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DISTANCE COVARIANCE FOR STOCHASTIC PROCESSES

MUNEYA MATSUI, THOMAS MIKOSCH, AND GENNADY SAMORODNITSKY

Abstract. The distance covariance of two random vectors is a measure of their dependence. The
empirical distance covariance and correlation can be used as statistical tools for testing whether
two random vectors are independent. We propose an analogs of the distance covariance for two
stochastic processes defined on some interval. Their empirical analogs can be used to test the
independence of two processes.

The authors of this paper would like to congratulate Tomasz Rolski on his 70th birthday. We
would like to express our gratitude for his longstanding contributions to applied probability theory
as an author, editor, and organizer. Tomasz kept applied probability going in Poland and beyond
even in difficult historical times. The applied probability community, including ourselves, has
benefitted a lot from his enthusiastic, energetic and reliable work.

Sto lat! Niech zyje nam! Zdrowia, szczescia, pomyslnosci!

1. Distance covariance for processes on [0, 1]

We consider a real-valued stochastic process X = (X(t))t∈[0,1] with sample paths in a measurable
space S such that X is measurable as a map from its probability space into S. We assume that
the probability measure PX generated by X on S is uniquely determined by its finite-dimensional
distributions. Examples include processes with continuous or càdlàg sample paths on [0, 1]. The
probability measure PX is then determined by the totality of the characteristic functions

ϕX(xk; sk) = ϕ
(k)
X (xk; sk) =

∫
S

e i (s1 f(x1)+···+sk f(xk)) PX(df) , k ≥ 1 ,

where xk = (x1, . . . , xk)
′ ∈ [0, 1]k, sk = (s1, . . . , sk)

′ ∈ Rk. In particular, for two such processes, X
and Y , the measures PX and PY coincide if and only if

ϕX(xk; sk) = ϕY (xk; sk) for all xk ∈ [0, 1]k, sk ∈ Rk, k ≥ 1.

We now turn from the general question of identifying the distributions of X and Y to a more
specific but related one: given two processes X,Y on [0, 1] with values in S as above and defined
on the same probability space, we intend to find some means to verify whether X and Y are
independent. Motivated by the discussion above, we need to show that the joint law of (X,Y ) on
S × S, denoted by PX,Y , coincides with the product measure PX ⊗ PY . Assuming, once again,
that a probability measure on S×S is determined by the finite-dimensional distributions (as is the
case with the aforementioned examples), we need to show that the joint characteristic functions of
(X,Y ) factorize, i.e.,

ϕX,Y (xk; sk, tk) =

∫
S2

e i
∑k
j=1(sjf(xj)+tjh(xj)) PX,Y (df, dh)

= ϕX(xk; sk)ϕY (xk; tk) , xk ∈ [0, 1]k, sk, tk ∈ Rk , k ≥ 1 .(1.1)
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Clearly, this condition is hard to check and therefore we try to get a more compact equivalent
condition which can also be used for some statistical test of independence between X and Y .

For this reason, we consider a unit rate Poisson process N = (N(t))t∈[0,1] with arrivals 0 < T1 <
T2 < · · · < TN(1) ≤ 1, write TN = (T1, . . . , TN(1))

′ and, correspondingly sN , tN for any vectors in

RN(1). Then, for any positive probability density function g on R, we define

d(PX,Y , PX ⊗ PY )

= EN
[ ∫

R2N(1)

∣∣ϕX,Y (TN ; sN , tN )− ϕX(TN ; sN )ϕY (TN ; tN )
∣∣2 N(1)∏

j=1

g(sj)g(tj) dsN dtN

]
=

∞∑
k=1

P(N(1) = k)

∫
[0,1]k

[ ∫
R2k

∣∣ϕX,Y (xk; sk, tk)− ϕX(xk; sk)ϕY (xk; tk)
∣∣2

×
k∏
j=1

g(sj)g(tj) dskdtk

]
dxk ,(1.2)

where in the last step we used the order statistics property of the homogeneous Poisson process.
Here we interpret the summand corresponding to k = 0 as zero, and we also suppress the dependence
on g in the notation. Now, the right-hand integrals vanish if and only if (1.1) is satisfied for Lebesgue
a.e. xk, sk, tk, hence if and only if (1.1) holds for any xk, sk, tk. We summarize:

Lemma 1.1. If g is a positive probability density on R then d(PX,Y , PX ⊗ PY ) = 0 if and only if
PX,Y = PX ⊗ PY .

