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THE INTEGRATED PERIODOGRAM OF A DEPENDENT EXTREMAL

EVENT SEQUENCE

THOMAS MIKOSCH AND YUWEI ZHAO

Abstract. We investigate the asymptotic properties of the integrated periodogram calculated
from a sequence of indicator functions of dependent extremal events. An event in Euclidean space is
extreme if it occurs far away from the origin. We use a regular variation condition on the underlying
stationary sequence to make these notions precise. Our main result is a functional central limit
theorem for the integrated periodogram of the indicator functions of dependent extremal events.
The limiting process is a continuous Gaussian process whose covariance structure is in general
unfamiliar, but in the iid case a Brownian bridge appears. In the general case, we propose a
stationary bootstrap procedure for approximating the distribution of the limiting process. The
developed theory can be used to construct classical goodness-of-fit tests such as the Grenander-
Rosenblatt and Cramér-von Mises tests which are based only on the extremes in the sample. We
apply the test statistics to simulated and real-life data.

1. Introduction

1.1. Regularly varying sequences. We consider a strictly stationary Rd-valued sequence (Xt)
for some d ≥ 1 with a generic element X and assume that its finite-dimensional distributions are
regularly varying. This means that for every h ≥ 1, there exists a non-null Radon measure µh on

the Borel σ-field Bdh

0 of R
dh

0 = R
dh\{0}, R = {−∞,∞}, such that

P (x−1(X1, . . . , Xh) ∈ ·)
P (|X | > x)

v→ µh(·) ,(1.1)

where
v→ denotes vague convergence in Bdh

0 ; cf. Resnick [25, 26], Kallenberg [20]. The limiting
measure µh necessarily has the property µh(t·) = t−αµh(·), t > 0, for some α ≥ 0, the index of
regular variation. In what follows, we assume that α > 0. Relation (1.1) is equivalent to the
sequential definition

nP (a−1
n (X1, . . . , Xh) ∈ ·) v→ µh(·) , n→ ∞ ,(1.2)

where (an) is chosen such that P (|X | > an) ∼ n−1 as n → ∞. We will say that the sequence (Xt)
and any of the vectors (X1, . . . , Xh), h ≥ 1, are regularly varying with index α.

Examples of regularly varying strictly stationary sequences are linear and stochastic volatility
processes with iid regularly varying noise, GARCH processes, infinite variance stable processes and
max-stable processes with Fréchet marginals. These examples are discussed e.g. in Davis et al.
[7, 10, 11], Mikosch and Zhao [21].
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financial support and a constructive scientific atmosphere. The research of Thomas Mikosch is partly supported by
the Danish Research Council Grant DFF-4002-000435.

1

http://arxiv.org/submit/1206130/pdf
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1.2. The extremogram. Consider a µ1-continuity Borel set D0 = A ⊂ R
d

0 bounded away from

zero and such that µ1(A) > 0. Then the sets Dh = A×R
d(h−1) ×A are bounded away from zero as

well and are continuity sets with respect to the corresponding limiting measures µh+1, h ≥ 1. We
conclude from (1.2) that the limits

γA(h) = lim
n→∞

nP (a−1
n X0 ∈ A , a−1

n Xh ∈ A) = µh+1(Dh) , h ≥ 0 ,(1.3)

exist. For t ∈ Z, it is not difficult to see that

n cov(I{a−1
n Xt∈A}, I{a−1

n Xt+h∈A}) ∼ nEI{a−1
n Xt∈A ,a−1

n Xt+h∈A}

= nP (a−1
n X0 ∈ A , a−1

n Xh ∈ A)

→ γA(h) , n→ ∞ .

Hence γA constitutes the covariance function of a stationary process. We refer to γA as the ex-
tremogram relative to the set A. We will also consider the standardized extremogram given as the
limiting sequence

ρA(h) = lim
n→∞

P (a−1
n Xh ∈ A | a−1

n X0 ∈ A) =
µh+1(Dh)

µ1(D0)
, h ≥ 0 .

The quantities ρA(h) have an intuitive interpretation as limiting conditional probabilities. Moreover,
ρA is the autocorrelation function of a stationary process. The quantities ρA(h) are generalizations
of the upper tail dependence coefficient of a two-dimensional vector (Y1, Y2) with identical marginals
given as the limit limx→∞ P (Y2 > x | Y1 > x).

The extremogram was introduced in Davis and Mikosch [7] as a measure of serial extremal
dependence in a strictly stationary sequence. There and in Davis et al. [10, 11] various aspects of
the estimation of the extremogram were discussed, including asymptotic theory and the use of the
stationary bootstrap for the construction of confidence bands.

1.3. The sample extremogram. Natural estimators of the extremograms γA and ρA are given
by their respective sample analogs

γ̃A(h) =
m

n

n−h∑

t=1

ĨtĨt+h and ρ̃A(h) =
γ̃A(h)

γ̃A(0)
, h ≥ 0 .

Here m = mn is any integer sequence satisfying the conditions mn → ∞ and mn/n = o(1) and

It = I{a−1
m Xt∈A} , Ĩt = It − p0 , and p0 = EIt = P (a−1

m X ∈ A) , t ∈ Z .

It is shown in Davis and Mikosch [7] that the conditions mn → ∞ and mn/n = o(1) are needed
for the validity of the asymptotic properties Eγ̃A(h) → γA(h) and var(γ̃A(h)) → 0 as n → ∞.
Moreover, under a mixing condition, the finite-dimensional distributions of γ̃A and ρ̃A satisfy a
central limit theorem with normalization (n/m)1/2; cf. Lemma 4 below.

1.4. Spectral density and periodogram. Since γA and ρA are the autocovariance and auto-
correlation functions of a stationary process, respectively, it is possible to enter the corresponding
frequency domain. If γA is square summable one can define the spectral densities

hA(λ) =
∑

h∈Z

γA(h) e
−ihλ and fA(λ) =

∑

h∈Z

ρA(h) e
−ihλ , λ ∈ [0, π] = Π .

A natural estimator of the spectral density is the periodogram. Since the sample autocovariances

γ̃A(h) are derived from the triangular array of the stationary sequences (Ĩt), an analog of the classical
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periodogram for hA is given by

In,A(λ) =
m

n

∣∣∣
n∑

t=1

Ĩt e
−i t λ

∣∣∣
2

= γ̃A(0) + 2

n−1∑

h=1

γ̃A(h) cos(hλ) , λ ∈ Π ,

and the periodogram for the standardized spectral density fA is obtained as the scaled periodogram
In,A/γ̃A(0). Mikosch and Zhao [21] showed under mixing conditions that the extremal periodogram
ordinates In,A(λ) share various of the classical properties of the periodogram ordinates for a sta-
tionary sequence (cf. Brockwell and Davis [3]): consistency in the mean, convergence in distribution
to independent exponential random variables with expectation hA(λj) at distinct fixed frequencies
λj ∈ (0, π) and at distinct Fourier frequencies ωn(j) = 2πj/n ∈ (0, π) provided these frequencies
converge to a limit λj ∈ (0, π) as n→ ∞. The latter property ensures that weighted versions of the
periodogram In,A at fixed frequencies λ ∈ (0, π) converge in mean square to hA(λ).

For practical purposes, one will mostly work with the periodogram at the Fourier frequencies
ωn(j) ∈ (0, π). Then

In,A(ωn(j)) =
m

n

∣∣∣
n∑

t=1

It e
−i t ωn(j)

∣∣∣
2

,

i.e., centering of the indicator functions It is not needed. However, for proving asymptotic theory
it will be convenient to work with the extremal periodogram In,A based on the centered quantities

Ĩt, t = 1, . . . , n.

1.5. The integrated periodogram. The integrated periodogram of a stationary sequence has a
long history in time series analysis, starting with classical work of Grenander and Rosenblatt [14],
and was extensively used in the monographs Hannan [15], Priestley [24], Brockwell and Davis [3], to
name a few references. Dahlhaus [4] discovered a close relationship of the integrated periodogram,
considered as a process indexed by functions, and empirical process theory. Under entropy condi-
tions, he proved uniform convergence results over suitable classes of index functions; see also the
survey paper Dahlhaus and Polonik [5]. These papers gave some general theoretical background for
various periodogram based techniques such as Whittle estimation of the parameters of a FARIMA
process and goodness of fit tests for linear processes as mentioned in Grenander and Rosenblatt [14]
and Priestley [24].

In this paper, we will consider the integrated periodogram

Jn,A(g) =

∫

Π

In,A(λ) g(λ) dλ = c0(g) γ̃A(0) + 2

n−1∑

h=1

ch(g) γ̃A(h) ,(1.4)

and its standardized version

J◦
n,A(g) =

1

γ̃A(0)

∫

Π

In,A(λ) g(λ) dλ = c0(g) + 2

n−1∑

h=1

ch(g) ρ̃A(h) ,

where g is non-negative and square integrable with respect to Lebesgue measure on Π (we write
g ∈ L2

+(Π)) with corresponding Fourier coefficients

ch(g) =

∫

Π

cos(hλ) g(λ) dλ , h ∈ Z .
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We will understand Jn,A(g) and J
◦
n,A(g) as natural estimators of

JA(g) =

∫

Π

hA(λ) g(λ) dλ = c0(g) γA(0) + 2

∞∑

h=1

ch(g) γA(h) ,(1.5)

J◦
A(g) =

∫

Π

fA(λ) g(λ) dλ = c0(g) + 2
∞∑

h=1

ch(g) ρA(h) ,

respectively. The latter identities hold if
∑∞

h=0 γA(h) <∞, a condition we assume throughout this
paper; see also Remark 5 below.

The main results of this paper (see Section 3) are functional central limit theorems for the
integrated periodogram Jn,A with g = hI[0,·] for a sufficiently smooth function h on Π. The limit
processes are Gaussian whose covariance structure strongly depends on the limit measures (µh).
The rate of convergence in these results is typically slower than

√
n. However, in the case of an iid

sequence, the limiting process is a Brownian bridge and the convergence rates are much faster than
in the case of a dependent sequence. These results differ from classical theory for the periodogram
of a stationary sequence (Xt) (see e.g. Dahlhaus [4], Klüppelberg and Mikosch [19]), where the
limiting process is completely determined by the covariance structure of (Xt). The methods of
proof combine classical techniques of weak convergence and strong mixing (e.g. Billingsley [1]) with
extreme value theory for dependent sequences (e.g. Davis and Mikosch [7]). The proofs are rather
technical due to the fact that the sequences of indicator functions (It) have triangular structure:
they change in dependence on the threshold am.

As in classical time series analysis, the functional central limit theory for the integrated peri-
odogram can be used to construct asymptotic goodness-of-fit tests such as the Grenander-Rosenblatt
and Cramér-von Mises tests. In contrast to their classical counterparts, these tests are based only
on the extremal part of the underlying sample, i.e., we test whether the extremes of the sample are
in agreement with the null hypothesis about a given type of time series model. Such tests may be
useful, for example, for distinguishing between a GARCH and a stochastic volatility model fitted
to a return time series. The aforementioned two types of models may have similar autocorrelation
structure for the data, their absolute values and squares, so their spectral properties are very sim-
ilar as well, while their extremograms are rather distinct: the extremogram γA relative to the set
A = (1,∞) decays exponentially fast for GARCH and for the simple stochastic volatility model γA
vanishes at all positive lags; see Davis and Mikosch [7].

The paper is organized as follows. We start in Section 2 with some moment calculations and we
also introduce the relevant mixing conditions and central limit theory for the sample extremogram.
In Section 2.4 we provide a result about the mean square consistency of the integrated periodogram;
the proof is given in Section 5. The main results (Theorems 15 and 17) are functional central limit
theorems for the integrated periodogram. They are given in Section 3; the corresponding proofs
are provided in Sections 6 and 7. The covariance structure of the limiting Gaussian processes in
Theorem 15 is rather complicated. Therefore in Section 4 we supplement the asymptotic theory by
consistency results for the stationary bootstrap applied to the integrated periodogram of extremal
events in a strictly stationary sequence. The corresponding proofs are given in Section 8. In
Section 4.4 we indicate how the integrated periodogram works for simulated and real-life data.

2. Preliminaries

2.1. Some moment calculations. Recall the notation and conditions of Section 1. We write

p0 = P (a−1
m X0 ∈ A) and ph = P (a−1

m X0 ∈ A, a−1
m Xh ∈ A) , h ≥ 1 ,
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where as above, mn → ∞ and mn/n = o(1) as n→ ∞. For integers s, t, u, v ≥ 0, we set

Γ(s, t, u, v) = EĨsĨtĨuĨv ,

Γ(s, t, u) = EĨsĨtĨu ,

Γ(s, t) = EĨsĨt = p|s−t| − p20 .

We will often have to calculate variances and covariances of the sample extremogram γ̃A. We
provide some of these formulas for further use.

Lemma 1. Let (Xt) be a strictly stationary sequence. Then, for 1 ≤ h ≤ n− 1,

(n/m)2Eγ̃2A(h) = (n− h)E(Ĩ0Ĩh)
2 + 2

n−h−1∑

t=1

(n− h− t)Γ(0, h, t, t+ h)

and for 1 ≤ h < h+ u ≤ n− 1,

(n/m)2Eγ̃A(h)γ̃A(h+ u)

= (n− h− u)Γ(0, h, 0, h+ u)

+

n−h−u−1∑

t=1

(n− h− u− t)Γ(0, h, t, t+ h+ u)

+

n−h−1∑

t=1

min(n− h− u, n− h− t)Γ(0, h+ u, t, t+ h) .

2.2. Mixing conditions. The following two mixing conditions were introduced in Davis andMikosch
[7] for a strongly mixing Rd-valued sequence (Xt) with rate function (ξh).

Condition (M). There exist integer sequences m = mn → ∞ and rn → ∞ such that mn/n → 0,
rn/mn → 0 and

lim
n→∞

mn

∞∑

h=rn

ξh = 0 ,(2.1)

Moreover, an anti-clustering condition holds:

lim
k→∞

lim sup
n→∞

rn∑

h=k

P (|Xh| > ǫ am | |X0| > ǫ am) = 0 , ǫ > 0 .(2.2)

Condition (M1). Assume (M) and that the sequences (mn), (rn), kn = [n/mn] from (M) also satisfy
the growth conditions knξrn → 0, and mn = o(n1/3).

Remark 2. The condition mn = o(n1/3) in (M1) can be replaced by
mnr

3
n

n → 0 and
m4

n

n

∑mn

j=rn
ξj →

0 which is often much weaker.

Condition (2.1) is easily satisfied if the mixing rate (ξh) is geometric, i.e., exponentially decaying
to zero. Under mild conditions, the popular classes of ARMA, max-stable, GARCH and stochastic
volatility processes are strongly mixing with geometric rate; cf. Davis et al. [7, 10, 11, 21] for
discussions of these examples. Condition (2.2) is similar to (2.8) in Davis and Hsing [6]. It serves
the purpose of establishing the convergence of a sequence of point processes to a limiting cluster point
process. This condition is much weaker than the anti-clustering condition D′(ǫan) of Leadbetter;
cf. Section 5.3.2 in Embrechts et al. [13].

