy-tailed case. Distributions of which certain moments cease to exist are often called
heavy-tailed. So far we reviewed theoretical results where the data matrix Z was “light-tailed” in
the following sense: for the distributional convergence of the empirical spectral distribution and the
largest eigenvalue of the sample covariance matrix towards the Marčenko–Pastur and Tracy-Widom
distributions, respectively, we required finite second/fourth moments of the entries.

The behavior of the largest eigenvalue λ(1) changes dramatically when E[Z4] = ∞. Bai and
Silverstein [4] proved for an n× n matrix Z with iid centered entries that

lim sup
n→∞

λ(1)

n
=∞ a.s. (1.6)

This is in stark contrast to Geman’s result (1.4).
Following classical limit theory for partial sum processes and maxima, we require more than an

infinite fourth moment. We assume a regular variation condition on the tail of Z:

P(Z > x) ∼ p+
L(x)

xα
and P(Z < −x) ∼ p−

L(x)

xα
, x→∞ , (1.7)

for some α ∈ (0, 4), where p± are non-negative constants such that p+ + p− = 1 and L is a slowly
varying function. We will also refer to Z as a regularly varying random variable, Z as a regularly
varying matrix, etc. Here and in what follows, we normalize the eigenvalues (λi) by (a2

np) where
the sequence (ak) is chosen such that

P(|Z| > ak) ∼ k−1 , k →∞.
Standard theory for regularly varying functions (e.g. Bingham et al. [9], Feller [18]) yields that

an = n1/α`(n) where ` is a slowly varying function. Assuming (1.2) for p, the Potter bounds (see
[9, p. 25]) yield for α ∈ (0, 4) that

a2
np

n
∼ n4/αγ2/α `2(n2γ)

n
→∞, n→∞ , (1.8)

i.e., the normalization a2
np is stronger than n.

The eigenvalues (λi) of a heavy-tailed matrix ZZ′ were studied first by Soshnikov [31, 32]. He
showed under (1.2) and (1.7) for α ∈ (0, 2) that

λ(1)

a2
np

d→ ζ, n→∞, (1.9)

where ζ follows a Fréchet distribution with parameter α/2:

Φα/2(x) = e−x
−α/2

, x > 0 .

Later Auffinger et al. [2] established (1.9) also for α ∈ [2, 4) under the additional assumption that
the entries are centered. Both Soshnikov [31, 32] and Auffinger et al. [2] proved convergence of
the point processes of normalized eigenvalues, from which one can easily infer the joint limiting
distribution of the k largest eigenvalues. Davis et al. [13, 14] extended these results allowing for
more general growth of p than dictated by (1.2) and a linear dependence structure between the
rows and columns of Z; see also Chakrabarty et al. [10] and the overview paper Davis et al. [12].
The study of eigenvectors of heavy-tailed sample covariance matrices is a fresh topic, which has not
been explored in the literature listed here.

For the sake of completeness we mention that, under (1.2) with γ ∈ (0, 1], (1.7) with α ∈ (0, 2)
and E[Z] = 0 if the latter expectation is defined, the empirical spectral distribution Fa−2

n+pZZ
′
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converges weakly with probability one to a deterministic probability measure whose density ργα
satisfies

ργα(x)x1+α/2 → αγ

2(1 + γ)
, x→∞ ,

see Belinschi et al. [5, Theorem 1.10] and Ben Arous and Guionnet [6, Theorem 1.6].

1.3. Structure of the paper. The primary objective of this paper is to study the joint distribution
of the largest eigenvalues of the sample covariance matrix ZZ′ in the case of iid regularly varying
entries with infinite fourth moment. We make a connection between extreme value theory, point
process convergence and the behavior of the largest eigenvalues. We study these eigenvalues under
polynomial growth rates of the dimension p relative to the sample size n. It turns out that they are
essentially determined by the extreme diagonal elements of ZZ′ or, alternatively, by the extreme
order statistics of the squared entries of Z.

In Section 2 we consider power-law growth rates of (pn), thereby generalizing proportional growth
as prescribed by (1.2). Our main results are presented in Section 3. Theorem 3.1 provides approx-
imations of the ordered eigenvalues of the sample covariance matrix either by the ordered diagonal
elements of ZZ′ or Z′Z, or by the order statistics of the squared entries of Z. These approxima-
tions provide a clear picture where the largest eigenvalues of the sample covariance matrix originate
from. Our results generalize those in Soshnikov [31, 32] and Auffinger et al. [2] who assume pro-
portionality of p and n. The employed techniques originate from extreme value analysis and large
deviation theory; the proofs differ from those in the aforementioned literature. The same tech-
niques can be applied when the entries of Z are heavy-tailed and allow for dependence through the
rows and across the columns; see Davis et al. [13, 14] for some recent attempts when the entries
satisfy some linear dependence conditions. In the iid case, these results are covered by the present
paper and we also show that they remain valid under much more general growth conditions than in
[13, 14]. In particular, we make clear that centering of the sample covariance matrix (as assumed
in [13, 14] when Z has a finite second moment) is not needed. Thus, our techniques are applicable
under rather general dependence structures. We refer to the recent work by Janssen et al. [21] on
eigenvalues of stochastic volatility matrix models, where non-linear dependence was allowed.

The convergence of the point processes of the properly normalized eigenvalues in Section 3.2
yields a multitude of useful findings connected to the joint distribution of the eigenvalues. As an
application, the structure of the eigenvectors of ZZ′ is explored in Section 3.3. Technical proofs are
collected in Section 4. Section 5 is devoted to an extension of the results to the singular values of the
sample autocovariance matrices which are a generalization of the traditional autocovariance function
for time series to high-dimensional matrices. In applications, the analysis of sample autocovariance
matrices for different lags might help to detect dependencies in the data; see Lam and Yao [24] for
related work. We conclude with Appendix A which contains useful facts about regular variation
and point processes.

2. Preliminaries

In this section we will discuss growth rates for p = pn →∞ and introduce some notation.

2.1. Growth rates for p. In many applications it is not realistic to assume that the dimension
p of the data and the sample size n grow at the same rate, i.e., condition (1.2) is unlikely to be
satisfied. The aforementioned results of Soshnikov [31, 32] and Auffinger et al. [2] already show that
the value γ in the growth rate (1.2) does not appear in the distributional limits. This obervation is
in contrast to the light-tailed case; see (1.3) and (1.4). Davis et al. [13, 14] allowed for more general
rates for pn → ∞ than linear growth in n. However, they could not completely solve the technical
difficulties arising with general growth rates of p. In what follows, we specify the growth rate of
(pn):

p = pn = nβ`(n), n ≥ 1, (Cp(β))
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where ` is a slowly varying function and β ≥ 0. If β = 0, we also assume `(n)→∞. Condition Cp(β)
is more general than the growth conditions in the literature; see [2, 13, 14].

2.2. Notation. Recall that Z = Zn = (Zit)i=1,...,p;t=1,...,n is a p×n matrix with iid entries satisfying
the regular variation condition (1.7) for some α ∈ (0, 4). The sample covariance matrix ZZ′ has
eigenvalues λ1, . . . , λp whose order statistics were defined in (1.1).

Important roles are played by the quantities (Z2
it)i=1,...,p;t=1,...,n and their order statistics

Z2
(1),np ≥ Z

2
(2),np ≥ . . . ≥ Z

2
(np),np, n, p ≥ 1 . (2.1)

As important are the row-sums

D→i = D
(n),→
i =

n∑
t=1

Z2
it , i = 1, . . . , p ; n = 1, 2, . . . , (2.2)

with generic element D→ and their ordered values

D→(1) = D→L1
≥ · · · ≥ D→(p) = D→Lp , (2.3)

where we assume without loss of generality that (L1, . . . , Lp) is a permutation of (1, . . . , p) for
fixed n.

Finally, we introduce the column-sums

D↓t = D
(n),↓
t =

p∑
i=1

Z2
it , t = 1, . . . , n ; p = 1, 2, . . . , (2.4)

with generic element D↓ and we also adapt the notation from (2.3) to these quantities.