Remark 1.2. Lemma 1.1 can easily be extended in several directions.
1. The statement remains valid when the Poisson probabilities (P(N(1) = k))k≥1 are replaced by
any summable sequence of nonnegative numbers with infinitely many positive terms.
2. Obvious modifications of Lemma 1.1 are valid e.g. for random fields X,Y on [0, 1]d (in this case
we can sample the values of the random fields at the points of a Poisson random measure on [0, 1]d

whose mean measure is the d-dimensional Lebesgue measure). Moreover, the values of X,Y may
be multivariate.
3. The positive probability density

∏k
j=1 g(sj)g(tj) on R2k can be replaced by any positive measur-

able function provided the infinite series in (1.2) is finite. This idea will be exploited in Section 3
below.
4. Returning to our original problem about identifying the laws of X and Y , similar calculations
show that the quantity

d(PX , PY ) =
∞∑
k=1

P(N(1) = k)

∫
[0,1]k

[ ∫
Rk

∣∣ϕX(xk; sk)− ϕY (xk; sk)
∣∣2 k∏

j=1

g(sj) dsk

]
dxk

vanishes if and only if X
d
= Y , where

d
= means that all finite-dimensional distributions of X and

Y coincide. The quantity d(PX , PY ) can be taken as the basis for a goodness-of-fit test for the
distributions of X and Y .

In what follows, we refer to the quantities d(PX,Y , PX ⊗PY ) as distance covariance between the
stochastic processes X and Y . This name is motivated by work on distance covariance for random
vectors X ∈ Rp,Y ∈ Rq (possibly of different dimensions) defined by

T (X,Y) =

∫
Rp+q

∣∣ϕX,Y(s, t)− ϕX(s)ϕY(t)
∣∣2 µ(ds, dt) ,

where µ is a (possibly infinite) measure on Rp+q; see for example [1, 2, 6, 7, 9]. The last mentioned
authors coined the names distance covariance and distance correlation for the standardized version
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R(X,Y) = T (X,Y)/
√
T (X,X)T (Y,Y); they chose some special infinite measures µ which lead

to an elegant form of T (X,Y) and R(X,Y); see Section 3 for more information on this approach.
The goal in the aforementioned literature was to find a statistical tool for testing independence
between the vectors X and Y using the fact that R(X,Y) = 0 if and only if X,Y are independent
provided µ has a positive Lebesgue density on Rp+q. The sample versions Tn(X,Y) and Rn(X,Y) =

Tn(X,Y)/
√
Tn(X,X)Tn(Y,Y), constructed from an iid sample (Xi,Yi), i = 1, . . . , n, of copies of

(X,Y), are then used as test statistics for checking independence of X and Y.
For stochastic processes X,Y on [0, 1] one might be tempted to test their independence based

on independent observations Xi = (Xi(x1), . . . , Xi(xk))
′, Yi = (Yi(x1), . . . , Yi(xk))

′, i = 1, . . . , n of
the processes X,Y at the locations xk in [0, 1]k. However, [8] observed that the empirical distance
correlation Rn(X,Y) has the tendency to be very close to 1 even for relatively small values k. Our
approach avoids the high dimensionality of the vectors Xi and Yi by randomizing their dimension k.

Our paper is organized as follows. In Section 2 we study some of the theoretical properties of
the distance covariance between two stochastic processes X,Y on [0, 1] where we assume that g is
a positive probability density. We find a tractable representation of this distance covariance from
which we derive the corresponding sample version. In Section 3 we choose the non-integrable weight
function g from [6]. Again, we find a suitable representation of this distance covariance, derive
the corresponding sample version and show that it is a consistent estimator of its deterministic
counterpart. In Section 4 we conduct a small simulation study based on the sample distance
correlation introduced in Section 2. We compare the small sample behavior of the sample distance
correlation with the corresponding sample distance correlation of [6] for independent and dependent
Brownian and fractional Brownian sample paths.