The mixing rate (ξh) in conditions (M) and (M1) is useful for finding bounds on the moments
Γ(s, t, u, v) introduced above. In what follows, c will denote any (possibly different) constants whose
value is not of interest.
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Lemma 3. Let (Xt) be a strongly mixing sequence with mixing rate (ξh). Then for integers h, l, u ≥ 1
and for some constants c > 0 which do not depend on n,

|Γ(0, h, h+ l, h+ l+ u)| ≤ c min(ξh, ξu) ,(2.3)

|Γ(0, h, h+ l, h+ l+ u)− (ph − p20)(pu − p20)| ≤ c ξl ,(2.4)

|Γ(0, h, h+ l)| ≤ c min(ξh, ξl) ,(2.5)

|Γ(0, h)| ≤ ξh .(2.6)

The proof of Lemma 3 follows by a direct application of Theorem 17.2.1 in Ibragimov and Lin-
nik [17]. Relation (2.3) combined with (2.1) will ensure that sums of Γ(0, h, h + l, h + l + u) are
asymptotically negligible if h or u exceed rn.

2.3. Central limit theory for the sample extremogram. In this section we recall a central
limit theorem for the extremogram from Davis and Mikosch [7], Section 3.

Lemma 4. Assume that (Xt) is an Rd-valued strictly stationary regularly varying sequence with
index α > 0 and that the Borel set A satisfies the conditions of Section 1.2. If the mixing conditions
(M), (M1) hold and

∑∞
l=1 γA(l) <∞ then for h ≥ 0,

γ̃A(h)
P→ γA(h) ,(2.7)

(n/m)1/2
(
γ̃A(i)− Eγ̃A(i)

)
i=0,...,h

d→ (Zi)i=0,...,h ,(2.8)

where (Zi)i=0,...,h is Gaussian with mean zero and covariance matrix Σh = (σij)i,j=0,...,h given by

σij = γA(i, j) +
∞∑

l=1

[
γA(i, l, l+ j) + γA(j, l, l + i)

]
, i, j = 0, . . . , h ,

and for u, s, t ≥ 0,

γA(u, s, t) = lim
n→∞

nP (a−1
n X0 ∈ A , a−1

n Xu ∈ A, a−1
n Xs ∈ A, a−1

n Xt ∈ A) ,

with the convention that γA(u, t) = γA(u, u, t). Moreover, we have for h ≥ 1

ρ̃A(h)
P→ ρA(h) ,(2.9)

(n/m)1/2
(
ρ̃A(i)−

pi
p0

)
i=1,...,h

d→ 1

γA(0)

(
Zi − ρA(i)Z0

)
i=1,...,h

.(2.10)

Proof. The proof of (2.7) was given in Section 3 of Davis and Mikosch [7]. There we can also find the
proof of (2.8) in a more general context. Here we will calculate the covariance matrix Σh explicitly.
The expressions for σii, i ≥ 0, were derived in Davis and Mikosch [7] for i = 0 and i ≥ 1 in Theorem
3.1 and Lemma 5.2, respectively. We notice that γA(i, l, l + j) ≤ γA(l) and therefore the infinite
series in σij are finite.
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For i 6= j, similar calculations as for Lemma 1 yield for k ≥ 1 and rn/mn → 0,

m

n
cov

( n∑

t=1

ĨtĨt+i,
n∑

s=1

ĨsĨs+j

)

= mΓ(0, 0, i, j) +m

n∑

l=1

[
(1 − l/n)

[
Γ(0, i, l, l+ j)

+Γ(0, j, l, l+ i)
]
− (pi − p20)(pj − p20)

]

= mΓ(0, 0, i, j) +m
( k∑

l=1

+

rn∑

l=k+1

+
n∑

l=rn+1

)[
(1− l/n)

[
Γ(0, i, l, l+ j)

+Γ(0, j, l, l+ i)
]
− (pi − p20)(pj − p20)

]

= Q1 +Q2 +Q3 +Q4 .

By regular variation, for fixed k ≥ 1 as n→ ∞,

Q1 +Q2 → γA(i, j) +

k∑

l=1

[
γA(i, l, l+ j) + γA(j, l, l + i)

]
,

and the right-hand side converges to σij as k → ∞. By (2.2), we have

lim
k→∞

lim sup
n→∞

|Q3| = 0 .

Using (2.4) and (2.1), we also have |Q4| ≤ cmn

∑∞
l=rn+1 ξl → 0 as n → ∞. This proves (2.7)

and (2.8). Relations (2.9) and (2.10) follow by a continuous mapping argument, observing that for
1 ≤ i ≤ h,

( n
m

)1/2(
ρ̃A(i)− pi/p0

)
=

( n
m

)1/2 γ̃A(i)− Eγ̃A(i)

γ̃A(0)

−Eγ̃A(i)
(n/m)1/2

(
γ̃A(0)− Eγ̃A(0))

γ̃A(0)Eγ̃A(0)
+ oP (1)

d→ 1

γA(0)

(
Zi − ρA(i)Z0

)
.

� �

Remark 5. The summability condition on γA which we assume in the previous lemma and through-
out this paper is satisfied for a large variety of regularly varying time series models; see the calculation
of γA in Davis et al. [7, 10, 11]. For example, finite order ARMA models with regularly varying
iid noise and GARCH models have exponentially decaying extremogram, and the simple stochas-
tic volatility model with log-normal volatility process has vanishing extremogram at all positive
lags. Formulas for γA also exist for infinite variance stable and max-stable processes with Fréchet
marginals. Also for these processes the summability condition on γA may hold, depending on the
specification of the process.

Recall that a strictly stationary process (Xt) is η-dependent for some integer η ≥ 0 if (Xt)t≤0

and (Xt)t>η are independent. For such a process we observe that σhh = 0 for h > η and hence (2.8)

collapses into (n/m)0.5γ̃A(h)
P→ 0 for h > η. In particular, for an iid sequence (Xt), Zh = 0 a.s. for

h ≥ 1, while (n/m)0.5γ̃A(0)
d→ Z0 and Z0 is N(0, γA(0)) distributed.

In these cases, the rate of convergence in (2.8) can be improved.
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Lemma 6. Assume that (Xt) is an Rd-valued η-dependent regularly varying strictly stationary
sequence with index α > 0 for some η ≥ 0, and the Borel set A satisfies the conditions of Section 1.2.
Additionally, assume that for j ≥ i > η and 1 ≤ t ≤ η − (j − i), the following limits exist:

γA(t, i, t+ j)

= lim
m→∞

m2P (a−1
m X0 ∈ A, a−1

m Xt ∈ A, a−1
m Xi ∈ A, a−1

m Xt+j ∈ A) .

(2.11)

Then for h ≥ 1, n0.5
(
γ̃A(η + i)

)
i=1,...,h

d→ (Zi)i=1,...,h , where (Zi)i=1,...,h is Gaussian N(0,Σh)

whose covariance matrix Σh = (σij)i,j=1,...,h is given by

σij = γA(0)γA(j − i) +

η−(j−i)∑

t=1

[
γA(t, i, t+ j) + γA(t, j, t+ i)

]
,(2.12)

1 ≤ i ≤ j .

Remark 7. Condition (2.11) is an additional asymptotic independence condition. Indeed, regular
variation of (Xt) only implies that the limits

lim
m→∞

mP (a−1
m X0 ∈ A, a−1

m Xt ∈ A, a−1
m Xi ∈ A, a−1

m Xt+j ∈ A)

exist and are finite. Then (2.11) implies that the latter limits must be zero. In Example 9 we
consider some simple cases when (2.11) is satisfied.

Remark 8. Assume j − i > η. Then, by η-dependence, γA(j − i) = 0 and the index set in (2.12) is
empty. Hence σij = 0 for j − i > η. In particular, if (Xt) is iid, σij = 0 for i 6= j and σii = γ2A(0).

Proof. We start by calculating the asymptotic covariances. Assume j ≥ i > η. Then, using the
independence of I0 and (IjIi, IiItIt+j , IjItIt+i) for t > η and of It+j and I0ItIi for t ≤ η and
t ≥ η − (j − i), we obtain

cov
(
n0.5γ̃A(i), n

0.5γ̃A(j)
)

= m2EĨ20EĨiĨj +m2

η∑

t=1

[
EĨ0ĨiĨtĨt+j + EĨ0Ĩj ĨtĨt+i

]
+ o(1)

= γA(0)γA(j − i) +m2

η−(j−i)∑

t=1

[
EĨ0ĨiĨtĨt+j + EĨ0Ĩj ĨtĨt+i

]
+ o(1)

→ γA(0)γA(j − i) +

η−(j−i)∑

t=1

[
γA(t, i, t+ j) + γA(t, j, t+ i)

]
, n→ ∞ .

In the last step we used (2.11). This completes the calculation of Σh. Furthermore, we observe that
for h ≥ 1,

n0.5
(
γ̃A(i)

)
i=η+1,...,η+h

= (m/n0.5)
n∑

t=1

(
ĨtĨt+i

)
i=η+1,...,η+h

+ oP (1) .

(2.13)

The vector sequence (ĨtĨt+i)i=η+1,...,η+h, t = 1, 2, . . ., is strictly stationary and (h + η)-dependent.
Now an application of the central limit theorem for strongly mixing triangular arrays in Rio [27]
and the Cramér-Wold device to (2.13) conclude the proof. � �

The following examples fulfill the conditions of Lemma 6.
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Example 9. An iid regularly varying sequence (Xt) is 0-dependent, and thus (2.11) holds. Its
limiting covariance matrix Σh is a diagonal matrix with entries γ2A(0) = (µ1(A))

2 on the main
diagonal.

We consider the stochastic volatility model Xt = σtVt where (σt) is independent of (Vt), (σt) is
a positive η-dependent strictly stationary sequence and (Vt) is a regularly varying iid sequence with
index α > 0; see Davis and Mikosch [8]. Assume that Eσα+ε <∞ for some ε > 0. In this case, (Xt)
is η-dependent, strictly stationary and regularly varying with index α. We will show that (2.11)
holds with γA(u, s, t) = 0 for 0 < u < s < t. Since A is bounded away from zero, there exists a
δ > 0 such that

γA(u, s, t)

≤ lim sup
m→∞

m2P (a−1
m min(|X0|, |Xu|, |Xs|, |Xt|) > δ)

≤ lim sup
m→∞

m2P (a−1
m max(σ0, σu, σs, σt)min(|V0|, |Vu|, |Vs|, |Vt|) > δ)

≤ lim sup
m→∞

4m2P (a−1
m σ0 min(|V0|, |Vu|, |Vs|, |Vt|) > δ)

≤ lim sup
m→∞

cm2(Eσα)4(P (|V0| > amδ))
4 = 0 ,

where we used that P (σ0|V0| > am) ∼ EσαP (|V0| > amδ) by virtue of Breiman’s lemma; see [2].

In the iid case, the limiting quantities Zh, h ≥ 1, in Lemma 4 vanish. The same observation can
be made in the case of a strictly stationary sequence with asymptotic (extremal) independence in
the following sense:

Condition (AI): Assume there exist sequences m = mn → ∞ and rn → ∞ such that m = o(n) and
rn = o(m) as n → ∞ and the following conditions are satisfied for any Borel set A ⊂ Rd bounded
away from zero and the axes such that µ1(∂A) = 0:

(1) limn→∞m2 ph exists and is finite for h ≥ 1,
(2) limn→∞m2 sup1≤i<j≤rn P (a

−1
m X0 ∈ A , a−1

m Xi ∈ A , a−1
m Xj ∈ A) = 0 ,

(3) limn→∞ rnm
2 sup1≤i<j<t≤rn

P (a−1
m X0 ∈ A , a−1

m Xi ∈ A , a−1
m Xj ∈ A,a−1

m Xt ∈ A) = 0 .

Example 10. We consider the stochastic volatility model from Example 9 but we drop the condition
of η-dependence. Conditions (AI.2) and (AI.3) are verified in the same way as in Example 9. We
also observe that for some constant c > 0,

m2 ph ∼ c
P (a−1

m X0 ∈ A, a−1
m Xh ∈ A)

P (min(V1, V2) > am)

= c
P (a−1

m diag(σ0, σh)(V1, V2)
′ ∈ A×A)

P (min(V1, V2) > am)
.

An application of a Breiman-type result for regularly varying vectors on cones due to Janssen and
Drees [18] ensures the existence and finiteness of the limits limm→∞m2ph for h ≥ 1. This is (AI.1).

Lemma 11. Assume that (Xt) is an Rd-valued strongly mixing strictly stationary regularly varying
sequence with index α > 0 and that the Borel set A satisfies the conditions of Section 1.2. We also
assume the asymptotic independence condition (AI) and the mixing condition

lim
n→∞

m2
n∑

h=rn

ξh = 0 .(2.14)
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Then

γ̃A(h)
P→ 0 , h ≥ 1 ,

n0.5
(
γ̃A(i)− Eγ̃A(i)

)
i=1,...,h

d→ (Zi)i=1,...,h ,(2.15)

where (Zi)i=1,...,h are independent Gaussian with mean zero and variances

var(Zi) = lim
m→∞

m2 pi , i ≥ 1 .

Proof. We will apply the central limit theorem in Rio [27] for strongly mixing triangular arrays to
the left-hand side in (2.15). For this reason, we have to calculate the asymptotic covariance matrix
of the left-hand vector. We observe that for fixed j > i ≥ 1, in view of the mixing condition (2.14)
as n→ ∞,

cov(n0.5γ̃A(i), n
0.5γ̃A(j))

= m2cov(Ĩ0Ĩj , Ĩ0Ĩi) +m2
n∑

t=1

[
cov(Ĩ0Ĩi, ĨtĨt+j) + cov(Ĩ0Ĩj , ĨtĨt+i)

]
+ o(1)

= m2cov(Ĩ0Ĩj , Ĩ0Ĩi) +m2
rn∑

t=1

[
cov(Ĩ0Ĩi, ĨtĨt+j) + cov(Ĩ0Ĩj , ĨtĨt+i)

]
+ o(1) .

(2.16)

Condition (AI) implies that m2cov(Ĩ0Ĩj , Ĩ0Ĩi) → 0 as m → ∞. The same argument also implies
that the first j summands in (2.16) vanish as n→ ∞. Therefore it suffices to consider

m2
rn∑

t=j+1

[
cov(Ĩ0Ĩi, ĨtĨt+j) + cov(Ĩ0Ĩj , ĨtĨt+i)

]
.