Norms. For any p-dimensional vector v, ‖v‖`2 denotes its Euclidean norm. For any p × p matrix
C, we write λi(C) for its p singular values and we denote their order statistics by

λ(1)(C) ≥ · · · ≥ λ(p)(C) .

For any p× n matrix A = (aij), we will use the spectral norm ‖A‖2 =
√
λ(1)(AA′), the Frobenius

norm ‖A‖F =
(∑p

i=1

∑n
j=1 |aij |2

)1/2
and the max-row sum norm ‖A‖∞ = maxi=1,...,p

∑n
j=1 |aij | .

3. Main results

3.1. Basic approximations. We commence with some basic approximation results for the eigen-
values and eigenvectors of ZZ′. The approximating quantities have a simple structure and their
asymptotic behavior is inherited by the eigenvalues and has influence on the eigenvectors.

Theorem 3.1. Consider a p× n-dimensional matrix Z with iid entries. We assume the following
conditions:

• The regular variation condition (1.7) for some α ∈ (0, 4).
• E[Z] = 0 for α ≥ 2.
• The integer sequence (pn) has growth rate Cp(β) for some β ≥ 0.

Then the following statements hold:

(1) If β ∈ [0, 1], then

a−2
np max

i=1,...,p

∣∣λ(i) −D→(i)
∣∣ P→ 0 . (3.1)

(2) If β > 1, then

a−2
np max

i=1,...,n

∣∣λ(i) −D
↓
(i)

∣∣ P→ 0 . (3.2)
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(3) If min(β, β−1) ∈ ((α/2− 1)+, 1], then

a−2
np max

i=1,...,p

∣∣λ(i) − Z2
(i),np

∣∣ P→ 0 . (3.3)

Remark 3.2. In (3.2) we have chosen to take maxima over the index set {1, . . . , n}. We notice
that λ(i) = 0 for i = p∧ n+ 1, . . . , p∨ n. This is due to the fact that the p× p matrix ZZ′ and the
n× n matrix Z′Z have the same positive eigenvalues. Moreover, for n sufficiently large, p ∧ n = p
for β ∈ (0, 1) and p ∧ n = n for β > 1, i.e., only in the case β = 1 both cases n ≤ p or p ≤ n are
possible.

Remark 3.3. The condition min(β, β−1) ∈ ((α/2 − 1)+, 1] in part (3) is only a restriction when
α ∈ (2, 4). We notice that this condition implies (n∨p)/a2

np → 0. In turn, this means that centering

of the quantities a−2
npD

→
i and a−2

npD
↓
i in the limit theorems can be avoided. This argument is relevant

in various parts of the proofs.

Remark 3.4. In Figure 1 we illustrate the different approximations of the eigenvalues (λ(i)) by

(D→(i)) as suggested by (3.1) and (Z2
(i),np) as suggested by (3.3). For Z we choose the density

fZ(x) =

{ α
(4|x|)α+1 , if |x| > 1/4

1 , otherwise.
(3.4)

In the left graph, we focus on the largest eigenvalue λ(1). We show smoothed histograms of the

approximation errors a−2
np (λ(1) − D→(1)), a

−2
np (λ(1) − Z2

(1),np). By Cauchy’s interlacing theorem (see

[34, Lemma 22]), the considered differences are non-negative.
In the right graph, we take the maxima as in (3.1) and (3.3) and show smoothed histograms of

the approximation errors a−2
np maxi≤p |λ(i)−D→(i)|, a

−2
np maxi≤p |λ(i)−Z2

(i),np|. We take absolute values

to deal with negative differences. Figure 1 indicates that (D→(i)) yield a much better approximation

to (λ(i)) than (Z2
(i),np). Notice the different scaling on the x- and y-axes.
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Figure 1. Smoothed histograms of the approximation errors for the normalized
eigenvalues (a−2

np λ(i)) for entries Zit with density (3.4), α = 1.6, β = 1, n = 1, 000
and p = 200.
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The proof of Theorem 3.1 will be given in Section 4. A main step in the proof is provided by the
following result whose proof will also be given in Section 4; a version of this theorem was proved
in Davis et al. [13] under more restrictive conditions on the growth rate of (pn).

Theorem 3.5. Assume the conditions of Theorem 3.1 on Z and (pn).

(1) If β ∈ [0, 1] we have

a−2
np ‖ZZ′ − diag(ZZ′)‖2

P→ 0 , n→∞ .

(2) If β ≥ 1 we have

a−2
np ‖Z′Z− diag(Z′Z)‖2

P→ 0 , n→∞ .

The second part of this theorem follows from the first one by an interchange of n and p. Indeed,
if β ≥ 1, we can write n = p1/β`(p) for some slowly varying function ` and then part (2) follows
from part (1).

Remark 3.6. Theorem 3.5 shows that the largest eigenvalues of ZZ′ are determined by the largest
diagonal entries. In the case of heavy-tailed Wigner matrices, however, the diagonal elements do
not play any particular role.

From this theorem one immediately obtains a result about the approximation of the eigenvalues
of ZZ′ and Z′Z by those of diag(ZZ′) and diag(Z′Z), respectively. Indeed, for any symmetric p× p
matrices A,B, by Weyl’s inequality (see Bhatia [8]),

max
i=1,...,p

∣∣λ(i)(A + B)− λ(i)(A)
∣∣ ≤ ‖B‖2 . (3.5)

If we now choose A + B = ZZ′ and A = diag(ZZ′) (or A + B = Z′Z and A = diag(Z′Z)) we
obtain the following result.

Corollary 3.7. Assume the conditions of Theorem 3.1 on Z and (pn).

(1) If β ∈ [0, 1] we have

a−2
np max

i=1,...,p

∣∣λ(i) − λ(i)(diag(ZZ′))
∣∣ P→ 0 , n→∞ .

(2) If β > 1 we have

a−2
np max

i=1,...,n

∣∣λ(i) − λ(i)(diag(Z′Z))
∣∣ P→ 0 , n→∞ .

Now (3.1) and (3.2) are immediate consequences of this corollary. Indeed, we have λ(i)(diag(ZZ′)) =

D→(i) and λ(i)(Z
′Z) = D↓(i), i = 1, . . . , p ∧ n.

3.2. Point process convergence. In this section we want to illustrate how the approximations
from Theorem 3.1 can be used to derive asymptotic theory for the largest eigenvalues of ZZ′ via
the weak convergence of suitable point processes. The limiting point process involves the points of
the Poisson process

NΓ =
∞∑
i=1

ε
Γ
−2/α
i

, n→∞ , (3.6)

where εy is the Dirac measure at y,

Γi = E1 + · · ·+ Ei , i ≥ 1 ,

and (Ei) is a sequence of iid standard exponential random variables. In other words, NΓ is a Poisson

point process on (0,∞) with mean measure µ(x,∞) = x−α/2, x > 0.

Lemma 3.8. Assume the conditions of Theorem 3.5 hold.
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(1) If β ≥ 0, then

p∑
i=1

εa−2
np (D→i −cn)

d→ NΓ , n→∞ , (3.7)

where cn = 0 if E[D→] =∞ and cn = E[D→] = nE[Z2] otherwise.
(2) If β ≥ 0, then

p∑
i=1

εa−2
npZ

2
(i),np

d→ NΓ , n→∞ , (3.8)

The weak convergence of the point processes holds in the space of point measures with state space
(0,∞) equipped with the vague topology; see Resnick [29].

Remark 3.9. Similar results were used in the proofs of Davis et al. [12, 13]. We also mention that
the centering cn in the finite variance case can be avoided if n/a2

np → 0. The latter condition is
satisfied if β > α/2− 1.

Proof. Part (1) follows from Lemma A.3. As regards part (2), we observe that

p∑
i=1

n∑
t=1

εa−2
npZ

2
it

d→ NΓ ; (3.9)

see e.g. Resnick [30], Proposition 3.21. On the other hand, a−2
npZ

2
(p),np

P→ 0 which together with

(3.9) yields part (2). �

Theorem 3.1 and arguments similar to the proofs in Davis et al. [12, 13] enable one to derive the
weak convergence of the point processes of the normalized eigenvalues.