2. Properties of distance covariance

2.1. Distance correlation. In the context of stochastic processes X,Y one may be interested in
standardizing the distance covariance T (X,Y ) = d(PX,Y , PX ⊗PY ), i.e., in the distance correlation

R(X,Y ) =
T (X,Y )√

T (X,X)T (Y, Y )
.

However, it is not obvious that R(X,Y ) assumes only values between 0 and 1. This property is
guaranteed by a Cauchy-Schwarz argument.

Lemma 2.1. Assume that g(s) = g(−s). Then 0 ≤ R(X,Y ) ≤ 1.

We have R(X,X) = 1, In general, the relation R(X,Y ) = 1 does not imply X = Y a.s. For
example, if X is symmetric then R(X,−X) = 1 as well.

Proof. Let (X ′, Y ′) be an independent copy of (X,Y ). Applying the Cauchy-Schwarz inequality first
to the k-dimensional integral with respect to the product of k copies of g, then to the expectation
with respect to the law of (X,Y ), next with respect to the Lebesgue measure on [0, 1]k and, finally,
with respect to the law of N , and using the symmetry of the density g, we obtain

T (X,Y ) =

∞∑
k=1

P(N(1) = k)

∫
[0,1]k

dxk

E
[ ∫

R2k

[(
e i

∑k
j=1 sjXj − ϕX(xk; sk)

)(
e i

∑k
j=1 tjYj − ϕY (xk; tk)

)
(

e−i
∑k
j=1 sjX

′
j − ϕX(xk;−sk)

)(
e−i

∑k
j=1 tjY

′
j − ϕY (xk;−tk)

)] k∏
j=1

g(sj)g(tj) dskdtk

]
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≤
∞∑
k=1

P(N(1) = k)

∫
[0,1]k

dxk

(
E
[∣∣∣ ∫

Rk

(
e i

∑k
j=1 sjXj − ϕX(xk; sk)

)(
e−i

∑k
j=1 sjX

′
j − ϕX(xk;−sk)

) k∏
j=1

g(sj) dsk

∣∣∣2])1/2
×
(
E
[∣∣∣ ∫

Rk

(
e i

∑k
j=1 tjYj − ϕY (xk; tk)

)(
e−i

∑k
j=1 tjY

′
j − ϕY (xk;−tk)

) k∏
j=1

g(tj) dtk

∣∣∣2])1/2
=

∞∑
k=1

P(N(1) = k)

∫
[0,1]k

dxk

[ ∫
R2k

∣∣ϕX,X(xk; sk, tk)− ϕX(xk; sk)ϕX(xk; tk)
∣∣2 k∏

j=1

g(sj)g(tj) dskdtk

]1/2
×
[ ∫

R2k

∣∣ϕY,Y (xk; sk, tk)− ϕY (xk; sk)ϕY (xk; tk)
∣∣2 k∏

j=1

g(sj)g(tj) dskdtk

]1/2
≤

∞∑
k=1

P(N(1) = k)

[ ∫
[0,1]k

dxk

∫
R2k

∣∣ϕX,X(xk; sk, tk)− ϕX(xk; sk)ϕX(xk; tk)
∣∣2 k∏

j=1

g(sj)g(tj) dskdtk

]1/2
×
[ ∫

[0,1]k
dxk

∫
R2k

∣∣ϕY,Y (xk; sk, tk)− ϕY (xk; sk)ϕY (xk; tk)
∣∣2 k∏

j=1

g(sj)g(tj) dskdtk

]1/2
≤

√
T (X,X)

√
T (Y, Y ) .