In the latter sum, the indices 0, i, t, t+ j are distinct and the same observation applies to 0, j, t, t+ i.
Direct calculation with condition (AI) shows that this sum is asymptotically negligible. This implies
that the covariance matrix of the limiting vector is diagonal. The calculation of the asymptotic
variances is similar by observing that as n→ ∞,

var(n0.5γ̃A(h))

= m2var(Ĩ0Ĩh) + 2m2
n∑

t=1

cov(Ĩ0Ĩi, ĨtĨt+i) + o(1) = m2ph + o(1) .

�

Remark 12. Although γ̃A(h)
P→ 0, h ≥ 1, it is in general not possible to avoid centering in (2.15).

However, under (AI.1), n0.5Eγ̃A(h) → 0 if n/m2 = o(1) as n → ∞, and the latter condition can
even be weakened if m2(ph − p20) → 0 as m→ ∞.

2.4. Mean square consistency of the integrated periodogram. Recall the definitions of
Jn,A(g) and JA(g) for g ∈ L2

+(Π) from (1.4) and (1.5), respectively. The following elementary
result deals with the convergence of the first and second moments of Jn,A(g) for a given function g.

Lemma 13. Consider an Rd-valued strictly stationary regularly varying sequence (Xt) with index

α > 0. Assume that the Borel set A ⊂ R
d

0 satisfies the conditions of Section 1.2,
∑∞

l=1 γA(l) < ∞
and (M) holds. Then the following asymptotic relations hold for g ∈ L2

+(Π).

1. EJn,A(g) → JA(g) as n→ ∞.
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2. If in addition, m log2 n/n = O(1) as n→ ∞, and there exists a constant c > 0 such that

|ch(g)| ≤ c/h , h ≥ 1 ,(2.17)

then E(Jn,A(g)− JA(g))
2 → 0 and J◦

n,A(g)
P→ J◦

A(g) as n→ ∞.

The proof of the lemma is given in Section 5.

Remark 14. Condition (2.17) holds under mild smoothness conditions on g, e.g. if g is Lipschitz or
has bounded variation on Π; see Theorem 4.7 on p. 46 and Theorem 4.12 on p. 47 in Zygmund [30].

3. Functional central limit theorem for the integrated periodogram

Recall the definition of the spectral density hA from Section 1.4. In this section, we assume
that the weight function g is a non-negative continuous function. Abusing notation, we define the
empirical spectral distribution function with weight function g by

Jn,A(x) = Jn,A(gI[0,x]) =

∫ x

0

In,A(λ) g(λ) dλ , x ∈ Π .(3.1)

Under the conditions of Lemma 13, again abusing notation, we have

Jn,A(x)
P→ JA(x) = JA(gI[0,x]) =

∫ x

0

hA(λ) g(λ) dλ , x ∈ Π .

In view of the monotonicity and continuity of the functions Jn,A and JA we also have

sup
x∈Π

|Jn,A(x) − JA(x)| P→ 0 .(3.2)

Our next goal is to complement this consistency result by a functional central limit theorem of the

type (n/m)0.5(Jn,A −JA)
d→ G , in C(Π), the space of continuous functions on Π equipped with the

uniform topology, for a suitable Gaussian limit process G.
However, this result is unlikely to hold in general, due to asymptotic bias problems. It is men-

tioned in Davis andMikosch [7] in relation with the central limit theorem for the sample extremogram
(see Lemma 4 above) that the pre-asymptotic centerings Eγ̃A(i) = ((n − i)/n)m(pi − p20) can in
general not be replaced by their limits γA(i) due to the failure of the relation (n/m)0.5|m(pi −
p20) − γA(i)| → 0 as n → ∞. Therefore we will equip the empirical spectral distribution func-
tion Jn,A with the pre-asymptotic centering EJn,A. It follows from Lemma 13 that under (M),
EJn,A(x) → JA(x) for every x ∈ Π, and again using monotonicity of EJn,A and JA, we have
supx∈Π |EJn,A(x)− JA(x)| → 0.

We observe that

Jn,A(x) = ψ0(x) γ̃A(0) + 2

n−1∑

h=1

ψh(x) γ̃A(h) ,

J◦
n,A(x) = ψ0(x) + 2

n−1∑

h=1

ψh(x) ρ̃A(h) ,

where ψh(x) =
∫ x

0
cos(hλ) g(λ) dλ , x ∈ Π . We also consider a Riemann sum approximation of the

coefficients ψh(x) at the Fourier frequencies ωn(i) = 2iπ/n ∈ Π given by

ψ̂h(x) =
2π

n

xn∑

i=1

g(ωn(i)) cos(hωn(i)) , x ∈ Π ,
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where xn = [nx/2π]. The corresponding analogs of Jn,A and J◦
n,A are then given by

Ĵn,A(x) = ψ̂0(x)γ̃A(0) + 2

n−1∑

h=1

ψ̂h(x) γ̃A(h) ,

Ĵ◦
n,A(x) = ψ̂0(x) + 2

n−1∑

h=1

ψ̂h(x) ρ̃A(h) ,

Now we are ready to formulate the main result of this paper.

Theorem 15. Assume that (Xt) is an Rd-valued strictly stationary regularly varying sequence with

index α > 0 and the Borel set A ⊂ R
d

0 is bounded away from zero, µ1(∂A) = 0 and µ1(A) > 0.
Let g be a non-negative β-Hölder continuous function with β ∈ (3/4, 1]. If the conditions (M1) and∑∞

l=1 γA(l) <∞ hold then in C(Π),

(n/m)0.5(Jn,A − EJn,A)
d→ G , n→ ∞ ,(3.3)

(n/m)0.5(Ĵn,A − EĴn,A)
d→ G , n→ ∞ ,(3.4)

where the limit process is given by the infinite series

G = ψ0Z0 + 2

∞∑

h=1

ψh Zh ,(3.5)

which converges in distribution in C(Π), (Zh) is a mean zero Gaussian sequence such that (Z0, . . . , Zh)
has the covariance matrix (Σh), h ≥ 0, given in Lemma 4. Moreover, the following limit relations
hold

(n/m)0.5
(
J◦
n,A − EJn,A/(mp0)

) d→ G◦ , n→ ∞ ,(3.6)

(n/m)0.5
(
Ĵ◦
n,A − EĴn,A/(mp0)

) d→ G◦ , n→ ∞ ,(3.7)

where the limit process is given by the infinite series

G◦ =
2

γA(0)

∞∑

h=1

ψh(Zh − ρA(h)Z0) .

The proof of this result is given in Section 6.

Remark 16. For practical purposes, the discretized version Ĵn,A will be preferred to Jn,A since

it does not involve the calculation of integrals. Moreover, since
∑n

t=1 e
iωn(j)t = 0 for ωn(j) ∈

(0, π), centering of the indicators It with the unknown parameter p0 in the periodogram ordinates
In,A(ωn(j)) = (m/n)|∑n

t=1 Ite
iωn(j)t|2 is not needed.

For an η-dependent sequence (Xt), we know that Zh = 0 a.s. for h > η. Then we conclude
from Theorem 15 and Lemma 4 that the limit process G collapses into G = ψ0Z0 + 2

∑η
h=1 ψhZh .

However, taking into account Lemma 6, a more sophisticated result with a different convergence
rate can be derived. The corresponding result for J◦

n,A is similar and therefore omitted.

Theorem 17. Assume that (Xt) is an Rd-valued strongly mixing strictly stationary η-dependent

regularly varying sequence with index α > 0 for some η ≥ 0 and the Borel set A ⊂ R
d

0 is bounded
away from zero, µ1(∂A) = 0 and µ1(A) > 0. Also assume that the limits in (2.11) exist. Let g be a
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non-negative β-Hölder continuous function with β ∈ (3/4, 1]. Then the relations

√
n
(
Jn,A − ψ0γ̃A(0)− 2

η∑

h=1

ψhγ̃A(h)
) d→ G ,

√
n
(
Ĵn,A − ψ̂0γ̃A(0)− 2

η∑

h=1

ψ̂hγ̃A(h)
) d→ G ,

hold in C(Π), where the limit process is given by the a.s. converging infinite series

G = 2

∞∑

h=1

ψη+h Zh ,

and (Zh) is a mean zero Gaussian sequence such that (Z1, . . . , Zh) has covariance matrix Σh, h ≥ 1,
given in Lemma 6.

The proof is given in Section 7.

Example 18. Assume that (Xt) is an iid regularly varying sequence with index α > 0. Then (Zh)
is an iid mean zero Gaussian sequence with var(Z) = γ2A(0) = (µ1(A))

2. If we choose the function
g ≡ 1 we obtain

ψh(x) =

∫ x

0

cos(hλ)dλ =
sin(hx)

h
, h ≥ 0 , x ∈ Π ,

and

G(x) = 2

∞∑

h=1

sin(hx)

h
Zh , x ∈ Π .

We notice that G is a series representation of a Brownian bridge; see Hida [16].

In the case of asymptotic (extremal) independence a result similar to Theorem 17 holds.

Theorem 19. Assume that (Xt) is an Rd-valued strictly stationary regularly varying sequence with

index α > 0 and the Borel set A ⊂ R
d

0 is bounded away from zero and the axes, µ1(∂A) = 0 and
µ1(A) > 0. Also assume the mixing condition (2.14) and the asymptotic independence condition
(AI). Let g be a non-negative β-Hölder continuous function with β ∈ (3/4, 1]. Then the relations

√
n
(
(Jn,A − EJn,A)− ψ0(γ̃A(0)− Eγ̃A(0))

) d→ Ĝ ,
√
n
(
(Ĵn,A − EĴn,A)− ψ̂0(γ̃A(0)− Eγ̃A(0))

) d→ Ĝ ,

hold in C(Π), where the limit process is given by the a.s. converging infinite series

Ĝ = 2

∞∑

h=1

ψh Zh ,

and (Zh) is a sequence of independent mean zero Gaussian variables with variances var(Zh) =
limm→∞m2 ph, h ≥ 1.

The proof is based on Lemma 11 and tightness arguments which are similar to the proofs of
Theorem 15 and 17. We omit further details. In view of Remark 12, centering in Theorem 19 can
be avoided if n/m2 = o(1) as n→ ∞.

As in classical limit theory for the empirical spectral distribution (see Grenander and Rosenblatt
[14], Dahlhaus [4]), an application of the continuous mapping theorem to Theorems 15 and 17 yields
limit theory for functionals of the integrated periodogram. These functionals can be used for testing



14 T. MIKOSCH AND Y. ZHAO

the goodness of fit of the spectral density of the time series model underlying the data, under the
null hypothesis that the model is correct. From Theorem 15 we get the following limit results for
the corresponding test statistics.

• Grenander-Rosenblatt test:

(n/m)0.5 sup
x∈Π

∣∣∣Jn,A(x)− EJn,A(x)
∣∣∣ d→ sup

x∈Π
|G(x)| .(3.8)

• ω2- or Cramér-von Mises test:

(n/m)

∫

x∈Π

(
Jn,A(x) − EJn,A(x)

)2

dx
d→
∫

x∈Π

G2(x) dx .

If (Xt) is an η-dependent sequence satisfying the conditions of Theorem 17, the corresponding limit
results read as follows:

• Grenander-Rosenblatt test:

√
n sup

x∈Π

∣∣∣Jn,A(x) − ψ0(x)γ̃A(0)− 2

η∑

h=1

ψh(x)γ̃A(h)
∣∣∣ d→ sup

x∈Π
|G(x)| .

(3.9)

• ω2-statistic or Cramér-von Mises test:

n

∫

x∈Π

(
Jn,A(x)− ψ0(x)γ̃A(0) − 2

η∑

h=1

ψh(x)γ̃A(h)
)2
dx

d→
∫

x∈Π

G
2
(x) dx .

(3.10)

In Figures 1 and 2 we show the estimated densities of the test statistics in (3.9) and (3.10) for n =
2, 000 and n = 10, 000, for different thresholds am and g ≡ 1. We compare the estimated densities
with their corresponding limits. The samples are iid t-distributed with α = 3 degrees of freedom.
We mention that the density of supx∈Π |G(x)| is given by 4π−2

∑∞
j=1(−1)j+1x exp

(
− j2x2/π2

)
,

x > 0; see Shorack and Wellner [28]. We use the identity in law
∫
x∈ΠG

2
(x) dx

d
=

∑∞
j=1(2/j

2)N2
j

for an iid standard normal sequence (Nj) (see [28]) for the simulation of the limiting density of the
ω2-statistic.

Not surprisingly, these graphs show that one needs rather large sample sizes to make the tests
reliable. The Grenander-Rosenblatt statistic shows a better overall behavior in comparison with the
ω2-statistic. The distribution of the former statistic is close to its limit for a variety of thresholds
like p0 = 0.1, 0.05 and even for p0 = 0.03. In contrast, the ω2-statistic is rather sensitive to the
choice of threshold and sample size; the best overall approximation is achieved for n = 10, 000 and
p0 = 0.05. For applications, one would need to focus on the quality of the approximation of high/low
quantiles of the test statistics by the limiting quantiles. This task is not addressed in this paper.

4. The bootstrapped integrated periodogram

With a few exceptions, the limit processes G and G in Theorem 15 and 17 have an unfamil-
iar dependence structure and then it is impossible to give confidence bands for the test statistics
mentioned in the previous section. One faces a similar problem when dealing with the sample
extremograms whose asymptotic covariance matrix is a complicated function of the measures µh

in (1.2). Davis et al. [10] proposed to apply the stationary bootstrap for constructing confidence
bands for the sample extremogram. The stationary bootstrap can also be used for the integrated
periodogram, as we will show below.
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Figure 1. Density of the left-hand side in (3.9) with η = 0 (dotted line) and its
limit supx∈Π |G(x)| (solid line) for g ≡ 1. We choose the set A = (1,∞), different
thresholds am with p0 = P (X > am) and different sample sizes n. The underlying
sequence (Xt) is iid t-distributed with α = 3 degrees of freedom. The sample sizes
are chosen as n = 2, 000 in the first row and n = 10, 000 in the second row. The
thresholds am are chosen such that p0 = 0.1 in the first column, p0 = 0.05 in the
second column and p0 = 0.03 in the third column.

4.1. Stationary bootstrap. The stationary bootstrap was introduced by Politis and Romano [23]
as an alternative block bootstrap method. First, we describe this procedure for a strictly stationary
sequence (Yt). Given a sample Y1, . . . , Yn, consider the bootstrapped sequence

YK1
, . . . , YK1+L1−1, . . . , YKN

, . . . , YKN+LN−1, . . . ,(4.1)

where (Yi), (Ki), (Li) are independent sequences, (Ki) is an iid sequence of random variables
uniformly distributed on {1, . . . , n}, (Li) is an iid sequence of geometrically distributed random
variables with distribution P (L1 = i) = θ(1 − θ)i−1, i = 1, 2, . . . , for some θ = θn ∈ (0, 1) such

that θn → 0 as n → ∞ and N = Nn = inf{i ≥ 1 :
∑i

j=1 Lj ≥ n}. If any element Yt in

(4.1) has an index t > n, we replace it by Yt mod n. As a matter of fact, (Yt)t≥1 constitutes a
strictly stationary sequence. The stationary bootstrap sample is now chosen as the block of the
first n elements in (4.1). In what follows, we write (Yt∗)t≥1 for the bootstrap sequence (4.1),
indicating that this sequence is nothing but the original Y -sequence sampled at the random indices
(K1, . . . ,K1 + L1 − 1,K2, . . . ,K2 + L2 − 1, . . .) with the convention that indices larger than n are
taken modulo n.