Theorem 3.10. Assume the conditions of Theorem 3.1. If min(β, β−1) ∈ ((α/2− 1)+, 1] then

p∑
i=1

εa−2
npλi

d→ NΓ , (3.10)

in the space of point measures with state space (0,∞) equipped with the vague topology.

Proof. The limit relation (3.10) follows from (3.8) in combination with (3.3). Alternatively, one

can exploit (3.7) both for (D→i ) and (D↓t ) (notice that the point process convergence for the latter
sequence follows by interchanging the roles of n and p), the fact that (n∨p)/a2

np → 0 if min(β, β−1) ∈
((α/2−1)+, 1] (hence centering of the points (D→i ) and (D↓t ) in (3.7) can be avoided for E[Z2] <∞)
and finally using the approximations (3.1) or (3.2). �

The weak convergence of the point processes of the normalized eigenvalues of ZZ′ in Theorem 3.10
allows one to use the conventional tools in this field; see Resnick [29, 30]. An immediate consequence
is

a−2
np

(
λ(1), . . . , λ(k)

) d→
(
Γ
−2/α
1 , . . . ,Γ

−2/α
k

)
(3.11)

for any fixed k ≥ 1. Using the methods of Davis et al. [12] shows for α ∈ (2, 4)

a−2
np

(
λ(1) − (p ∨ n)E[Z2], . . . , λ(k) − (p ∨ n)E[Z2]

) d→
(
Γ
−2/α
1 , . . . ,Γ

−2/α
k

)
. (3.12)

Equations (3.11) and (3.12) yield that for α ∈ (0, 4) and any fixed k ≥ 1,

a−2
np

(
λ(1) − λ(2), . . . , λ(k) − λ(k+1)

) d→
(
Γ
−2/α
1 − Γ

−2/α
2 , . . . ,Γ

−2/α
k − Γ

−2/α
k+1

)
. (3.13)
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Related results can also be derived for an increasing number of order statistics, e.g. the joint
convergence of the largest eigenvalue a−2

np λ(1) and the trace a−2
np (λ1 + · · · + λp). In particular, one

obtains for α ∈ (0, 2) under the conditions of Theorem 3.10 that

λ(1)

λ1 + · · ·+ λp

d→ Γ
−2/α
1

Γ
−2/α
1 + Γ

−2/α
2 + · · ·

.

We refer to Davis et al. [13] for details on the proofs and more examples.
In the next subsection we will show how the above results on the joint convergence of eigenvalues

can be applied to approximate the eigenvectors of ZZ′.

3.3. Eigenvectors. In this section we assume the conditions of Theorem 3.5 and β ∈ [0, 1]. From
Theorem 3.5(1) we know that ZZ′ is approximated in spectral norm by diag(ZZ′). The unit
eigenvectors of a p× p diagonal matrix are the canonical basis vectors ej ∈ Rp, j = 1, . . . , p. This
raises the question as to whether (ej) are good approximations of the eigenvectors (vj) of ZZ′.
By vj we denote the unit eigenvector associated with the jth largest eigenvalue λ(j). The unit
eigenvector associated with the jth largest eigenvalue of diag(ZZ′) is eLj , where Lj is defined in
(2.3). Our guess that vj is approximated by eLj is confirmed by the following result.

Theorem 3.11. Assume the conditions of Theorem 3.1 and let β ∈ [0, 1]. Then for any fixed
k ≥ 1,

‖vk − eLk‖`2
P→ 0 , n→∞ .

Indeed, vj and eLj share another property: they are localized which means that they are concen-
trated only in a few components. Vectors which are not localized are called delocalized. Figure 2
shows the outcome of a simulation example in which we visualize the components of the unit
eigenvector associated with the largest eigenvalue of ZZ′ for a simulated data matrix Z with iid
Pareto(0.8) entries. In the right graph we see that only one of the p = 200 components is signifi-
cant. Hence we can find a canonical basis vector ek such that ‖ek − v1‖`2 is small. Therefore the
eigenvector is localized. This is in stark contrast to the case of iid standard normal entries; see the
left graph. Then many components are of similar magnitude, hence the eigenvector is delocalized.
Typically, the eigenvectors tend to be localized when the entry distribution has an infinite fourth
moment, while they tend to be delocalized otherwise; see Benaych-Georges and Péché [7] for the
case of Wigner matrices.

Proof of Theorem 3.11. Fix k ≥ 1. Since p→∞ we can assume k ≤ p for sufficiently large n. We
observe that

ZZ′ ej −D→j ej =
( n∑
t=1

Z1tZjt, . . . ,

n∑
t=1

Zj−1,tZjt, 0,

n∑
t=1

Zj+1,tZjt, . . . ,

n∑
t=1

ZptZjt

)′
, j = 1, . . . , p ,

are the columns of ZZ′ − diag(ZZ′). By Theorem 3.5(1),

a−2
np max

j=1,...,p
‖ZZ′ej −D→j ej‖`2 ≤ a−2

np ‖ZZ′ − diag(ZZ′)‖2
P→ 0 , n→∞ . (3.14)

If we set H(n) = a−2
npZZ

′, v(n) = eLk ∈ Rp and λ(n) = a−2
npD

→
Lk

, we see that

a−2
npZZ

′eLk = a−2
npD

→
Lk
eLk + ε(n)w(n),

where w(n) = ‖ZZ′eLk −D→LkeLk‖
−1
`2

(ZZ′eLk −D→LkeLk) is a unit vector and ε(n) = a−2
np ‖ZZ′eLk −

D→LkeLk‖`2
P→ 0 by (3.14).
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Figure 2. The components of the eigenvector v1. Right: The case of iid Pareto(0.8)
entries. Left: The case of iid standard normal entries. We choose p = 200 and
n = 1, 000.

Before we can apply Proposition A.7 we need to show that with probability converging to 1,
there are no other eigenvalues in a suitably small interval around λ(k). Let s > 1. We define the
set

Ωn = Ωn(k, s) = {a−2
np |λ(k) − λ(i)| > s ε(n) : i 6= k = 1, . . . , p} .

From (3.14) we get s ε(n) → 0. Then using this and (3.13), we obtain

lim
n→∞

P(Ωc
n) = lim

n→∞
P(a−2

np min{λ(k−1) − λ(k), λ(k) − λ(k+1)} ≤ s ε(n)) = 0

By Proposition A.7 the unit eigenvector vk associated with λ(k) and the projected vector PeLk
(vk) =

(vk)LkeLk satisfy for fixed δ > 0:

lim sup
n→∞

P(‖vk − (vk)LkeLk‖`2 > δ) ≤ lim sup
n→∞

P({‖vk − (vk)LkeLk‖`2 > δ} ∩ Ωn) + lim sup
n→∞

P(Ωc
n)

≤ lim sup
n→∞

P({2ε(n)/(s ε(n) − ε(n)) > δ} ∩ Ωn)

≤ lim sup
n→∞

P({2/(s− 1) > δ}) = 1{2/(s−1)>δ}.

The right-hand side is zero for sufficiently large s. Since both vk and eLk are unit vectors this
means that

‖vk − eLk‖`2
P→ 0 , n→∞ .

This proves our result on eigenvectors. �

4. Proof of Theorem 3.1

In what follows, c stands for any constant whose value is not of interest. We write (Zt) for an
iid sequence with the same distribution as Z.

The plan of the proof is as follows:

(1) We prove Theorem 3.5 which implies (3.1) and (3.2); see Corollary 3.7. In view of the
arguments after Theorem 3.1 it suffices to consider only the case β ∈ [0, 1].

(2) We prove (3.3).
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4.1. Proof of Theorem 3.5. We proceed in several steps.

The case α ∈ (0, 8/3). If α ∈ [1, 2) and E[|Z|] <∞, we have

a−1
np ‖Z− (Z− E[Z])‖2 = |E[Z]|

√
np

anp
→ 0 , n→∞.

Therefore, without loss of generality E[Z] can be assumed 0 in this case.
From now on we assume E[Z] = 0 whenever E[|Z|] exists. Since the Frobenius norm ‖ · ‖F is an

upper bound of the spectral norm we have

‖ZZ′ − diag(ZZ′)‖22 ≤ ‖ZZ′ − diag(ZZ′)‖2F

=

p∑
i,j=1;i 6=j

n∑
t=1

Z2
itZ

2
jt +

p∑
i,j=1;i 6=j

n∑
t1,t2=1;t1 6=t2

Zi,t1Zj,t1Zi,t2Zj,t2

=

p∑
i,j=1;i 6=j

n∑
t=1

Z2
itZ

2
jt

[
1{Z2

itZ
2
jt>a

4
np} + 1{Z2

itZ
2
jt≤a4np}

]
+ I

(n)
2

= I
(n)
11 + I

(n)
12 + I

(n)
2 .

Thus it suffices to show that each of the expressions on the right-hand side when normalized with
a4
np converges to zero in probability. We have for any ε > 0,

P
(
I

(n)
11 > εa4

np

)
≤ p2 nP(Z2

1Z
2
2 > a4

np)→ 0 .

Here we also used the fact that Z1Z2 is regularly varying with index α; see Embrechts and Goldie
[17]. An application of Markov’s inequality and Lyapunov’s moment inequality with γ ∈ (α/2, 4/3)
if α ∈ [2, 8/3) and γ = 1 otherwise shows that

P
(
I

(n)
12 > εa4

np

)
≤ c p

2n

a4
np

(
E[|Z1Z2|2γ1{|Z1Z2|≤a2np}]

) 1
γ ≤ c p2− 2

γ n
1− 2

γ
+δ → 0,

where we used Karamata’s theorem (see Bingham et al. [9]), and the constant δ > 0 can be chosen
arbitrarily small due to the Potter bounds.

In the case α ∈ (0, 2) the probability P
(n)
2 = P(I

(n)
2 > εa4

np) can be handled analogously. Next,

we turn to P
(n)
2 in the case α ∈ (2, 8/3). In particular, E[Z2] < ∞. With Čebychev’s inequality,

also using the fact that E[Z] = 0, we find that

P
(n)
2 ≤ c 1

a8
np

E
[( p∑

i,j=1;i 6=j

n∑
t1,t2=1;t1 6=t2

Zi,t1Zj,t1Zi,t2Zj,t2

)2]
≤ c (p n)2

a8
np

→ 0. (4.15)

The case α = 2 is most difficult because the second moment of Z can be infinite. Without loss
of generality we assume that Z is continuous. Otherwise, we add independent centered normal
random variables to each of the entries Zit; due the normalization a2

np the asymptotic properties of
the eigenvalues remain the same, i.e., the added normal components are asymptotically negligible.
In view of Hult and Samorodnitsky [20, Lemma 4.2] there exist constants C,K > 0 and a function
h : [K,∞)→ (0,∞) such that

E[Z1{−h(x)≤Z≤x}] = 0 and C−1 ≤ h(x)

x
≤ C (4.16)
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for all x ≥ K.1 We have

I
(n)
2 =

p∑
i,j=1;i 6=j

n∑
t1,t2=1;t1 6=t2

Zi,t1Zj,t1Zi,t2Zj,t2
[
1Aci,j,t1,t2

+ 1Ai,j,t1,t2
]

= I
(n)
21 + I

(n)
22 ,

where Ai,j,t1,t2 = {−h(a4
np) ≤ Zi,t1 , Zj,t1 , Zi,t2 , Zj,t2 ≤ a4

np}. We see that

P(I
(n)
21 > εa4

np) ≤ (p n)2 P(Aci,j,t1,t2) ≤ c (p n)2 P(|Z| > min(h(a4
np), a

4
np))

≤ c (pn)2 P(|Z| > min(C,C−1) a4
np) ≤ c (np)−2+δ → 0,

where we used the second formula in (4.16). The small constant δ > 0 comes from a Potter bound
argument. Finally, using the first condition in (4.16), we may conclude similarly to (4.15) that

P
(n)
22 = P(I

(n)
22 > εa4

np) ≤ c
(pn)2

a8
np

(
E[Z21{−h(a4np)≤Z≤a4np}]

)4
.

Since

E[Z21{|Z|≤max(C,C−1)x}] ≥ E[Z21{−h(x)≤Z≤x}] ,

and the left-hand side is slowly varying (see [18]), we have P
(n)
22 → 0. The proof is complete for

α ∈ (0, 8/3). �

The case α ∈ [8/3, 4). Before we can proceed with the case α ∈ [8/3, 4) we provide an auxiliary
result. Consider the following decomposition

[ZZ′ − diag(ZZ′)]2 = D + F + R ,

where

D = (Dij)i,j=1,...,p = diag([ZZ′ − diag(ZZ′)]2) ,

The p× p matrix F has a zero-diagonal and

Fij =

p∑
u=1;u6=i,j

n∑
t=1

Zit Zjt Z
2
ut, 1 ≤ i 6= j ≤ p ,

The p× p matrix R has a zero-diagonal and

Rij =

p∑
u=1;u6=i,j

n∑
t1=1

n∑
t2=1;t2 6=t1

Zi,t1 Zj,t2 Zu,t1 Zu,t2 , 1 ≤ i 6= j ≤ p .

Lemma 4.1. Assume the conditions of Theorem 3.5 and α ∈ (2, 4). Then a−4
np

(
‖D‖2 + ‖F‖2 +

‖R‖2
) P→ 0.

In view of this lemma we have

a−4
np ‖ZZ′ − diag(ZZ′)‖22 = a−4

np ‖[ZZ′ − diag(ZZ′)]2‖2 = a−4
np ‖D + F + R‖22

P→ 0 .

This finishes the proof of Theorem 3.5. It is left to prove Lemma 4.1.

Proof of the D-part. We have for i = 1, . . . , p,

Dii =

p∑
u=1

n∑
t=1

Z2
itZ

2
ut1{i 6=u} +

p∑
u=1

n∑
t1=1

n∑
t2=1

Zi,t1Zu,t1Zu,t2Zi,t21{i 6=u}1{t1 6=t2} = Mii +Nii .

1Here we assume that p+ p− > 0. If either p+ = 0 or p− = 0 one can proceed in a similar way by modifying h
slightly; we omit details.
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We write M and N for diagonal matrices constructed from (Mii) and (Nii) such that D = M+N.
First bounding ‖N‖2 by the Frobenius norm and then applying Markov’s inequality, one can prove

that a−4
np ‖N‖2

P→ 0. We have

E[Mii]

a4
np

≤ c np
a4
np

→ 0, n→∞.

Therefore centering of Mii will not influence the limit of the spectral norm a−4
np ‖M‖2. Writing

Ai,u = {|
∑n

t=1(Z2
itZ

2
ut − E[Z2

1Z
2
2 ])1{i 6=u}| > a2

np}, we have for i = 1, . . . , p,

Mii − E[Mii] =

p∑
u=1

n∑
t=1

(
Z2
itZ

2
ut − E[Z2

1Z
2
2 ]
)
1{i 6=u}

[
1Ai,u + 1Aci,u

]
= M

(1)
ii +M

(2)
ii .

On the one hand, ‖M (2)‖2 ≤ p a2
np. Hence a−4

np ‖M (2)‖2
P→ 0. On the other hand, we obtain with

Markov’s inequality, Proposition A.2 and the Potter bounds for ε > 0 and small δ > 0,

P(‖M (1)‖2 > εa4
np) = P( max

i=1,...,p
|M (1)

ii | > εa4
np)

≤ P
(

max
i=1,...,p

p∑
u=1

∣∣∣ n∑
t=1

(Z2
itZ

2
ut − E[Z2

1Z
2
2 ])1{i 6=u} 1Ai,u

∣∣∣ > εa4
np

)
≤ c

p2

a4
np

E
[∣∣∣ n∑

t=1

(Z2
1tZ

2
2t − E[Z2

1Z
2
2 ])
∣∣∣1A1,2

]
∼ c

p2

a4
np

na2
np P(Z2

1Z
2
2 > a2

np) ≤
p (np)δ

a2
np

→ 0,

since Z1Z2 is regularly varying with index α. This finishes the proof of the D-part. �

Proof of the F-part. Let δ > 0. We will use the following decomposition for i 6= j:

Fij =

p∑
u=1;u6=i,j

n∑
t=1

ZitZjt(Z
2
ut −E[Z21{Z2≤a4−2δ

np }]) +E[Z21{Z2≤a4−2δ
np }] (p− 2)

n∑
t=1

ZitZjt = F̃ij + Tij .