In what follows, the probability measure generated by the bootstrap procedure is denoted by P ∗,
i.e., P ∗(·) = P (· | (Xt)). The corresponding expected value, variance and covariance are denoted by
E∗, var∗ and cov∗.
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Figure 2. Density of the left-hand side in (3.10) with η = 0 (dotted line) and its

limit
∫
x∈ΠG

2
(x) dx (solid line) for g ≡ 1. We choose the same setting as in Figure 2.

4.2. The bootstrapped sample extremogram. Davis et al. [10] applied the stationary bootstrap
to the sequence of lagged vectors

It(h) = (I2t , ItIt+1, . . . , ItIt+h) , t = 1, 2, . . . ,

for fixed h ≥ 0 and showed consistency of the bootstrapped sample extremogram. In particular, they
showed the following result which we cite for further reference. A close inspection of the proof in

[10] shows that the results remain true if in It(h) we replace the quantities Is by Ĩs, s = t, . . . , t+h.

We denote the corresponding vector by Ĩt(h). Consider the stationary bootstrap sequence (Ĩt∗(h))
and write

γ̃∗A(i) =
m

n

n−i∑

t=1

Ĩt∗ Ĩt∗+i, i = 0, . . . , h .

Theorem 20. Consider an Rd-valued strictly stationary regularly varying sequence (Xt) with index
α > 0 and assume the following conditions:

1. The mixing condition (M1) and in addition
∑∞

h=1 hξh <∞.
2. The growth conditions θ = θn → 0 and nθ2/m→ ∞.
3. The set A is bounded away from zero, µ1(∂A) = 0 and µ1(A) > 0.

Then the following bootstrap consistency results hold for h ≥ 0:

E∗
(
γ̃∗A(h)

) P→ γA(h) and var∗
(
(n/m)0.5γ̃∗A(h)

) P→ σhh ,

where the covariance matrix Σh = (σij) is given in Lemma 4. Moreover, writing d for any metric
describing weak convergence in Euclidean space and (Zi)i=0,...,h for an N(0,Σh) Gaussian vector,
we also have

d
(
(n/m)1/2

(
γ̃∗A(i)− γ̃A(i)

)
i=0,...,h

, (Zi)i=0,...,h

)
P→ 0 , n→ ∞ .
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In what follows, we will write d for any metric describing weak convergence in any space of
interest.

4.3. The bootstrapped integrated periodogram. Bootstrapping the sequence (It(h)) has the
advantage that we preserve the neighbors It∗+i of It∗ from the original sequence (Is). However, this
method depends on the lag h and creates problems if the number of lags increases with the sample
size n. In what follows, we will apply the stationary bootstrap directly to (It). Then we have to
re-define the bootstrap sample extremogram at any lag h < n. Write

In = n−1
n∑

t=1

It and Ît = It − In , t ∈ Z ,

and define the corresponding bootstrap sample extremogram

γ̂∗A(h) =
m

n

n−h∑

t=1

Ît∗ Î(t+h)∗ , h = 0, . . . , n− 1 ,

and the bootstrap periodogram

I∗n,A(λ) =
m

n

∣∣∣
n∑

t=1

Ît∗e
−it λ

∣∣∣
2

, λ ∈ Π .

Note the crucial difference: in general, It∗I(t+h)∗ 6= It∗It∗+h, but, as we will see in Lemma 25, the
quantities γ̃∗A(h) and γ̂

∗
A(h) are asymptotically close for fixed h ≥ 0.

In what follows, we focus on the bootstrap for the continuous version Jn,A of the integrated
periodogram for a given smooth weight function g; bootstrap consistency can also be shown for the

discretized version Ĵn,A; we omit further details. In the definition of Jn,A in (3.1), we simply replace

(It) by (Ît∗), resulting in its bootstrap version

J∗
n,A(λ) =

∫ λ

0

I∗n,A(x) g(x) dx = ψ0 γ̂
∗
A(0) + 2

n−1∑

h=1

ψh γ̂
∗
A(h) , λ ∈ Π .

Now we can formulate a bootstrap analog of Theorem 15 which shows the consistency of the
stationary bootstrap procedure.

Theorem 21. Assume the conditions of Theorem 15 and 20. Then

d
(
(n/m)1/2

(
J∗
n,A − E∗J∗

n,A

)
, G

)
P→ 0 , n→ ∞ ,

where the Gaussian process G is defined in Theorem 15 and d is any metric which describes weak
convergence in C(Π).

Remark 22. Recall that, in general, it is not possible to replace the centering EJn,A of Jn,A in

the functional central limit theorem of Theorem 15 by its limit
∫ ·

0
hA(λ) g(λ) dλ. A similar remark

applies to Theorem 21. Although supλ∈Π |E∗J∗
n,A(λ) − Jn,A(λ)| P→ 0, under the conditions of

Theorem 21, it is in general not possible to replace the centering E∗J∗
n,A by Jn,A; see Lemma 28.

Thus, Theorem 21 does not yield bootstrap consistency in a textbook sense but it rather provides
a simulation technique for the limit process G. In turn, the simulation of this process makes it
possible to provide confidence bands for the goodness of fit test statistics considered above. We will
apply this simulation procedure in Section 4.4.
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4.4. A simulation study. We focus on the Grenander-Rosenblatt statistic (GRS) on the left-
hand side of (3.8) for different time series models, distinct thresholds and sample sizes. Under
the null hypothesis of a particular time series model, one can simulate the quantiles of the GRS
from the theoretical model. In this study we also follow a different approach. First, we determine
the expected value function EJnA and the threshold am such that p0 = P (X > am) = 1/m
by simulation from the theoretical model and then we use the stationary bootstrap to calculate
the asymptotic quantiles of the GRS. This distribution is be obtained by repeated simulation of
(n/m)0.5 supx∈Π |J∗

n,A(x) − E∗J∗
n,A(x)|; Theorem 21 provides a justification for this approach.1 In

the cases when the expected value function EJnA can be replaced by its limit, i.e., when the bias
of Jn,A is negligible, this approach has the advantage that the test is non-parametric. An example
are models satisfying the asymptotic independence condition (AI) and n/m2 → 0 as n → ∞; see
Theorem 19 and the remark following it. Of course, for an iid sequence or η-dependent sequence one
can also use the quantiles of the limit distribution of the GRS which are known or can be simulated;
see (3.9) and (3.10).

In what follows, we apply the Grenander-Rosenblatt test (GRT) to various univariate (real-life
or simulated) time series Xt, t = 1, . . . , n for different sample sizes n and thresholds am. We always
choose A = (1,∞) and g ≡ 1. Whenever we apply the stationary bootstrap we choose the geometric
parameter θ = 1/50. Density plots and simulated quantiles are derived from 4, 000 independent
repetitions, also in the bootstrap case.

In Figure 3 we illustrate how the stationary bootstrap works for different thresholds am and
sample size n = 2, 000. We show the density of the normalized GRS on the left-hand side of
(3.8) and its bootstrap approximation. We choose regularly varying ARMA(1, 1) and GARCH(1, 1)
models. The densities of the GRS and its bootstrap approximation are close to each other. We
take this fact as justification for using the bootstrap quantiles of the GRS in the test. While the
densities in the ARMA case do not seem too sensitive to the choice of the high threshold am, the
shape of the densities change for the GARCH model when switching from p0 = 0.10 to p0 = 0.05,
while they look similar for p0 = 0.05 and p0 = 0.01.

In Figure 4 we show sample paths of the normalized and centered integrated periodogram
(n/m)0.5|Jn,A − EJn,A| with p0 = 0.05 for samples of size n = 2, 000 from ARMA(1,1) and
GARCH(1,1) models together with 95%-quantiles of the GRS both under the correct and under
an incorrect null hypothesis. Due to the need of centering with EJn,A these sample paths are
affected both by the sample and the model. Indeed, if the model is chosen incorrectly we will typ-
ically subtract the incorrect centering and calculate an incorrect threshold am. When using both
the bootstrap-based or true 95%-quantiles of the GRS, the model is not rejected if the sample is in
agreement with the null hypothesis. However, if the sample comes from a model whose parameters
slightly deviate from the parameters of the null hypothesis the incorrect expected value EJnA and
wrong threshold am change the sample path of the integrated periodogram in such a way that the
bootstrap-based GRT rejects the null hypothesis while it does not reject the null if one uses the
quantiles based on the null hypothesis. It is advantageous to show both 95%-quantiles: they deviate
rather significantly, indicating that we chose an incorrect null model.

In Figure 5 we consider a stochastic volatility model Xt = σtZt, where (σt) is a log-normal
stationary process independent of the iid t-distributed sequence (Zt). The α degrees of freedom of
the t-distribution coincide with the index α of regular variation of (Xt). The extremogram of this
sequence vanishes at all positive lags. This fact is in agreement with the extremogram of an iid
sequence but is in contrast to a GARCH(1, 1) process. Choosing p0 = 0.05, we apply the GRS to a
stochastic volatility sample of size n = 2, 000 under the incorrect null hypothesis of a GARCH(1, 1)

1 Throughout, to exploit the power of the Fast Fourier Transform, we use the Riemann sum approximations to
the integrated periodograms. We do not indicate this fact in the notation.
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model with tail index close to the chosen α. The test clearly rejects the null hypothesis. We also
run a GRT for the stochastic volatility sample under the null hypothesis of an iid t-distributed
sequence with α degrees of freedom. We use the approximation of the distribution of the GRS by
the distribution of the supremum of a Brownian bridge; see Example 18. Also in this case, the null
is clearly rejected.

In Figure 6 we deal with a time series (Xt) of 1, 560 1-minute log-returns of Goldman Sachs
stock from the period November 7-10, 2011. It has estimated tail index α ≈ 3. Using standard
software, we fitted a GARCH(1, 1) model such that σ2

t = 0.019 + 0.1X2
t−1 + 0.87σ2

t−1. Hill and
QQ plots of the residuals of this model indicate that the noise is well fitted by a t-distribution with
(approximately) 4 degrees of freedom. The theoretical index of regular variation of this GARCH(1,1)
model is α = 3.13; see Table 2 in [9]. We test the null hypothesis of a GARCH(1, 1) model with the
aforementioned parameters. This hypothesis is rejected. On the other hand, the GRT passes under
the hypothesis of an iid sequence, where we choose am as the 95% empirical quantile. This means
that the extremes of this data set are more in agreement with an iid than with a GARCH structure.
This is perhaps not surprising in view of a high frequency data return series while GARCH seems
more suitable for fitting low frequency returns.

A GARCH(1, 1) model is often considered to give a good fit to daily log-returns of stock prices
and foreign exchange (FX) rates. For example, such a judgement may be based on tests for zero
autocorrelation of the residuals, their absolute values and squares. We did not find evidence of
GARCH behavior in the extremes of three 5-year time series of daily Euro-USD FX rate log-returns:
from 2002 to 2006 (before the financial crisis), from 2006 to 2010 (including the financial crisis),
from 2009 to 2013 (after the financial crisis); see Figure 7. We choose different thresholds am. When
p0 = 0.05 the null hypothesis of an iid sequence is accepted for 2002-2006 and 2009-2013, but not for
2006-2010. The null hypothesis of a fitted GARCH process with σ2

t = 2.37×10−7+0.1X2
t−1+0.8σ2

t−1

and iid t-distributed noise with 4 degrees of freedom is also rejected by the GRT for 2006-2010. For
this latter period, the stationarity assumption may be doubted. We repeat the GRTs for p0 = 0.02
in the periods 2002-2006 and 2009-2013. In the latter case the iid null hypothesis is still not rejected
while it is rejected in the former case. The abrupt change of the behavior of the GRT may be due
to the sample size (roughly 1,280 for each time series). For p0 = 0.02 one would use only 2% of the
data for the calculation of the GRT.

Our simulation study points at some of the problems one has to face when using goodness of
fit tests based on the extremes of a time series. A major problem is the choice of the threshold
am. A data driven choice would be preferable but we do not have a theoretical answer to the
problem. We propose to use graphical methods to compare the shapes of the extremogram and the
integrated periodogram for different thresholds and to choose a sufficiently high threshold where the
shapes stabilize. A message from the simulations is that the sample size n should not be too small.
For example, the GRTs in Figure 7 with n ≈ 1, 280 give rather distinct answers when switching
from p0 = 0.05 to p0 = 0.02. The sample extremogram and the integrated periodogram render
meaningless for too high thresholds because most indicator functions of extreme events will be zero.
The simulation study indicates that it is useful to exploit the true quantiles of the GRS (obtained
by simulation from a model under the null hypothesis) as well as corresponding bootstrap-based
quantile of the GRS. In particular, when the null hypothesis is incorrect the two 95% quantiles
(say) will typically differ, pointing at the incorrect null hypothesis. We do not address the problem
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Figure 3. Density of the normalized GRS (solid line) and its bootstrap approx-
imation. The sample size is n = 2, 000. and the thresholds am are chosen
such that p0 = P (X > am) = 0.10, 0.05, 0.03 corresponding to the first, sec-
ond and third column. Top: The sample is drawn from the ARMA(1, 1) process
Xt = 0.8Xt−1 + 0.1Zt−1 + Zt, where (Zt) is iid t-distributed with α = 3 degrees of
freedom. Bottom: The sample is drawn from the GARCH(1, 1) process Xt = σtZt,
where σ2

t = 0.1 + 0.1X2
t−1 + 0.84σ2

t−1 and (Zt) is iid t-distributed with 4 degrees
of freedom. In this case, the index of regular variation for (Xt) is α = 3.49; see
Table 2 in Davis and Mikosch [9].

of goodness of fit tests in the case when the null hypothesis depends on estimated parameters; the
asymptotic theory does not change under mild conditions on the convergence rates of the estimators.

5. Proof of Lemma 13

Part 1. Recall the series representations of Jn,A(g) and JA(g) from (1.4) and (1.5), respectively.
Then for every fixed k ≥ 1, large n,

Jn,A(g)− JA(g) =
(
c0(g)[γ̃A(0)− γA(0)] + 2

k∑

h=1

ch(g) [γ̃A(h)− γA(h)]
)

+2

n−1∑

h=k+1

ch(g) [γ̃A(h)− γA(h)]− 2

∞∑

h=n

ch(g) γA(h)

= I1(k) + I2(k)− I3 .
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Figure 4. Paths of the integrated periodogram (n/m)0.5|Jn,A−EJn,A| with p0 =
0.05 for samples of size n = 2, 000. Top: We work under the null hypothesis of the
ARMA(1,1) model Xt = 0.8Xt−1+0.3Zt−1+Zt, where (Zt) is iid t-distributed with
α = 3 degrees of freedom. Left: The sample is drawn from the null model. The
lower and upper dotted lines y = 11.9 and y = 12.9 correspond to the bootstrap-
based and true 95%-quantiles of the GRS, respectively. The null hypothesis would
be accepted. Right: The sample is drawn from the ARMA(1,1) process Xt =
0.8Xt−1 + 0.1Zt−1 + Zt with the same distribution for (Zt). The lower dotted line
y = 6.84 is the bootstrap-based 95%-quantile of the GRS. Based on it, the test
would reject the null. However, it would accept the null if one chose the 95%-
quantile of the null model. Bottom: We work under the null hypothesis of the
GARCH(1, 1) process Xt = σtZt, where σ

2
t = 10−7 + 0.1X2

t−1 + 0.81σ2
t−1 and (Zt)

is iid t-distributed with 4 degrees of freedom. Left: The sample is chosen from the
null model. The lower and upper dotted lines y = 6.4 and y = 8 correspond to the
bootstrap-based and true 95%-quantiles of the GRS, respectively. The null would
be accepted for both quantiles. Right: The sample is drawn from a GARCH(1, 1)
process with σ2

t = 10−7 + 0.1X2
t−1 + 0.84σ2

t−1 and the same distribution of (Zt).
The lower dotted line y = 7.4 is the bootstrap-based 95%-quantile of the GRS.
The null would be rejected in this case while it would be accepted if one used the
95%-quantile y = 8 based on the null hypothesis.
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Figure 5. The sample of size n = 2, 000 is drawn from a stochastic volatility
process Xt = σtZt with log-volatility log σt = 0.9 logσt−1 + ǫt for an iid standard
normal sequence (ǫt), Zt is t-distributed with 3.6 degrees of freedom. Left: Sample
path of (n/m)0.5|Jn,A − EJn,A| with p0 = 0.05. The lower and upper dotted lines
y = 7.8 and y = 10.2 correspond to the true and bootstrap-based 95%-quantiles

of the GRS under the null hypothesis of a GARCH(1,1) process X̃t = σ̃tZ̃t with

σ̃2
t = 6.23 × 10−3 + 0.1X̃2

t−1 + 0.8σ̃2
t−1 and iid t-distributed (Z̃t) with 4 degrees of

freedom. This process has tail index 3.68; see Table 1 in [9]. The test clearly rejects
the null hypothesis. Right: Sample path of the integrated periodogram absolute
value n0.5|Jn,A − ψ0γ̃A(0)|. The dotted line is the 95%-quantile of the distribution
of the supremum of the absolute values of a Brownian bridge. The test clearly
rejects the null hypothesis that (Xt) is iid.

Then I3 → 0 as n → ∞ since (γA(h)) is summable and EI1(k) converges to zero as n → ∞ due to
regular variation, for every k. In view of (2.1) in (M),

∣∣∣E
n−1∑

h=rn+1

γ̃A(h)ch(g)
∣∣∣ =

∣∣∣m
n

n−1∑

h=rn+1

(n− h) ch(g) (ph − p20)
∣∣∣

≤ cm

∞∑

h=rn+1

ξh → 0 , n→ ∞ ,

and (2.2) in (M) implies

lim
k→∞

lim sup
n→∞

∣∣∣E
rn∑

h=k+1

γ̃A(h)ch(g)
∣∣∣ ≤ c lim

k→∞
lim sup
n→∞

m

rn∑

h=k+1

ph = 0 .

Since limk→∞

∑∞
h=k+1 γA(h) = 0, we have limk→∞ lim supn→∞ |EI2(k)| = 0. This proves Part 1.

Part 2. It follows from Theorem 3.1 in Davis and Mikosch [7] that γ̃A(h)
L2

→ γA(h), h ≥ 1. Hence

I1(k)
L2

→ 0 as n → ∞ for fixed k ≥ 1. It remains to show that limk→∞ lim supn→∞ var(I2(k)) = 0 .
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Figure 6. GRTs for 1, 560 Goldman Sachs 1-minute log-returns. Left: The inte-
grated periodogram (n/m)0.5|Jn,A−EJn,A| with p0 = 0.05 under the null hypothe-
sis that the data are generated by the GARCH(1, 1) model σ2

t = 0.019+0.1X2
t−1+

0.87σ2
t−1 with iid t-distributed noise with 4 degrees of freedom. The lower and up-

per dotted lines y = 7.6 and y = 12.3 represent the true and bootstrap-based 95%-
quantiles of the GRS under the null hypothesis. The hypothesis of GARCH(1, 1)
is clearly rejected. Right: The integrated periodogram n0.5|Jn,A − ψ0γ̃A(0)| with
p0 = 0.05 under the null hypothesis of an iid sequence. The dotted line repre-
sents the asymptotic 95%-quantile based on the approximation of the GRS by the
supremum of the absolute values of a Brownian bridge. The null hypothesis is not
rejected.

We have

I2(k) = 2
( rn∑

h=k+1

+

n−1∑

h=rn+1

)
ch(g)

[
γ̃A(h)− γA(h)

]
= 2I21(k) + 2I22 .

In view of Lemma 1 we get the bound

var(I21(k)) ≤
m2

n

rn∑

h=k+1

rn−h∑

l=0

|ch(g)ch+l(g)| ×

(
|Γ(0, h, 0, h+ l)|+

n−h−l∑

t=1

|Γ(0, h, t, t+ h+ l)|+
n−h∑

t=1

|Γ(0, h+ l, t, t+ h)|
)

= Q1 +Q2 +Q3 .

Since |ch(g)| ≤ c/h (see (2.17)),

|Q1| ≤ c
m2

n

rn∑

h=k+1

|ch(g)|
rn∑

s=h

|cs(g)|ps = c
m2

n

rn∑

s=k+1

|cs(g)|ps
s∑

h=k+1

|ch(g)|

≤ c
m2

n

rn∑

s=k+1

pss
−1 log s ,
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Figure 7. GRTs for daily Euro-USD FX rate log-returns 2002-2006(top, n = 1, 280),
2006-2010 (middle, n = 1, 279), 2009-2013 (bottom, n = 1, 281). The graphs show the
integrated periodograms n0.5|Jn,A −ψ0γ̃A(0)| under the null hypothesis of an iid sequence
and (n/m)0.5|Jn,A−EJn,A| in the case of a fitted GARCHmodel. Under the iid hypothesis,
the dotted lines represent the 95%-quantile obtained from the limiting supremum of the
absolute values of a Brownian bridge. Under the GARCH hypothesis, the dotted line
represents the bootstrap-based 95%-quantile of the GRS. Top: FX rate log returns 2002-
2006 (n = 1, 280). We test under the iid null hypothesis. For p0 = 0.05 (left), the null is not
rejected. This is in contrast to the case p0 = 0.02 (right) which leads to a clear rejection.
The qualitative difference may be due to the relatively small sample size which renders
the test statistics meaningless. Middle: FX rate log returns 2006-2010 (n = 1, 279). Left.
The iid null hypothesis with p0 = 0.05 is rejected. Right. A GARCH(1, 1) model with
σ2
t = 2.37×10−7 +0.1X2

t−1+0.8σ2
t−1 and iid t-distributed noise with 4 degrees of freedom

is fitted to the data. The null hypothesis of this GARCH is clearly rejected. Bottom:
FX rate log returns 2009-2013 (n = 1, 281). The iid null hypothesis with p0 = 0.05 (left)
and p0 = 0.02 (right) is not rejected.



THE INTEGRATED PERIODOGRAM OF A DEPENDENT EXTREMAL EVENT SEQUENCE 25

and the right-hand side converges to 0 by first letting n → ∞ and then k → ∞, using (2.2). Since
the structures of Q2 and Q3 are similar we restrict ourselves to showing Q2 → 0 as n→ ∞, k → ∞.
We observe that

|Q2| ≤ c
m2

n

rn∑

h=k+1

rn∑

s=h

1

hs

( 2rn∑

t=1

+
n∑

t=2rn+1

)
|Γ(0, h, t, t+ s)|

≤ c
m log2 rn

n
m

3rn∑

h=k+1

ph + c
m log2 rn

n
m

n∑

h=rn+1

ξh + cn−1
(
m

rn∑

h=k+1

ph/h
)2
.

In the last step, we used (2.4). The right-hand side vanishes as n → ∞ and k → ∞. Finally, we
conclude that limk→∞ lim supn→∞ var(I21(k)) = 0.

Now we turn to bounding var(I22). In view of Lemma 1 we have

var(I22) ≤ m2

n

n−1∑

h=rn+1

n−1∑

s=h

|ch(g)cs(g)|
(
|Γ(0, h, 0, s)|+

n−s∑

t=1

|Γ(0, h, t, t+ s)|

+

n−h∑

t=1

|Γ(0, s, t, t+ h)|
)
= Q4 +Q5 +Q6 .

We have by (2.17),

Q4 ≤ c
m2

n

n−1∑

h=rn+1

n−1∑

s=h

|ch(g)cs(g)| |EĨ0Ĩs|

≤ c
m2

n

n−1∑

h=rn+1

h−2
n−1∑

s=h

[(ps − p20) + p20]

≤ c
[ m

nrn
m

∞∑

h=rn+1

ξh +
(p0m)2

rn

]
= o(1) , n→ ∞ .

The terms Q5 and Q6 can be treated in a similar way; we focus on Q5. By (2.17),

Q5 ≤ c
m2

n

n−1∑

h=rn+1

h+rn∑

s=h

(hs)−1
rn∑

t=1

|Γ(0, h, t, t+ s)|

+c
m2

n

n−1∑

h=rn+1

n−1∑

s=h+1

n−s∑

t=rn+1

(hs)−1|Γ(0, h, t, t+ s)|

+c
m2

n

n−1∑

h=rn+1

n−1∑

s=h+rn+1

rn∑

t=1

(hs)−1|Γ(0, h, t, t+ s)|

= Q51 +Q52 +Q53 ,

and

Q51 ≤ c
m2

n

n−1∑

h=rn+1

h+rn∑

s=h

(hs)−1
rn∑

t=1

[
(ph − p20) + p20

]

≤ c
(m
n
m

∞∑

h=rn+1

ξh + (mp0)
2 rn
n

)
→ 0 , n→ ∞ .
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Next we consider Q52 and Q53. By (2.3), we have

Q52 ≤ c
2m2

n

n−1∑

h=rn+1

n−1∑

s=h

(hs)−1
n∑

t=rn+1

ξt ≤ c
m log2 n

n
m

∞∑

t=rn+1

ξt .

The right-hand side converges to zero by using the assumption m log2 n/n = O(1) and the condition
(2.1). Similarly, using (2.3), we obtain

Q53 ≤ c
m

n
m

∞∑

h=rn+1

ξh .

We conclude that var(I22) → 0 as n→ ∞.

We proved above that E(Jn,A−JA(g))2 → 0, hence Jn,A(g)
P→ JA(g), combined with (2.7), yields

J◦
n,A(g)

P→ J◦
A(g).

6. Proof of Theorem 15

We start by proving (3.3). An application of the continuous mapping theorem in C(Π) and
Lemma 4 yield in C(Π) for every k ≥ 1,

(m
n

)0.5(
ψ0 (γ̃A(0)− Eγ̃A(0)) + 2

k∑

h=1

ψh (γ̃A(h)− Eγ̃A(h))
) d→ ψ0Z0 + 2

k∑

h=1

ψhZh .

Here (Zh) is a mean zero Gaussian process with covariance structure specified in Lemma 4. In view
of Theorem 2 in Dehling et al. [12] relation (3.3) will follow if we can prove the following result.

Lemma 23. Assume that the conditions of Theorem 15 hold. Then for any ε > 0,

lim
k→∞

lim sup
n→∞

P
(
(n/m)0.5 sup

λ∈Π

∣∣∣
n−1∑

h=k+1

ψh(λ) (γ̃A(h)− Eγ̃A(h))
∣∣∣ > ε

)
= 0 .

Proof of Lemma 23. We borrow the techniques of the proof of Theorem 3.2 in Klüppelberg and
Mikosch [19]. Without loss of generality we assume that k = 2a − 1 and n = 2b+1 where a < b are
integers; if k or n do not have this representation we have to modify the proof slightly but we omit
details. For integer q > 0 and some constant κ > 0 to be chosen later, let εq = 2−2q/κ. We have for
ε > 0,

Q = P
(
(n/m)0.5 sup

λ∈Π

∣∣∣
n−1∑

h=k+1

(γ̃A(h)− Eγ̃A(h))ψh(λ)
∣∣∣ > ε

)

≤ P
(
(n/m)0.5

b∑

q=a

sup
λ∈Π

∣∣∣
2q+1−1∑

h=2q

(γ̃A(h)− Eγ̃A(h))ψh(λ)
∣∣∣ > ε)

≤ P
( b∑

q=a

εq > ε
)
+ P

( b⋃

q=a

{
(n/m)0.5 sup

λ∈Π

∣∣∣
2q+1−1∑

h=2q

(γ̃A(h)− Eγ̃A(h))ψh(λ)
∣∣∣ > εq

})

≤
b∑

q=a

P
(
(n/m)0.5 sup

λ∈Π

∣∣∣
2q+1−1∑

h=2q

(γ̃A(h)− Eγ̃A(h))ψh(λ)
∣∣∣ > εq

)
=

b∑

q=a

Qq .

In the last steps we used that P (
∑b

q=a εq > ε) vanishes for fixed ε and sufficiently large a. Next

we will bound the expressions Qq. Write Jq,v = {(v − 1)2q + 1, . . . , v2q} and for j ∈ Jq,v and
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λ ∈ [0, 2−2qπ],

Yqj(λ) = (n/m)0.5
2q+1−1∑

h=2q

(γ̃A(h)− Eγ̃A(h))ψh(λ + (j − 1)π2−2q) .

Then

Qq = P
(
(n/m)0.5 max

v=1,...,2q
max
j∈Jq,v

sup
λ∈[(j−1)π2−2q+1,jπ2−2q+1 ]

∣∣∣
2q+1−1∑

h=2q

(γ̃A(h)− Eγ̃A(h))ψh(λ)
∣∣∣ > εq

)

≤
2q∑

v=1

P
(
((n/m)0.5 max

j∈Jq,v

sup
λ∈[0,2−2q+1π]

|Yqj(λ)| > εq

)
=

2q∑

v=1

Qqv .