We observe that T = E[Z21{Z2≤a4−2δ
np }] (p − 2) (ZnZ

′
n − diag(ZnZ

′
n)). We have for some constant

c > 0,

‖T‖22 = ‖T2‖2 ≤ c p2 ‖(ZnZ′n − diag(ZnZ
′
n))2‖2

≤ c p2 ‖D + F̃ + R‖2 + c p2 ‖T‖2 .

Therefore

‖T‖2
a4
np

≤ c p

a2
np

(‖D + F̃ + R‖2
a4
np

)1/2
+ c

p

a2
np

(‖T‖2
a4
np

)1/2
. (4.17)

In the course of the proof of this lemma we show that

‖D + F̃ + R‖2
a4
np

P→ 0 .

Moreover, there is a small ε > 0 such that

δn =
p

a2
np

≤ n1−4/α+ε, 1− 4/α+ ε < 0 .
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Therefore iteration of (4.17) yields for k ≥ 1

‖T‖2
a4
np

≤ oP(1) + c δn

(
δn

(‖D + F̃ + R‖2
a4
np

)1/2)1/2
+ c δn

(
δn

(‖T‖2
a4
np

)1/2)1/2

= oP(1) + c
(
δ4+2
n

‖T‖2
a4
np

)1/4

≤ oP(1) + c
(
δ2k+···+2
n

‖T‖2
a4
np

)1/2k

. (4.18)

Using some elementary moment bounds for ‖T‖2 (e.g. a bound by the Frobenius norm), it is not

difficult to show that n−l‖T‖2
P→ 0 for some sufficiently large l. Thus we achieve that the right-hand

side in (4.18) converges to zero in probability.

It remains to show that a−4
np ‖F̃‖2

P→ 0. With the notation Bu,t = {Z2
ut ≤ a4−2δ

np } for some small

δ > 0, we decompose ZitZjt(Z
2
ut − E[Z21{Z2≤a4−2δ

np }]) as follows:

ZitZjt(Z
2
ut1Bu,t − E[Z21{Z2≤a4−2δ

np }]) + ZitZjtZ
2
ut1Bcu,t .

We decompose the matrix F̃ accordingly:

F̃ = F̃(1) + F̃(2) ,

such that, for example,

F̃
(1)
ij =

p∑
u=1;u6=i,j

n∑
t=1

ZitZjt(Z
2
ut1Bu,t − E[Z21{Z2≤a4−2δ

np }]) , i 6= j.

F̃(1): Bounding the spectral norm by the Frobenius norm, applying Markov’s inequality and using
Karamata’s theorem together with the Potter bounds one can check that for ε > 0 and small δ > 0,

P(‖F̃(1)‖2 > εa4
np) ≤ c a−8

np E
[ p∑
i,j=1

(F̃
(1)
ij )2

]
≤ c p

3 n

a8
np

E[(Z1Z2)2]E[(Z21{Z2≤a4−2δ
np } − E[Z21{Z2≤a4−2δ

np }])
2]

≤ c p
3 n

a8
np

E[Z41{Z2≤a4−2δ
np }]

≤ cp
3n

a4δ
np

P(|Z| > a2−δ
np )→ 0 , n→∞,

F̃(2): We have for small δ > 0,

P(‖F̃(2)‖2 > εa4
np) ≤ P

( ⋃
1≤u≤p ,1≤t≤n

Bc
u,t

)
≤ p nP(|Z| > a2−δ

np )→ 0 , n→∞ .

The proof of the F-part is complete. �

Proof of the R-part. We have

E[‖R‖22] ≤ E[‖R‖2F ] ≤
p∑

i,j=1

p∑
u=1

n∑
t1=1

n∑
t2=1

(E[Z2])4 ≤ c p3 n2 .
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Therefore and by Markov’s inequality for ε > 0,

P(‖R‖2 > εa4
np) ≤ c

p3 n2

a8
np

→ 0, n→∞ , (4.19)

as long as α ∈ (2, 16/5). For α ∈ [16/5, 4) we use a similar idea for the truncated entries. Write

R = R + R̃, where for i 6= j

Rij =

p∑
u=1;u6=i,j

n∑
t1=1

n∑
t1=1;t1 6=t2

Zi,t1Zj,t2Zu,t1Zu,t2 1Ai,j,t1,t2 ,

R̃ij =

p∑
u=1;u6=i,j

n∑
t1=1

n∑
t1=1;t1 6=t2

Zi,t1Zj,t2Zu,t1Zu,t2 1Aci,j,t1,t2
,

with Aci,j,t1,t2 = {−h(anp) ≤ Zi,t1 , Zj,t2 , Zu,t1 , Zu,t2 ≤ anp} and h as in (4.16). Analogously to

(4.19), using the fact that the random variables Zi,t1Zj,t2Zu,t1Zu,t2 1Ai,j,t1,t2 are uncorrelated for
the considered index set, one obtains for ε > 0,

P(‖R‖2 > εa4
np) ≤ c

p3 n2

a8
np

E[Z21{|Z|>min(C,C−1) anp}]

≤ c
p3 n2

a6
np

P(|Z| > min(C,C−1) anp)→ 0

as n→∞, where we used Karamata’s theorem and P(Ai,j,t1,t2) ≤ cP(|Z| > min(C,C−1) anp).

We introduce the truncated random variables Z̃it = Zit1{−h(anp)≤Zit≤anp} with generic element

Z̃. We will repeatedly use the following inequality which is valid for a real symmetric matrix M:

‖M‖22 ≤ ‖M‖2F = tr(M2).

Then we have for k ≥ 1, ‖R̃2k−1‖22 = ‖R̃2k‖2 and

‖R̃‖2k2 ≤ tr(R̃2k) =

p∑
i,j=1

(R̃2k−1
)2
ij .

This together with the Markov inequality of order 2k yields

P(‖R̃‖2 > ca4
np) ≤ ca−4·2k

np E
[ p∑
i,j=1

(R̃2k−1
)2
ij

]
. (4.20)

Next we study the structure of R̃2k−1
. The (i, j)-entry of this matrix is

(R̃2k−1
)ij =

p∑
i1=1

· · ·
p∑

i
2k−1−1

=1

R̃i,i1R̃i1,i2 · · · R̃i2k−1−2
,i
2k−1−1

R̃i
2k−1−1

,j . (4.21)

In view of (4.21) and by definition of R̃, (R̃2k−1
)ij contains exactly 2k − 1 sums running from 1

to p, and 2k sums running from 1 to n. Now we consider the expectation on the right-hand side

of (4.20). The highest and lowest powers of Z̃it in this expectation are 2k and 1. Let (I, T ) =
((i1, t1), . . . , (i2k , t2k)). We have

E
[ p∑
i,j=1

(R̃2k−1
)2
ij

]
=

∑
(I,T )∈S

E[Z̃i1,t1Z̃i2,t2 · · · Z̃i2k ,t2k ],

where S ⊂ {1, . . . , p}2k × {1, . . . , n}2k is the index set that covers all combinations of indices that

arise on the left-hand side. Since E[Z̃] = 0, each Z̃ in Z̃i1,t1Z̃i2,t2 · · · Z̃i2k ,t2k must appear at least
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twice for the expectation of this product to be non-zero. Let S1 ⊂ S be the set of all those indices

that make a non-zero contribution to the sum. From the specific structure of R̃, (4.21) and the
considerations above it now follows that the cardinality of S1 has the following bound

|S1| ≤ c(k) p2 p2k−1 n2k = c p2k+1 n2k .

For l = 2, 3 we can use E[|Z̃ l|] ≤ c. If l ≥ 4, we infer with Karamata’s theorem

E[|Z̃ l|] ≤ c alnp P(|Z| > anp). (4.22)

The subset of S1 (say Sl) which generates a Z̃ l for l ≥ 4 is much smaller than S1. Also its cardinality
is divided by at least n if we go from l to l+ 1, i.e. |Sl| ≥ n|Sl+1|. Observe that na−1

np converges to

infinity. This combined with (4.22) tells us that only the case of every Z̃ appearing exactly twice
is of interest since it has most influence on the expectation in (4.20). We conclude that

1

a4·2k
np

E
[ p∑
i,j=1

(R̃2k−1
)2
ij

]
≤ c |S1|

a4·2k
np

≤ c p
( np
a4
np

)2k

≤ c (np)
( np
a4
np

)2k

.

The expression on the right-hand side converges to 0 if 1 + 2k − 2k+2/α < 0 or equivalently

k > log
( α

4− α

)
(log 2)−1.

Since k was arbitrary the proof of the R-part is finished. �

4.2. Proof of (3.3). We define the p× p matrix Y→n as the diagonal matrix with elements

(Y→n )ii = max
t=1,...,n

Z2
it , i = 1, . . . , p .

Correspondingly, we define the n× n matrix Y↓n as the diagonal matrix with elements

(Y↓n)tt = max
i=1,...,p

Z2
it , t = 1, . . . , n .

Lemma 4.2. Assume the conditions of Theorem 3.1.

(1) If β ∈ ((α/2− 1)+, 1] we have

a−2
np max

i=1,...,p

∣∣λ(i) − λ(i)(Y
→
n )
∣∣ P→ 0 , n→∞ .

(2) If β−1 ∈ ((α/2− 1)+, 1) we have

a−2
np max

i=1,...,n

∣∣λ(i) − λ(i)(Y
↓
n)
∣∣ P→ 0 , n→∞ .

Proof. We restrict ourselves to the proof in the case β ∈ (0, 1]; the case β > 1 can again be handled
by switching from ZZ′ to Z′Z. An application of Weyl’s inequality (see (3.5)) and the triangle
inequality yield

a−2
np max

i=1,...,p

∣∣λ(i) − λ(i)(Y
→
n )
∣∣ ≤ a−2

np ‖ZZ′ − diag(ZZ′)‖2 + a−2
np ‖ diag(ZZ′)− diag(Y→n )‖2.

The first term on the right-hand side converges to 0 in probability by Theorem 3.5(1). As regards
the second term we have

a−2
np ‖ diag(ZZ′)− diag(Y→n )‖2 = a−2

np max
i=1,...,p

∣∣∣D→i − max
t=1,...,n

Z2
it

∣∣∣ .
The right-hand side converges to zero in probability in view of Lemma A.6 applied to (Z2

it). �

Now (3.3) follows from the next result.

Lemma 4.3. Assume the conditions of Theorem 3.1.
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(1) If β ∈ ((α/2− 1)+, 1] we have

a−2
np max

i=1,...,p

∣∣λ(i)(Y
→
n )− Z2

(i),np

∣∣ P→ 0 , n→∞ .

(2) If β−1 ∈ ((α/2− 1)+, 1) we have

a−2
np max

i=1,...,n

∣∣λ(i)(Y
↓
n)− Z2

(i),np

∣∣ P→ 0 , n→∞ .

Proof. We focus on part (1). We write V(1) ≥ · · · ≥ V(p) for the order statistics of (maxt=1,...,n Z
2
it).

By definition of the order statistics we have Z2
(i),np ≥ V(i) for i = 1, . . . , p. We choose δ such that

1 > δ > 2+β
2(1+β) and define the event

B2δ
np = {There is a row of (Z2

it) with at least two entries larger than a2δ
np.} .

By Lemma A.5, P(B2δ
np)→ 0.

Next, we choose 0 < ε < 1 − δ. Then Lemma A.4 guarantees the existence of a sequence
k = kn →∞ such that the event

Ωn = {Z2
(k),np > a2(1−ε)

np }

satisfies P(Ωc
n)→ 0. On the event (B2δ

np)
c ∩ Ωn we have

V(i) − Z2
(i),np = 0 , i = 1, . . . , k.

This shows for γ > 0,

lim sup
n→∞

P
(
a−2
np max

i=1,...,p
|V(i) − Z2

(i),np| > γ
)
≤ lim sup

n→∞
P
(
{a−2

np max
i=1,...,p

|V(i) − Z2
(i),np| > γ} ∩ (B2δ

np)
c ∩ Ωn

)
+ lim sup

n→∞
P(B2δ

np) + lim sup
n→∞

P(Ωc
n)

= lim sup
n→∞

P
(
{a−2

np max
i=k+1,...,p

|V(i) − Z2
(i),np| > γ} ∩ (B2δ

np)
c ∩ Ωn

)
≤ lim sup

n→∞
P
(
2 a−2

np Z
2
(k+1),np > γ

)
= 0.

�

5. Generalization to autocovariance matrices

An important topic in multivariate time series analysis is the study of the covariance structure.
From the field (Zit) we construct the p× n matrices

Z(s, k) = Zn(s, k) = (Zi−s,t−k)i=1,...,p;t=1,...,n , s, k ∈ Z .
We introduce the (non-normalized) generalized sample autocovariance matrices

(Z(0, 0)Z(s, k)′) , s, k ∈ Z ,
with entries

(Z(0, 0)Z(s, k)′)ij =

n∑
t=1

Zi,t Zj−s,t−k , i, j = 1, . . . , p .

If min(|s|, |k|) 6= 0, the generalized sample autocovariance matrix Z(0, 0)Z(s, k)′ is not symmetric
and might thus have complex eigenvalues. In what follows, we will be interested in the singular
values λ1(s, k), . . . , λp(s, k) of Z(0, 0)Z(s, k)′. The singular values of a matrix A are the square
roots of the eigenvalues of AA′. We reuse the notation (λi(s, k)) for the singular values and again
write λ(1)(s, k) ≥ · · · ≥ λ(p)(s, k) for their order statistics.

Theorem 5.1. Assume s, k ∈ Z. Consider the p×n-dimensional matrices Z(0, 0) and Z(s, k) with
iid entries. We assume the following conditions:
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• The regular variation condition (1.7) for some α ∈ (0, 4).
• E[Z] = 0 for α ≥ 2.
• The integer sequence (pn) has growth rate Cp(β) for some β ≥ 0.

(1) If k 6= 0, then

a−2
np λ(1)(s, k)

P→ 0 .

Now assume k = 0 and recall the notation D→(i) and D↓(i) from Section 2.2. Then the following

statements hold:

(2) If β ∈ [0, 1], then

a−2
np max

i=1,...,p−|s|

∣∣λ(i)(s, 0)−D→(i)
∣∣ P→ 0 . (5.1)

(3) If β > 1, then

a−2
np max

i=1,...,n−|s|

∣∣λ(i)(s, 0)−D↓(i)
∣∣ P→ 0 . (5.2)

(4) If min(β, β−1) ∈ ((α/2− 1)+, 1], then

a−2
np max

i=1,...,p−|s|

∣∣λ(i)(s, 0)− Z2
(i),np

∣∣ P→ 0 . (5.3)

Proof. We focus on the case β ∈ [0, 1]. The proof is analogous to the proof of Theorem 3.1 which
was given in Section 4. This proof relied on the reduction of ZZ′ to its diagonal. If k = 0, we will
reduce Z(0, 0)Z(s, k)′ to a p × p matrix M(s,k), which only takes values on its sth sub-diagonal.