We will bound each of the terms Qqv by twice applying the maximal inequality of Theorem 10.2 in
Billingsley [1]. For this reason we have to control the variance of the increments of the process Yqj
both as a function of λ and j. In particular, we will derive the following bound

n

m
E
( 2q+1−1∑

h=2q

(γ̃A(h)− Eγ̃A(h)) dh(ω,λ, j, j
′)
)2

≤ c |j − j′|2|λ − ω|2β Kk,n ,(6.1)

where β is the Hölder coefficient of the function g,

Kk,n ≤ c
[
m

∞∑

h=rn+1

ξh +m

rn∑

h=k+1

ph + rn/m
]

and for j < j′ in Jq,v, h ∈ {2q, . . . , 2q+1 − 1} and ω < λ in [0, 2−2q+1π],

dh(ω, λ, j, j
′)(6.2)

=
(
ψh(λ+ (j′ − 1)π2−2q+1)− ψh(λ+ (j − 1)π2−2q+1)

)

−
(
ψh(ω + (j′ − 1)π2−2q+1)− ψh(ω + (j − 1)π2−2q+1)

)

=

∫ λ+(j′−1)π2−2q+1

λ+(j−1)π2−2q+1

g(x) cos(hx)dx −
∫ ω+(j′−1)π2−2q+1

ω+(j−1)π2−2q+1

g(x) cos(hx)dx

=

∫ (j′−1)π2−2q+1

(j−1)π2−2q+1

(
g(x+ λ)[cos(h(x+ λ)) − cos(h(x+ ω))]

−[g(x+ λ)− g(x+ ω)] cos(h(x+ ω))
)
dx .

Since g is β-Hölder continuous we have

∣∣∣
∫ (j′−1)π2−2q+1

(j−1)π2−2q+1

[g(x+ λ)− g(x+ ω)] cos(h(ω + x))dx
∣∣∣ ≤ c(λ− ω)β(j′ − j)2−2q .

Similarly,

∣∣∣
∫ (j′−1)π2−2q

(j−1)π2−2q

g(x+ λ)[cos(h(λ+ x)) − cos(h(ω + x))]dx
∣∣∣

=
∣∣∣
∫ (j′−1)π2−2q

(j−1)π2−2q

g(x+ λ)(2 sin(h(λ− ω)/2) sin(h(λ+ ω + 2x)/2))dx
∣∣∣

≤ ch(λ− ω)(j′ − j)2−2q ≤ c(λ− ω)(j′ − j)2−q .
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The last two inequalities yield for a constant c only depending on g,

|dh(ω, λ, j, j′)| ≤ c|λ− ω|β |j′ − j| 2−q .(6.3)

Using this bound, we have

n

m
E
( 2q+1−1∑

h=2q

(γ̃A(h)− Eγ̃A(h)) dh(ω, λ, j, j
′)
)2

≤ c |j − j′|2|λ− ω|2β 2−2q n

m

2q+1−1∑

h=2q

2q+1−1∑

s=h

∣∣cov
(
γ̃A(h), γ̃A(s)

)∣∣ .(6.4)

In what follows, it will be convenient to write
∑(q)

h,l =
∑2q+1−1

h=2q
∑2q+1−h−1

l=0 . In view of Lemma 1 we

can bound the last term in (6.4) as follows:

n

m

(q)∑

h,l

∣∣cov(γ̃A(h), γ̃A(h+ l))
∣∣

=
m

n

(q)∑

h,l

∣∣∣(n− h− l)Γ(0, h, 0, h+ l) +

n−h−l−1∑

t=1

(n− h− l − t)Γ(0, h, t, t+ h+ l)

+

n−h−1∑

t=1

min(n− h− l, n− h− t)Γ(0, h+ l, t, t+ h)

−(n− h)(n− h− l)(ph − p20)(ph+l − p20)
∣∣∣

≤ m

(q)∑

h,l

[
|Γ(0, h, 0, h+ l)|+

h+rn∑

t=1

|Γ(0, t, h, t+ h+ l)|+
h+l+rn∑

t=1

|Γ(0, h+ l, t, t+ h)|

+
1

n

∣∣∣
n−h−l−1∑

t=h+rn+1

(n− t− h− l)Γ(0, h, t, t+ h+ l)

+
n−h−1∑

t=h+l+rn+1

(n− t− h)Γ(0, h+ l, t, t+ h)

−(n− h)(n− h− l)(ph − p20)(ph+l − p20)
∣∣∣
]

= W1 +W2 +W3 +W4 .

We will treat two cases of interest for the sums
∑(q)

h,l : when 2q+1 − 1 ≤ rn and 2q > rn. If

2q ≤ rn < 2q+1 − 1 the sums
∑(q)

h,l can be split into two sums corresponding to h ≤ rn and h > rn
and these can be treated in a similar fashion.

We start by studying the case 2q+1− 1 ≤ rn. Then rn ≥ 2q+1− 1 ≥ h ≥ 2q > k and consequently
2q+1 − h− 1 ≤ 2q. Thus, W1 ≤ c2qm

∑rn
h=k+1 ph . The terms W2, W3 have a similar structure and

can be treated in the same way; we focus on W2. Then we get the following bound from Lemma 1

W2 ≤ c 22q
[
m

rn∑

h=k+1

ph +m

2rn∑

h=rn+1

ξh + (rn/m)
]
.
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In view of (2.4), we also have

W4 ≤ m

n

(q)∑

h,l

[
n−h−l∑

t=h+rn+1

(n− t− h− l)
∣∣Γ(0, h, t, t+ h+ l)− (ph − p20)(ph+l − p20)

∣∣

+

n−h∑

t=h+rn+l+1

(n− t− h)
∣∣Γ(0, h+ l, t, t+ h)− (ph − p20)(ph+l − p20)

∣∣

+cnrn
∣∣(ph − p20)(ph+l − p20)

∣∣
]

≤ c22qm

n∑

h=rn+1

ξh + c
rn
m

(
m

rn∑

h=k+1

ph
)2
.

Next we assume that 2q > rn. By (2.3) and (2.4),

W1 ≤ m

2q+1−1∑

h=2q

rn∑

l=0

|Γ(0, 0, h, h+ l)− (p0 − p20)(pl − p20)|+ 2qm

rn∑

l=0

(p0 − p20)(pl − p20)

+m
2q+1−1∑

h=2q

2q+1−h−1∑

l=rn+1

|Γ(0, 0, h, h+ l)|

≤ c 2qm
∞∑

h=rn+1

ξh +
2qrn
m

(mp0)
2 .

We again focus on W2; W3 can be treated in a similar way.

W2 ≤ m

2q+1−1∑

h=2q

( rn∑

l=1

( rn∑

t=1

+

h∑

t=rn+1

+

h+rn∑

t=h+1

)
+

2q+1−1∑

l=rn+1

h+rn∑

t=1

))
|Γ(0, t, h, t+ h+ l)|

≤ c 22qm

∞∑

h=rn+1

ξh + c 22q
rn
m

(mp0)
2

To obtain the bounds for W4 we use (2.4):

W4 ≤ m

n

2q+1−1∑

h=2q

2q+1−h−1∑

l=0

[
n−h−l∑

t=h+rn+1

(n− t− h− l)

×
∣∣Γ(0, h, t, t+ h+ l)− (ph − p20)(ph+l − p20)

∣∣

+

n−h∑

t=h+rn+l+1

(n− t− h)
∣∣Γ(0, h+ l, t, t+ h)− (ph − p20)(ph+l − p20)

∣∣

+cn2q
∣∣(ph − p20)(ph+l − p20)

∣∣
]

≤ c22qm
∞∑

t=rn+1

ξt + c(2q/m)

(
m

∞∑

h=rn+1

ξh

)2

.

Collecting the bounds for Wi, i ≤ 4, and using (6.4), we finally proved (6.1).
Using this bound, we can apply the maximal inequality of Theorem 10.2 in Billingsley [1] with

respect to the variable λ ≤ 2−2qπ and for fixed j, j′:

P ( max
0≤λ≤2−2qπ

|Yj(λ)− Yj′ (λ)| > εq) ≤ cε−2
q (2−2qπ)2β (j − j′)2Kk,n

≤ c 24q(1−β+κ−1) ((j − j′)2−2q)2Kk,n .
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Another application of this maximal inequality to max0≤λ≤2−2qπ |Yj(λ)| with respect to the variable
j ∈ Jq,v yields

Qqv = P
(

max
j∈{(v−1)2q+1,...,v2q}

max
0≤λ≤2−2qπ

|Yj(λ)| > εq

)
≤ c24q(2

−1−β+κ−1)Kk,n .

Then we also have

Qq ≤
2q∑

v=1

Qqv ≤ c 24q(3/4−β+κ−1)Kk,n .

The right-hand side converges to zero as q → ∞ provided β ∈ (3/4, 1] and κ is chosen sufficiently
large. Therefore we conclude for every ε > 0,

Q ≤
b∑

q=a

Qq ≤ cKk,n

∞∑

q=a

24q(3/4−β+κ−1) .(6.5)

The right-hand side converges to zero by first letting n→ ∞ and then k → ∞. This concludes the
proof of (3.3).

Next we turn to the proof of (3.4). It will follow from (3.3) once we prove the following lemma.

Lemma 24. Assume that the conditions of Theorem 15 hold. Then for any ε > 0, as n→ ∞,

P
(
(n/m)0.5 sup

λ∈Π

∣∣(Ĵn,A(λ)− EĴn,A(λ)
)
−
(
Jn,A(λ) − EJn,A(λ)

)∣∣ > ε
)
→ 0 .

Proof of Lemma 24: For any fixed k ≥ 1 we have

P
(
(n/m)0.5 sup

λ∈Π

∣∣(Ĵn,A(λ) − EĴn,A(λ)
)
−
(
Jn,A(λ)− EJn,A(λ)

)∣∣ > ε
)

≤ P
(
(n/m)0.5 sup

λ∈Π

∣∣∣
k∑

h=0

(
γ̃A(h)− Eγ̃A(h)

)(
ψh(λ) − ψ̂h(λ)

)∣∣∣ > ε/3
)

+P
(
(n/m)0.5 sup

λ∈Π

∣∣∣
n∑

h=k+1

(
γ̃A(h)− Eγ̃A(h)

)
ψh(λ)

∣∣∣ > ε/3
)

+P
(
(n/m)0.5 sup

λ∈Π

∣∣∣
n∑

h=k+1

(
γ̃A(h)− Eγ̃A(h)

)
ψ̂h(λ)

∣∣∣ > ε/3)

= V1 + V2 + V3 .

An application of Chebyshev’s and Hölder’s inequalities yields,

V1 ≤ 9ε−2 n

m
E sup

λ∈Π

∣∣∣
k∑

h=0

(
γ̃A(h)− Eγ̃A(h)

)(
ψh(λ) − ψ̂h(λ)

)∣∣∣
2

≤ c
n

m
E sup

λ∈Π

k∑

h=0

(
γ̃A(h)− Eγ̃A(h)

)2∣∣ψh(λ)− ψ̂h(λ)
∣∣

k∑

s=0

∣∣ψs(λ)− ψ̂s(λ)
∣∣

≤ c k
n

m

k∑

h=0

var
(
γ̃A(h)

)
sup
x∈Π

∣∣ψh(x)− ψ̂h(x)
∣∣ .

Next we will study supλ∈Π |ψh(λ)− ψ̂h(λ)|. Trivially, for x ∈ Π,
∣∣∣
∫ x

ωn(xn)

cos(hλ) g(λ) dλ
∣∣∣ ≤ c/n ,
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where the constant c only depends on g. We also have for the frequencies x ∈ Π,

|ψh(ωn(xn))− ψ̂h(ωn(xn))|

=
∣∣∣

xn∑

i=1

(∫ ωn(i)

ωn(i−1)

cos(hλ) g(λ) dλ− ωn(1) cos(hωn(i)) g(ωn(i))
)∣∣∣

≤
xn∑

i=1

∣∣∣
∫ ωn(i)

ωn(i−1)

cos(hλ) (g(λ)− g(ωn(i))) dλ
∣∣∣(6.6)

+
∣∣∣

xn∑

i=1

g(ωn(i))
( sin(hωn(i))− sin(hωn(i− 1))

h
− ωn(1) cos(hωn(i))

)∣∣∣ .

(6.7)

Since g is β-Hölder continuous there exists a constant c > 0 such that

|g(λ)− g(ωn(i))| ≤ cn−β , λ ∈ [ωn(i− 1), ωn(i)] .

Therefore the term in (6.6) is bounded by c n−β . A Taylor expansion as z → 0 yields sin(z) =
z − z3/3! + o(z3). Then we have for h ≤ n,

∣∣∣ sin(hωn(i))− sin(hωn(i− 1))

h
− ωn(1) cos(hωn(i))

∣∣∣

=
∣∣∣2h−1 sin(hωn(0.5)) cos(hθ(i+ 0.5)) − ωn(1) cos(hωn(i))

∣∣∣

=
∣∣∣2h−1(sin(hωn(0.5)) − hωn(0.5)) cos(hθ(i+ 0.5))

+ωn(1)(cos(hωn(i+ 0.5)) − cos(hωn(i)))
∣∣∣

≤ c(hωn(1))
3 + ωn(1)

∣∣∣2 sin(hωn(0.25) sin(hωn(i+ 0.25))
∣∣∣ ≤ c (h3n−3 + hn−2) .

Consequently, we have the bound c(k/n)(1 + k2/n) for (6.7) uniformly for x ∈ Π and h ≤ k, Thus,
uniformly for h ≤ k,

sup
x∈Π

|ψ̃h(x) − ψ̂h(x)| ≤ c
[
n−β + (k/n)(1 + k2/n)] .

As we have shown in Lemma 4, (n/m)
∑k

h=0 var
(
γ̃A(h)

)
≤ c k; see also Davis and Mikosch [7],

Lemma 5.2. Thus, as n→ ∞,

V1 ≤ c
[
k2n−β + (k3/n)(1 + k2/n)] → 0 .

It follows from Lemma 23 that limk→∞ lim supn→∞ V2 = 0. We adapt the proof of Lemma 23 for
the case V3. Abusing notation, consider

dh(ω, λ, j, j
′) =

(
ψ̂h(λ+ (j′ − 1)π2−2q+1)− ψ̂h(λ + (j − 1)π2−2q+1)

)

−
(
ψ̂h(ω + (j′ − 1)π2−2q+1)− ψ̂h(ω + (j − 1)π2−2q+1)

)
.

Recall that we assume n = 2b for some integer b and xn = [nx/(2π)]. Therefore for λ ∈ Π and
integer j,

(λ+ (j − 1)π2−2q+1)n = [nλ/(2π) + (j − 1)2−2q+b]

= [nλ/(2π)] + (j − 1)2−2q+b

= λn + (j − 1)2−2q+b .