The entries of the sth sub-diagonal of M(s,k) are M
(s,k)
i,i+s, i = 1 + s−, . . . , p − s+. Here s+, s− ≥ 0

are the positive and negative parts of s, respectively.
We sketch the steps of this reduction. Let k ∈ Z. For simplicity of notation assume s ≥ 0. Define

the p× p matrix M(s,k),

M
(s,k)
i,i+s = 1{k=0}(Z(0, 0)Z(s, 0)′)i,i+s = 1{k=0}

n∑
t=1

Z2
it , i = 1, . . . , p− s ,

and M
(s,k)
ij = 0 for all other i, j. We have(

(Z(0, 0)Z(s, k)′−M(s,k))(Z(0, 0)Z(s, k)′ −M(s,k))′
)
ij

=

p∑
u=1

n∑
t1=1

n∑
t2=1

Zi,t1Zj,t2Zu−s,t1−kZu−s,t2−k1{i 6=u−s,j 6=u−s}

× (1{i=j} + 1{i 6=j,t1=t2} + 1{i 6=j,t1 6=t2})

= Dij + Fij + Rij .

Repeating the steps in the proof of Lemma 4.1, one obtains

a−4
np ‖D + F + R‖22

P→ 0 .

Therefore we also have

a−4
np ‖Z(0, 0)Z(s, k)′ −M(s,k)‖22 = a−4

np ‖(Z(0, 0)Z(s, k)′ −M(s,k))(Z(0, 0)Z(s, k)′ −M(s,k))′‖2
P→ 0 .

This proves part (1). Since, with probability tending to 1, the matrix M(s,k) has the required
singular values, part (2) follows by Weyl’s inequality.

Finally, part (4) is a consequence of Lemma 4.3. �

We obtain the following result for the weak convergence of the point processes of the points
λi(s, 0), s = 0, . . . , l; the proof is similar to the one of Theorem 5.1.
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Corollary 5.2. Assume the conditions of Theorem 5.1. Then, with the notation of Theorem 3.10,
the following point process convergence holds for l ≥ 0 and (β, β−1) ∈ ((α/2− 1)+, 1],

p∑
i=1

ε
a−2
np

(
λ(i)(0,0),...,λ(i)(l,0)

) d→
∞∑
i=1

ε
Γ
−2/α
i

(
1,...,1

) .
The joint convergence of a finite number of the random variables λ(i)(s, 0), i ≥ 1, s ≥ 0, is an

immediate consequence of this result.

Appendix A. Regular variation, large deviations and point processes

Let (Zi) be iid copies of Z whose distribution satisfies

P(Z > x) ∼ p+
L(x)

xα
and P(Z ≤ −x) ∼ p−

L(x)

xα
, x→∞ ,

for some tail index α > 0, where p+, p− ≥ 0 with p+ + p− = 1 and L is a slowly varying function.
We say that Z is regularly varying with index α. The monograph [9] contains many properties and
useful tools for regularly varying functions. Theorem 1.5.6 therein, which is known as Potter bounds,
asserts that a regularly varying function essentially lies between two power laws. In particular, for
any δ > 0 and C > 1 we have for x sufficiently large,

C−1x−δ ≤ L(x) ≤ Cxδ .

Theorem 1.6.1 in [9], widely known as Karamata’s theorem, describes the behavior of truncated
moments of the regularly varying random variable Z. For x→∞,

E[|Z|β1{|Z|≤x}] ∼
α

β − α
xβP(|Z| > x), β > α,

E[|Z|β1{|Z|>x}] ∼
α

α− β
xβP(|Z| > x), β < α.

If E[|Z|] <∞ also assume E[Z] = 0. The product Z1Z2 is regular varying with the same index α
and P(|Z1Z2| > x) = x−αL1(x), where L1 is slowly varying function different from L; see Embrechts
and Goldie [17]. Write

Sn = Z1 + · · ·+ Zn , n ≥ 1,

and consider a sequence (an) such that P(|Z| > an) ∼ n−1.

A.1. Large deviation results. The following theorem can be found in Nagaev [27] and Cline and
Hsing [11] for α > 2 and α ≤ 2, respectively; see also Denisov et al. [15].

Theorem A.1. Under the assumptions on the iid sequence (Zt) given above the following relation
holds

sup
x≥cn

∣∣∣∣ P(Sn > x)

nP(|Z| > x)
− p+

∣∣∣∣→ 0 ,

where (cn) is any sequence satisfying cn/an →∞ for α ≤ 2 and cn ≥
√

(α− 2)n log n for α > 2.

A.2. Karamata theory for sums.

Proposition A.2. Let (cn) be the threshold sequence in Theorem A.1 for a given α > 0, and let
(dn) be such that dn/cn →∞ for α > 2 and dn = cn for α ≤ 2. Assume 0 < γ < α. Then we have
for a sequence xn ≥ dn

E[|x−1
n Sn|γ1{|Sn|>xn}] ∼

α

α− γ
nP(|Z| > xn), n→∞. (A.1)
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Proof. We use the notation Yn := |x−1
n Sn|. Since Y γ

n 1{Yn>1} is a positive random variable one can
write

E[Y γ
n 1{Yn>1}] =

∫ ∞
0

P(Y γ
n 1{Yn>1} > y) dy.

The probability inside the integral is

P(Y γ
n 1{Yn>1} > y) = P(Y γ

n 1{Yn>1} > y, Yn > 1) + P(Y γ
n 1{Yn>1} > y, Yn < 1)

= P(Y γ
n > y, Yn > 1) = P(Yn > max{y1/γ , 1})

=

{
P(Yn > 1) if y ≤ 1,

P(Yn > y1/γ) if y ≥ 1.

Therefore, using the uniform convergence result in Theorem A.1, we conclude that∫ ∞
0

P(Y γ
n 1{Yn>1} > y) dy = P(Yn > 1) +

∫ ∞
1

P(Yn > y1/γ) dy

∼ nP(|Z| > xn) +

∫ ∞
1

y
−α
γ nP(|Z| > xn) dy

=
α

α− γ
nP(|Z| > xn), n→∞.

�

A.3. A point process convergence result. Assume that the conditions at the beginning of

Appendix A hold. Consider a sequence of iid copies (S
(t)
n )t=1,2,... of Sn and the sequence of point

processes

Nn =

p∑
t=1

ε
a−1
npS

(t)
n
, n = 1, 2, . . . ,

for an integer sequence p = pn →∞. We assume that the state space of the point processes Nn is
R0 = [R ∪ {±∞}]\{0}.

Lemma A.3. Assume α ∈ (0, 2) and the conditions of Appendix A on the iid sequence (Zt) and the

normalizing sequence (an). Then the limit relation Nn
d→ N holds in the space of point measures

on R0 equipped with the vague topology (see [30, 29]) for a Poisson random measure N with state
space R0 and intensity measure µα(dx) = α|x|−α−1(p+1{x>0} + p−1{x<0})dx.

Proof. According to Resnick [30], Proposition 3.21, we need to show that pP(a−1
npSn ∈ ·)

v→ µα,

where
v→ denotes vague convergence of Radon measures on R0. Observe that we have anp/an →∞

as n→∞. This fact and α ∈ (0, 2) allow one to apply Theorem A.1:

P(Sn > xanp)

nP(|Z| > anp)
→ p+x

−α and
P(Sn ≤ −xanp)
nP(|Z| > anp)

→ p− x
−α , x > 0 .

On the other hand, nP(|Z| > anp) ∼ p−1 as n→∞. This proves the lemma. �

A.4. Auxiliary results. Assume that the non-negative random variable Z is regularly varying
with index α ∈ (0, 2) and (an) is such that nP(Z > an) ∼ 1. We also write

Z(1) ≥ · · · ≥ Z(n) ,

for the order statistics of the iid copies Z1, . . . , Zn of Z.

Lemma A.4. For every ε ∈ (0, 0.5) there exists a sequence k = kn →∞, k < n such that

lim
n→∞

P(Z(k) > a1−ε
n ) = 1.
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Proof of Lemma A.4. From the theory of order statistics we know that

P(Z(k) ≤ a1−ε
n ) =

k−1∑
r=0

(
n

r

)
P(Z > a1−ε

n )r P(Z ≤ a1−ε
n )n−r

≤
(
P(Z ≤ a1−ε

n )
)n k−1∑

r=0

1

r!

(nP(Z > a1−ε
n )

P(Z ≤ a1−ε
n )

)r
.