32 T. MIKOSCH AND Y. ZHAO

Thus we can write

dh(ω,λ, j, j
′)

=
2π

n

λn+(j′−1)2b−2q∑

i=λn+(j−1)2b−2q

g(ωn(i)) cos(hωn(i))

−2π

n

ωn+(j′−1)2b−2q∑

i=ωn+(j−1)2b−2q

g(ωn(i)) cos(hωn(i))

=
2π

n

(j′−1)2b−2q∑

i=(j−1)2b−2q

(
g(ωn(λn + i))[cos(hωn(λn + i))− cos(hωn(ωn + i))]

−[g(ωn(λn + i))− g(ωn(ωn + i))] cos(hωn(ωn + i))
)
= T1 + T2 .

Calculation yields

|T1| ≤ c|ωn(λn)− ωn(ωn)|
∣∣(j′ − j)2−2q

∣∣2q ≤ c
∣∣(λn − ωn)/n

∣∣∣∣(j′ − j)2−2q
∣∣2q ,

|T2| ≤ c|ωn(λn)− ωn(ωn)|β
∣∣(j′ − j)2−2q

∣∣ ≤ c
∣∣(λn − ωn)/n

∣∣β∣∣(j′ − j)2−2q
∣∣ .

Combining these bounds, we have,

|dh(ω, λ, j, j′)| ≤ c|(λn − ωn)/n|β
∣∣(j′ − j)2−2q

∣∣2q .

In the remaining argument we can follow the proof of Lemma 23; the only difference is that we have
to replace the supremum over λ, ω ∈ [0, j2−2q+1] by the corresponding quantities λn/n, ωn/n ∈
[0, j2−2q+1]. This proves
limk→∞ lim supn→∞ V3 = 0 and concludes the proof of the lemma.

The proofs of (3.6) and (3.7) are completely analogous. Instead of the relations (2.8) one has to
use (2.10).

7. Proof of Theorem 17

We adapt the proof of Theorem 15. We need to prove that

n

(q)∑

h,l

|cov(γ̃A(h), γ̃A(h+ l))| ≤ c2q ,
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where
∑(q)

h,l is defined in the proof of Lemma 23. Here h > η.

n

(q)∑

h,l

∣∣cov(γ̃A(h), γ̃A(h+ l))
∣∣

=
m2

n

(q)∑

h,l

∣∣∣(n− h− l)Γ(0, h, 0, h+ l) +

n−h−l−1∑

t=1

(n− h− l − t)Γ(0, h, t, t+ h+ l)

+

n−h−1∑

t=1

min(n− h− l, n− h− t)Γ(0, h+ l, t, t+ h)
∣∣∣

≤ m2
2q+1−1∑

h=2q

|Γ(0, 0, h, h)|+m2
2q+1−1∑

h=2q

2q+1−h−1∑

l=1

|Γ(0, 0, h, h+ l)|

+m2

(q)∑

h,l

n−h−l−1∑

t=1

|Γ(0, h, t, t+ h+ l)|+m2

(q)∑

h,l

n−h−l−1∑

t=1

|Γ(0, h+ l, t, t+ h)|

= m2
2q+1−1∑

h=2q

|Γ(0, 0, h, h)|+m2
2q+1−1∑

h=2q

η∑

l=1

|Γ(0, 0, h, h+ l)|

+m2
2q+1−1∑

h=2q

η∑

l=1

η∑

t=1

|Γ(0, h, t, t+ h+ l)|+m2
2q+1−1∑

h=2q

η∑

l=1

η∑

t=1

|Γ(0, h+ l, t, t+ h)|

≤ c2q

In the above calculation, we use the facts that for s ≤ t ≤ u ≤ v, Γ(s, t, u, v) = 0 where t− s > η
or v − u > η.

In the remaining argument we can follow the proof of Theorem 15; instead of Lemma 4 we use
the central limit theory of Lemma 6. �

8. Proof of Theorem 21

We will mimic the proof of Theorem 15. We start by proving a result for the bootstrapped sample
extremogram γ̂∗A analogous to Theorem 20.

Lemma 25. Under the conditions and with the notation of Theorem 20, for h ≥ 0,

d
(
(n/m)0.5

(
γ̂∗A(i)− E∗γ̂∗A(i)

)
i=0,...,h

, (Zi)i=0,...,h

)
P→ 0 , n→ ∞ .

Proof. We start by observing (see Lemma 27) that for h ≥ 0

E∗γ̃∗A(h) =
m

n
(n− h)E∗Ĩ1∗ Ĩ1∗+h

= (1− h/n)
[
γ̃A(h) +

m

n

n∑

t=n−h+1

ĨtĨt+h

]
,

E∗γ̂∗A(h) =
m

n
(n− h)E∗Î1∗ Î(1+h)∗

= (1− h/n) (1− θ)h
[
γ̂A(h) +

m

n

n∑

t=n−h+1

ÎtÎt+h

]
,

where we interpret indices larger than n modulo n, and therefore

(n/m)0.5
[
(1 − θ)hE∗γ̃∗A(h)− E∗γ̂∗A(h)

]
= OP (m

−1)
P→ 0 ,(8.1)
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where we used that I
2

n − p20 = OP (1/
√
mn). By virtue of Theorem 20 it suffices to show that for

any ε > 0 and h ≥ 0, as n→ ∞,

P ∗
(
(n/m)0.5

∣∣∣(1− θ)h
(
γ̃∗A(h)− E∗γ̃∗A(h)

)
−
(
γ̂∗A(h)− E∗γ̂∗A(h)

)∣∣∣ > ε
)

P→ 0 .

Markov’s inequality ensures that it suffices to prove that

n

m
var∗

(
(1 − θ)hγ̃∗A(h)− γ̂∗A(h)

) P→ 0 , n→ ∞ .

We observe that
n

m
var∗

(
(1− θ)hγ̃∗

A(h)− γ̂∗
A(h)

)

= m
(
1− h

n

)
var∗

(
Î1∗ Î(1+h)∗ − (1− θ)hĨ1∗ Ĩ1∗+h

)

+2m

n−h−1∑

s=1

(
1− h+ s

n

)
×

cov∗
(
Î1∗ Î(1+h)∗ − (1− θ)hĨ1∗ Ĩ1∗+h, Î(1+s)∗ Î(1+s+h)∗ − (1− θ)hĨ(1+s)∗ Ĩ(1+s)∗+h

)

= m
(
1− h

n

)
var∗

(
Î1∗ Î(1+h)∗ − (1− θ)hĨ1∗ Ĩ1∗+h

)

+2m

n−h−1∑

s=1

(
1− h+ s

n

) [
cov∗(Î1∗ Î(1+h)∗ , Î(1+s)∗ Î(1+s+h)∗)

−(1− θ)hcov∗(Î1∗ Î(1+h)∗ , Ĩ(1+s)∗ Ĩ(1+s)∗+h)

−(1− θ)hcov∗(Ĩ1∗ Ĩ1∗+h, Î(1+s)∗ Î(1+s+h)∗)

+(1− θ)2hcov∗(Ĩ1∗ Ĩ1∗+h, Ĩ(1+s)∗ Ĩ(1+s)∗+h)
]
= Q1 +Q2 .

We will show that the right-hand side converges to zero in P -probability, where we focus on Q2 and
omit the details for Q1. We start by looking at the summands in Q2 for fixed s ≤ h, using the
structure of the covariances in Lemma 27. The expressions for the covariances in Lemma 27 contain
terms with normalization n−2. For example, by (8.7) a corresponding term in Q2 is of the order

m
(
n−1

n∑

i=1

ĨiĨi+h

)2

= m−1
(m
n

n∑

i=1

Ĩi Ĩi+h

)2

= OP (m
−1) ,

since m
n

∑n
i=1 ĨiĨi+h

P→ γA(h); see Lemma 4. In the latter sums, the Ĩi’s can be exchanged by

the Ii’s or the Îi’s. Therefore all other terms in Q2 with normalization mn−2 converge to zero in
P -probability. Another appeal to Lemma 27 shows that it remains to consider those expressions in
Q2 that are normalized by mn−1 again for fixed s ≤ h. From (8.9) and (8.10) we see that, on one
hand, we have to deal with the differences

(1− θ)s+h m

n

n∑

i=1

ÎiÎi+sÎi+hÎi+s+h − (1− θ)s+2hm

n

n∑

i=1

ĨiĨi+hÎi+sÎi+s+h ,(8.2)

but both sums are consistent estimators of limn→∞mP (a−1
m X0 ∈ A, a−1

m Xs ∈ A, a−1
m Xh ∈ A, a−1

m Xs+h ∈
A) (see [7], Theorem 3.1). Therefore (8.2) converges to zero in P -probability. On the other hand,
in view of (8.7) and (8.8) we have to deal with the differences, for s ≤ h,

(1− θ)s+2hm

n

n∑

i=1

ĨiĨi+sĨi+hĨi+s+h − (1− θ)2h
m

n

n∑

i=1

ÎiÎi+hĨi+s Ĩi+s+h ,

which again converge to zero in P -probability. These arguments finish the proof for s ≤ h.
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An inspection of the covariances in Lemma 27 shows that for s > h all expressions with nor-
malization n−2 do not depend on s. The corresponding aggregated terms in Q2 are then given
by

2m
n−h−1∑

s=h+1

(
1− h+ s

n

)[
− (1− θ)s+h

(
n−1

n∑

i=1

ÎiÎi+h

)2

+(1− θ)s+h
(
n−1

n∑

i=1

ÎiÎi+h

)(
n−1

n∑

i=1

ĨiĨi+h

))

+(1− θ)s+2h
(
n−1

n∑

i=1

ÎiÎi+h

)(
n−1

n∑

i=1

ĨiĨi+h

)
− (1− θ)s+2h

(
n−1

n∑

i=1

ĨiĨi+h

)2]

= −2m−1
(m
n

n∑

i=1

ÎiÎi+h − m

n

n∑

i=1

ĨiĨi+h

)(m
n

n∑

i=1

ÎiÎi+h

) n−h−1∑

s=h+1

(
1− h+ s

n

)
(1− θ)s+h

−2m−1
(m
n

n∑

i=1

ĨiĨi+h − m

n

n∑

i=1

ÎiÎi+h

)(m
n

n∑

i=1

ĨiĨi+h

) n−h−1∑

s=h+1

(
1− h+ s

n

)
(1− θ)s+2h

= OP (1/(θ
√
mn)) = oP (1) .

In the last step we used (8.1) and the assumption nθ2/m→ ∞. Finally, we deal with the remaining
terms in Q2. In view of Lemma 27 they are given by

2m
n−h−1∑

s=h+1

(
1− h+ s

n

)[
(1− θ)s+h n−1

n∑

i=1

ÎiÎi+sÎi+hÎi+s+h

−(1− θ)s+h n−1
n∑

i=1

ÎiÎi+hĨi+sĨi+s+h

−(1− θ)s+2h n−1
n∑

i=1

ĨiĨi+hÎi+sÎi+s+h + (1− θ)s+2h n−1
n∑

i=1

ĨiĨi+sĨi+hĨi+s+h

]

= 2m

n−h−1∑

s=h+1

(
1− h+ s

n

)
(1− θ)s+hn−1

n∑

i=1

ÎiÎi+h

(
Îi+sÎi+s+h − Ĩi+sĨi+s+h

)

+ 2m

n−h−1∑

s=h+1

(
1− h+ s

n

)
(1− θ)s+2h n−1

n∑

i=1

ĨiĨi+h

(
Ĩi+sĨi+s+h − Îi+sÎi+s+h

)
= J0 .

Using the assumption nθ2/m→ ∞, we have

E|J0| ≤ cm

n−h−1∑

s=h+1

(1− θ)s+hE|Î0Îh − Ĩ0Ĩh|

≤ cmE|p0 − In|
n−h−1∑

s=h+1

(1− θ)s+h ≤ c(m/n)0.5θ−1 = o(1) .

This finishes the proof of the lemma. � �

We conclude from Lemma 25 that for any k ≥ 1, as n→ ∞,

d
(
(n/m)0.5

(
ψ0

(
γ̂∗
A(0)− E∗γ̂∗

A(0)
)
+ 2

k∑

h=1

ψh

(
γ̂∗
A(h)− E∗γ̂∗

A(h)
))
,

ψ0 Z0 + 2
k∑

h=1

ψh Zh

)
P→ 0 ,
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where the dependence structure of (Zh) is defined in Lemma 4.
The proof of the theorem is finished by the following result which parallels Lemma 23.

Lemma 26. Assume the conditions of Theorem 21. Then the following relation holds for δ > 0

lim
k→∞

lim sup
n→∞

P
(
(n/m)0.5 sup

λ∈Π

∣∣∣
n−1∑

h=k+1

ψh(λ)
(
γ̂∗A(h)− E∗γ̂∗A(h)

)∣∣∣ > δ
)
= 0 .

(8.3)

Proof. We follow the lines of the proof of Lemma 23 and use the same notation. We again assume
without loss of generality that k = 2a − 1 and n = 2b+1 for integers a < b, a chosen sufficiently
large, and we write εq = 2−2q/κ for κ > 0 to be chosen later. Then, for large a depending on ε > 0,
the steps of the proof lead to the inequality (cf. (6.5))

Q∗ = P ∗
(
(n/m)0.5 sup

λ∈Π

∣∣∣
n−1∑

h=k+1

(
γ̂∗A(h)− E∗γ̂∗A(h)

)
ψh(λ)

∣∣∣ > ε
)

≤ c

b∑

q=a

24q(0.75−β+κ−1)Kq ,

where β ∈ (3/4, 1] is the Hölder coefficient of the function g, the number κ > 0 can be chosen
arbitrarily large and

Kq =
n

m

2q+1−1∑

h=2q

2q+1−1∑

s=h

|cov∗(γ̂∗A(h), γ̂∗A(s)| .

By the Cauchy-Schwarz inequality, for s, h ∈ [2q, 2q+1) and h ≤ s,

(n/m)2|cov∗(γ̂∗A(h), γ̂∗A(s)|2 ≤ (n/m)var∗(γ̂∗A(h)) (n/m)var∗(γ̂∗A(s)) .

We will show that

(n/m)Evar∗(γ̂∗A(h)) ≤ c(8.4)

for some constant c, uniformly for k ≤ h ≤ n and n. Then

EQ∗ ≤ c
b∑

q=a

24q(3/4−β+κ−1) ≤ c
∞∑

q=a

24q(3/4−β+κ−1) .