We observe that (
P(Z ≤ a1−ε

n )
)n ∼ e−n

[
P(Z>a1−εn )−0.5(P(Z>a1−εn ))2(1+o(1))

]
Writing Γ(k) and Γ(k, y) for the gamma and incompete gamma functions, we have

e−y
k−1∑
r=0

yr

r!
=

Γ(k, y)

Γ(k)
= P(Γk > y), y ≥ 0 ,

where Γk = E1 + · · ·+ Ek, k ≥ 1, for an iid standard exponential sequence (Ei). Therefore

P(Z(k) ≤ a1−ε
n )

≤ c e−n
[
P(Z>a1−εn )−0.5(P(Z>a1−εn ))2(1+o(1))

]
+
[
nP(Z>a1−εn )/P(Z≤a1−εn )

]
P
(
Γk > nP(Z > a1−ε

n )/P(Z ≤ a1−ε
n )

)
= c eO

(
n (P(Z>a1−εn ))2

)
P
(
k−1Γk > k−1nP(Z > a1−ε

n )/P(Z ≤ a1−ε
n )

)
.

The right-hand side converges to zero if 2ε < 1 and k ≤ nε′ for some ε′ < ε. �

Now consider a p× n random matrix Z with iid non-negative entries Zit and generic element Z
as specified above. The number of rows p satisfies the growth condition Cp(β).

We write for δ > 0,

Bδ
np = {There is a row of Z with at least two entries larger than aδnp.} , (A.2)

Lemma A.5. Assume that p = pn satisfies the growth condition Cp(β) with β ∈ [0, 1]. Then we
have

lim
n→∞

P(Bδ
np) = 0 for all δ >

2 + β

2(1 + β)
.

Proof of Lemma A.5. Assume δ > 2+β
2(1+β) and consider the counting variables

Ni =

n∑
t=1

1{Zit>aδnp}, i = 1, . . . , p.

Clearly, Ni are iid Bin(n, q) with q = qn = P(Z > aδnp)→ 0 as n→∞ and

P(Bδ
np) = P( max

i=1,...,p
Ni ≥ 2)

= 1−
(
P(N1 ≤ 1)

)p
= 1−

(
(1− q)n−1(1 + (n− 1)q)

)p
.

Thus it remains to show that the right-hand side converges to 0. Taking logarithms, we get

p log
(
(1− q)n−1 (1 + (n− 1)q)

)
= p [(n− 1) log(1− q) + log(1 + (n− 1)q)].

A second order Taylor expansion of the logarithm yields

p (n− 1) log(1− q) + p log(1 + (n− 1)q) = p q + p
(nq)2

2
+O(p (nq2 + (nq)3) ). (A.3)
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By the Potter bounds we conclude that (A.3) converges to zero if δ > 2+β
2(1+β) . The proof is

complete. �

For ε ∈ (0, 1) define the events

A
(n)
i (ε) =

{ n∑
t=1

Zit − max
t=1,...,n

Zit > a1−ε
np

}
, i = 1, . . . , p .

The following result generalizes Lemma 5 in Auffinger et al. [2] (which in turn is a modified version
of a result in Soshnikov [31]) to the case of regularly varying growth rates (pn). The method of
proof is different from the aforementioned literature.

Lemma A.6. Assume that p = pn = nβ`(n) where ` is a slowly varying function. Assume
β ∈ (0,∞) for α ∈ (0, 1] and β ∈ (α− 1,∞) for α ∈ [1, 2). There exists a constant ε ∈ (0, 1) such
that

lim
n→∞

P
( p⋃
i=1

A
(n)
i (ε)

)
= 0 .

Proof. Write Mt = maxi=1,...,t Zi. We observe that

P
( p⋃
i=1

A
(n)
i (ε)

)
≤ pP(Sn −Mn > a1−ε

np )

= n pP(Sn−1 > a1−ε
np , Zn > Mn−1)

= n p

∫ ∞
0

P(Sn−1 > a1−ε
np , z > Mn−1) dP(Z ≤ z) .

We split the integration area into disjoint sets:

[0,∞) = [0, an/hn] ∪ (an/hn, a
γ
np] ∪ (aγnp,∞) =

3⋃
i=1

Bi .

We choose hn →∞ such that nP(Z > an/hn) ∼ 2 log(np). Then

log(np)− nP(Z > an/hn)→ −∞ , n
(
P(Z > an/hn)

)2 → 0 . (A.4)

Moreover, choose γ and ε > 0 fixed such that ε < 1− (1 ∨ α)/(1 + β) and

• 1
1+β + ε < γ < 1− ε

1−α if α ∈ (0, 1) and

• 1
1+β + ε < γ < 1− 2ε

2−α if α ∈ [1, 2).

By virtue of (A.4) we have

n p

∫
B1

P(Sn−1 > a1−ε
np , z > Mn−1) dP(Z ≤ z) ≤ n pP(Mn−1 ≤ an/hn)

= e log(np)−nP(Z>an/hn)+o(1) → 0 .

By definition of ε, we have (an+n)/a1−ε
np → 0 for α ∈ (0, 2). Therefore an application of Theorem A.1

yields

n p

∫
B3

P(Sn−1 > a1−ε
np , z > Mn−1) dP(Z ≤ z) ≤ n pP(Sn−1 > a1−ε

np )P(Z > aγnp)

∼
(
n pP(Z > a1−ε

np )
) (
nP(Z > aγnp)

)
.

The right-hand side converges to zero due to the property γ > 1/(1 + β) + ε.
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Now assume α ∈ (0, 1). Then we have by Markov’s inequality and Karamata’s theorem,

n p

∫
B2

P(Sn−1 > a1−ε
np , z > Mn−1) dP(Z ≤ z)

≤ n2 p

a1−ε
np

∫
B2

E[Z1{Z≤z}] dP(Z ≤ z)

≤ n2 p

a1−ε
np

E[Z1{Z≤aγnp}]P(Z > an/hn)

∼ c
n p

a1−ε
np

[
aγnp P(Z > aγnp)

]
log(np) .

An application of the Potter bounds and using the fact that γ < 1 − ε/(1 − α) shows that the
right-hand side converges to zero for the chosen ε.

Now assume α ∈ [1, 2) and β > α − 1. Due to the latter condition we have n/a1−ε
np → 0. We

obtain by Čebyshev’s inequality and Karamata’s theorem,

n p

∫
B2

P(Sn−1 > a1−ε
np , z > Mn−1) dP(Z ≤ z)

≤ n p

∫
B2

P
( n∑
t=1

Zt 1{Zt≤aγnp} − nE
[
Z 1{Z≤aγnp}

]
> a1−ε

np − nE
[
Z 1{Z≤aγnp}

]
) dP(Z ≤ z)

≤ n p

∫
B2

P
( n∑
t=1

Zt 1{Zt≤aγnp} − nE
[
Z 1{Z≤aγnp}

]
> ca1−ε

np

)
dP(Z ≤ z)

≤ n p
E[Z2 1{Z≤aγnp}]

a
2(1−ε)
np

[
nP(Z > an/hn)

]
∼ c n p

a2 γ
npP(Z > aγnp)

a
2(1−ε)
np

log(np) .

The right-hand side converges to zero since γ < 1− 2ε/(2− α). This finishes the proof. �

A.5. Perturbation theory for eigenvectors. We state Proposition A.1 in Benaych-Georges and
Péché [7].

Proposition A.7. Let H be a Hermitean matrix and v a unit vector such that for some λ ∈ R,
ε > 0,

Hv = λv + εw ,

where w is a unit vector such that w ⊥ v.

(1) Then H has an eigenvalue λε such that |λ− λε| ≤ ε.
(2) If H has only one eigenvalue λε (counted with multiplicity) such that |λ − λε| ≤ ε and all

other eigenvalues are at distance at least d > ε from λ. Then for a unit eigenvector vε
associated with λε we have

‖vε −Pv(vε)‖`2 ≤
2 ε

d− ε
,

where Pv denotes the orthogonal projection onto Span(v).
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