The right-hand side converges since β ∈ (3/4, 1] and κ can be chosen arbitrarily large. Moreover,
the right-hand side converges to zero as k → ∞.
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Thus it remains to show (8.4). In view of Lemma 27 we have

(n/m)Evar∗(γ̂∗
A(h))

= (m/n)
[
(n− h)Evar∗(Î1∗ Î(1+h)∗)

+2
n−h−1∑

t=1

(n− h− t)Ecov∗(Î1∗ Î(1+h)∗ , Î(1+t)∗ Î(1+t+h)∗)
]

=
[
m(1− h/n)(1 − θ)2h

[
E(Î1Î1+h)

2 −E
(
n−1

n∑

i=1

ÎiÎi+h

)2]]

+2m

n−h−1∑

t=1

(1− (h+ t)/n)
[
n−1

n∑

i=1

EÎiÎi+hÎi+tÎi+t+h

]
(1− θ)t+h

+2m

min(h−1,n−h−1)∑

t=1

(1− (h+ t)/n)E
(
n−1

n∑

i=1

ÎiÎi+t

)2
((1− θ)2t − (1− θ)t+h)

−2m

min(h−1,n−h−1)∑

t=1

(1− (h+ t)/n)E
(
n−1

n∑

i=1

ÎiÎi+h

)2
(1− θ)2h

−2m

n−h−1∑

t=h

(1− (h+ t)/n)E
(
n−1

n∑

i=1

ÎiÎi+h

)2
(1− θ)t+h

≤ mE(Î1Î1+h)
2 + 2m

n−h−1∑

t=1

(1− (h+ t)/n)
(
n−1

n∑

i=1

EÎiÎi+hÎi+tÎi+t+h

)
(1− θ)t+h

+2m

min(h−1,n−h−1)∑

t=1

(1− (h+ t)/n)E
(
n−1

n∑

i=1

ÎiÎi+t

)2
(1− θ)2t

= V1 + V2 + V3 .

We observe that, for some constant c0 > 0,

V1 ≤ mE(Î1Î1+h)
2 ≤ cm

[
EI1I1+h + (EIn)

2
]
≤ cmp0 ≤ c0 .

For V2, we observe that for i ≤ n,

mθ−1
∣∣E

[
ÎiÎi+hÎi+tÎi+t+h − ĨiĨi+hĨi+tĨi+t+h

]∣∣

≤ cmθ−1E
∣∣In − p0

∣∣ = O(
√
m/nθ−1) = o(1) ,

by virtue of the condition nθ2/m → ∞. Therefore, for showing that |V2| ≤ c uniformly for h, n, it

suffices to show that |Ṽ2| ≤ c, where Ṽ2 is obtained from V2 by replacing the Ît’s by the corresponding

Ĩt’s. Taking into account EĨ1Ĩ1+t = pt − p20 and the Cauchy-Schwarz inequality, we have for a fixed
integer M > 0,

|Ṽ2| ≤ cm

n−h−1∑

t=1

∣∣∣n−1
n∑

i=1

EĨi Ĩi+hĨi+tĨi+t+h

∣∣∣

= cm

n−h−1∑

t=1

|EĨ1Ĩ1+hĨ1+tĨ1+t+h|

≤ (mp0)M + cm

rn∑

t=M+1

(pt + p20) + cm
∞∑

t=rn+1

ξt ≤ c ,
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in view of condition (M) and regular variation. A similar argument as for V2 shows that one may

replace the Ît’s in V3 by the corresponding Ĩt’s. We denote the resulting quantity by Ṽ3. Then we
have

Ṽ3 ≤ m

n∑

t=1

(1− θ)tE
(
n−1

n−t∑

i=1

ĨiĨi+t + n−1
n∑

i=n−t+1

ĨiĨi+t−n

)2

≤ cm

n∑

t=1

(1− θ)tE
(
n−1

n−t∑

i=1

ĨiĨi+t

)2
+ cm

n∑

t=1

(1− θ)tE
(
n−1

n∑

i=n−t+1

ĨiĨi+t−n

)2

= Ṽ31 + Ṽ32 .

We will only deal with Ṽ31, the other term can be bounded in a similar way. We observe that for
fixed M > 1, using condition (M),

Ṽ31 ≤ c
m

n

n∑

t=1

(1− θ)t
(
E(Ĩ1Ĩ1+t)

2 + 2

n−t−1∑

s=1

|EĨ1Ĩ1+tĨ1+sĨ1+s+t|
)

≤ o(1) + c
m

n

n∑

t=1

(1− θ)t
n−t−1∑

s=1

|EĨ1Ĩ1+tĨ1+sĨ1+s+t|

≤ o(1) + c
m

n

n∑

t=1

(1− θ)t
rn∑

s=M+1

(ps + p20) + c
m

n

n∑

t=1

(1− θ)t
∑

rn+1≤s≤n−t−1,s≤t

ξs

+c
m

n

n∑

t=1

(1− θ)t
∑

rn+1≤s≤n−t−1,s>t

(
|EĨ1Ĩ1+tĨ1+sĨ1+s+t − (pt − p20)

2|+ (pt − p20)
2) .

In view of condition (M), the first two terms on the right-hand side are negligible as n → ∞. The
third term is bounded by

c
m

n

n∑

t=1

(1− θ)t
∑

rn+1≤s≤n−t−1,s>t

ξs−t + cm

n∑

t=1

(1− θ)t(pt − p20)
2 .

Multiple use of (M) again shows that the right-hand side is negligible. This proves (8.4). � �
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Lemma 27. Under the conditions of Theorem 21 the following relations hold for s, h ≥ 0 :2

E∗Î1∗ = 0 ,(8.5)

E∗Î1∗ Î(1+h)∗ = (1− θ)h n−1
n∑

i=1

ÎiÎi+h , E∗Ĩ1∗ Ĩ1∗+h = n−1
n∑

i=1

ĨiĨi+h ,(8.6)

cov∗(Ĩ1∗ Ĩ1∗+h, Ĩ(1+s)∗ Ĩ(1+s)∗+h)(8.7)

= (1− θ)s
(
n−1

n∑

i=1

ĨiĨi+sĨi+hĨi+s+h −
(
n−1

n∑

i=1

ĨiĨi+h

)2)
,

cov∗
(
Î1∗ Î(1+h)∗ , Ĩ(1+s)∗ Ĩ(1+s)∗+h

)
(8.8)

= (1− θ)max(s,h)
(
n−1

n∑

i=1

ÎiÎi+hĨi+sĨi+s+h −
(
n−1

n∑

i=1

ÎiÎi+h

)(
n−1

n∑

i=1

ĨiĨi+h

))
,

cov∗
(
Ĩ1∗ Ĩ1∗+h, Î(1+s)∗ Î(1+s+h)∗

)
(8.9)

= (1− θ)s+h
(
n−1

n∑

i=1

ĨiĨi+hÎi+sÎi+s+h −
(
n−1

n∑

i=1

ÎiÎi+h

)(
n−1

n∑

i=1

ĨiĨi+h

))
,

cov∗
(
Î1∗ Î(1+h)∗ , Î(1+s)∗ Î(1+s+h)∗

)
(8.10)

=






(1− θ)s+h
[
n−1∑n

i=1 ÎiÎi+sÎi+hÎi+s+h −
(
n−1∑n

i=1 ÎiÎi+s

)2]
+

(
n−1∑n

i=1 ÎiÎi+s(1− θ)s
)2

−
(
n−1∑n

i=1 ÎiÎi+h(1− θ)h
)2
, s < h ,

(1− θ)s+h
(
n−1∑n

i=1 ÎiÎi+sÎi+hÎi+s+h −
(
n−1∑n

i=1 ÎiÎi+h

)2)
, s ≥ h .

Proof. Relations (8.5) and (8.6) follow from the defining properties of the stationary bootstrap; see
Politis and Romano [23].

We will only show that (8.10) holds; (8.7)–(8.9) can be proved in a similar (and even simpler) way
but we omit further details. First assume s < h. Recall L1 from the construction of the stationary
bootstrap scheme. Consider the following decomposition

E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ ]

= E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | L1 ≤ s] P (L1 ≤ s)

+E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | s < L1 ≤ h] P (s < L1 ≤ h)

+E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | h < L1 ≤ s+ h] P (h < L1 ≤ s+ h)

+E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | L1 > s+ h] P (L1 > s+ h)

= Q1 +Q2 +Q3 +Q4 .

We start with Q1. For L1 ≤ s < h, Î1∗ is independent of

(Î(1+h)∗ , Î(1+s)∗ , Î(1+s+h)∗), given (Xt), but E∗Î1∗ = 0 by (8.5) and therefore Q1 = 0. Simi-

larly, for h < L1 ≤ s + h, Î(1+s+h)∗ is independent of (Î1∗ , Î(1+h)∗ , Î(1+s)∗), given (Xt), and since

E∗Î(1+s+h)∗ = 0, Q3 = 0. Each of the values i = 1, . . . , n has the same chance to be chosen by the

bootstrap, i.e., P ∗(Î∗1 = Îi) = n−1 for i = 1, . . . , n. Thus, for L1 > s + h and the chosen i, the
natural ordering (1∗, (1 + h)∗, (1 + s)∗, (1 + s + h)∗) = (i, i + h, i + s, i + s + h) is preserved and

2If indices in the sums below exceed the value n they are interpreted in the circular sense, i.e., mod n.
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therefore

Q4 = n−1
n∑

i=1

ÎiÎi+s Îi+hÎi+s+h P (L1 > s+ h)

= n−1
n∑

i=1

ÎiÎi+s Îi+hÎi+s+h (1− θ)s+h .

By a similar argument, (8.6) and using stationarity, we have

Q2 = E∗[Î1∗ Î(1+s)∗ | s < L1 ≤ h]E∗[Î(1+h)∗ Î(1+h+s)∗ ] P (s < L1 ≤ h)

= n−2
( n∑

i=1

ÎiÎi+s

)2

(1− θ)s
(
(1 − θ)s − (1 − θ)h)

)
.

Combining the above expressions and taking into account (8.6), we arrive at (8.10) for s < h.
We proceed with the case s > h. Then we have the corresponding decomposition

E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ ]

= E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | L1 ≤ h] P (L1 ≤ h)

+E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | h < L1 ≤ s] P (h < L1 ≤ s)

+E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | s < L1 ≤ s+ h] P (s < L1 ≤ s+ h)

+E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | L1 > s+ h] P (L1 > s+ h)

= Q′
1 +Q′

2 +Q′
3 +Q′

4 .

We observe that the left-hand side is symmetric in h, s and therefore the same arguments as above
show that Q′

1 = Q′
3 = 0, Q4 = Q′

4 and

Q′
2 = E∗[Î1∗ Î(1+h)∗ | h < L1 ≤ s]E∗[Î(1+s)∗ Î(1+s+h)∗ ] P (h < L1 ≤ s)

= n−2
( n∑

i=1

ÎiÎi+h

)2

(1− θ)h
(
(1 − θ)h − (1− θ)s

)

The case h = s can be considered as a degenerate case, where Q′
2 = 0. This completes the proof of

(8.10). � �

We conclude with a short discussion of the bias problem of the bootstrapped integrated peri-
odogram mentioned in Remark 22.

Lemma 28. Assume the conditions of Theorem 21 and the additional condition supx∈Π |ψh(x)| ≤
c/h for h ≥ 1 and a constant c. Then the following relation holds as n→ ∞,

( n
m

)0.5
sup
λ∈Π

∣∣∣ψ0(λ)
(
E∗γ̂∗

A(0) − γ̃A(0)
)
+ 2

n−1∑

h=1

ψh(λ)
(
E∗γ̂∗

A(h)− (1− θ)hγ̃A(h)
)∣∣∣

P→ 0 .(8.11)

Proof. We observe that for h ≥ 0,

E∗γ̂∗A(h)− (1 − θ)hγ̃A(h) = (1 − θ)h
[
(γ̂A(h) + γ̂A(n− h))− γ̃A(h)

]

= (1 − θ)h
[
γ̃A(n− h)−m(p0 − In)

2
]
.(8.12)

For fixed h we have (n/m)0.5m(p0 − In)
2 P→ 0 as n→ ∞ and

(n/m)0.5E|γ̃A(n− h)| ≤ c (m/n)0.5hp0 → 0 , n→ ∞ .
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Therefore it suffices to show that

lim
k→∞

lim sup
n→∞

P
(
sup
λ∈Π

∣∣∣
n−1∑

h=k+1

ψh(λ)
(
E∗γ̂∗A(h)− (1 − θ)hγ̃A(h)

)∣∣∣ > δ
)
, δ > 0 .

Keeping in mind (8.12), we have

(n/m)0.5m(p0 − In)
2 sup
λ∈Π

∣∣∣
n−1∑

h=k+1

ψh(λ)(1 − θ)h
∣∣∣ = OP (1/(θ

√
mn)) = oP (1) ,

where we used θ2n/m→ ∞, and

(n/m)0.5 sup
λ∈Π

∣∣∣
n−1∑

h=k+1

ψh(λ) (1 − θ)hγ̃A(n− h)
∣∣∣

≤ (n/m)0.5 sup
λ∈Π

∣∣∣
n−k−1∑

h=1

ψn−h(λ) (1 − θ)n−h[γ̃A(h)−m(1− h/n)(ph − p20)]
∣∣∣

+(n/m)0.5 sup
λ∈Π

∣∣∣
n−k−1∑

h=1

ψn−h(λ) (1 − θ)n−hm(1 − h/n)(ph − p20)
∣∣∣

= I1 + I2 .

Under the assumption supx∈Π |ψh(x)| ≤ c/h uniformly for h ≥ 1, we have for small ε > 0,

I2 ≤ (m/n)0.5c

∞∑

h=1

ξh → 0 , n→ ∞ .

Now we can adapt the proof of Lemma 23 to prove that

lim
k→∞

lim sup
n→∞

P (I1 > δ) = 0 , δ > 0 .

This proves (8.11). � �

However, under the assumptions of Theorem 15, it is in general not possible to replace the quanti-
ties (1− θ)hγ̃A(h) in (8.11) by γ̃A(h), i.e., in general we do not have the relation (n/m)0.5(E∗J∗

n,A−
Jn,A)

P→ 0. Indeed, taking into account (8.11) and assuming η-dependence for (Xt), we have
Eγ̃A(h) = 0 for h > η and

(n/m)0.5(E∗J∗
n,A − Jn,A)

= 2(n/m)0.5
n−1∑

h=1

ψh(λ) [(1 − θ)h − 1]γ̃A(h) + oP (1)

= 2(n/m)0.5
n−1∑

h=1

ψh(λ) [(1 − θ)h − 1]
(
γ̃A(h)− Eγ̃A(h)

)

+2(n/m)0.5
η∑

h=1

ψh(λ) [(1 − θ)h − 1](1− h/n)m(ph − p20) + oP (1) .

An argument similar to the proof of Theorem 15 shows that the first term on the right-hand side is
stochastically bounded, while the second term may diverge (for example, if γA(η) > 0 and ψη 6= 0)
since it is of the order θ(n/m)0.5 which converges to infinity in view of the assumption θ2n/m→ ∞
which is vital for the proof of the consistency of the stationary bootstrap.
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