This proves that 0 ≤ R(X,Y ) ≤ 1. �

2.2. Representations. Our next goal is to find explicit expressions for d(PX,Y , PX ⊗ PY ). We
observe that∣∣ϕX,Y (xk; sk, tk)− ϕX(xk; sk)ϕY (xk; tk)

∣∣2
= |ϕX,Y (xk; sk, tk)|2 + |ϕX(xk; sk)|2|ϕY (xk; tk)|2 − 2 Re {ϕX,Y (xk; sk, tk)ϕX(xk;−sk)ϕY (xk;−tk)} .

This expression suggests to decompose (1.2) into 3 distinct parts, the first one being

∞∑
k=1

e−1

k!

∫
[0,1]k

[ ∫
R2k

|ϕX,Y (xk; sk, tk)|2
k∏
j=1

g(sj)g(tj) dsk dtk

]
dxk

=

∫
S2

∞∑
k=1

e−1

k!

(∫
[0,1]k

[ ∫
R2k

e i
∑k
r=1

(
sr (f(xr)−f ′(xr))+tr (h(xr)−h′(xr))

)
k∏
j=1

g(sj)g(tj) dskdtk

]
dxk

)
PX,Y (d(f, h))PX,Y (d(f ′, h′))

=

∫
S2

∞∑
k=1

e−1

k!

(∫
[0,1]

[ ∫
R

e is (f(x)−f
′(x)) g(s)ds

∫
R

e it (h(x)−h
′(x)) g(t)dt

]
dx
)k

PX,Y (d(f, h))PX,Y (d(f ′, h′))
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= e−1
∫
S2

[
exp

(∫
[0,1]

[ ∫
R2

e is (f(x)−f
′(x))+it (h(x)−h′(x))g(s) g(t) ds dt

]
dx
)
− 1
]

PX,Y (d(f, h))PX,Y (d(f ′, h′)) .

Similar calculations yield

d(PX,Y , PX ⊗ PY ) = e−1
∫
S2

[
exp

( ∫
[0,1]

∫
R

e is (f(x)−f
′(x))g(s) ds

∫
R

e is (h(x)−h
′(x))g(s) dsdx

)]
×
[
PX,Y (d(f, h))PX,Y (d(f ′, h′)) + PX ⊗ PY (d(f, h))PX ⊗ PY (d(f ′, h′))

−PX,Y (d(f, h))PX ⊗ PY (d(f ′, h′))− PX,Y (d(f ′, h′))PX ⊗ PY (d(f, h))
]
.

We summarize our results:

Lemma 2.2. The distance covariance between the processes X,Y on [0, 1] with values in S can be
written in the following form:

e 1d(PX,Y , PX ⊗ PY ) = E
[

exp
( ∫

[0,1]

∫
R

e is (X(x)−X′(x)) g(s) ds

∫
R

e is(Y (x)−Y ′(x))g(ds)ds dx
)]

+E
[

exp
( ∫

[0,1]

∫
R

e is (X(x)−X′(x))g(s)ds

∫
R

e is(Y
′′(x)−Y ′′′(x))g(s) dsdx

)]
−2ReE

[
exp

( ∫
[0,1]

∫
R

e is (X(x)−X′(x))g(s)ds

∫
R

e is(Y (x)−Y ′′(x))g(s) dsdx
)]
,

where (X ′, Y ′) is an independent copy of (X,Y ) and Y ′′, Y ′′′ are independent copies of Y which are
also independent of X,X ′, Y, Y ′.

Example 2.3. Let g be the density of a suitably scaled symmetric α-stable law on R, α ∈ (0, 2].
Then ∫

R
e is (f(x)−f

′(x))g(s) ds = e−|f(x)−f
′(x)|α ,

and so for a uniform random variable U on (0, 1) which is independent of X,Y,X ′, Y ′, Y ′′, Y ′′′,

d(PX,Y , PX ⊗ PY ) = e−1E
[

exp
(
EUe−|X(U)−X′(U)|α−|Y (U)−Y ′(U)|α)

+ exp
(
EUe−|X(U)−X′(U)|α−|Y ′′(U)−Y ′′′(U)|α)

−2 exp
(
EUe−|X(U)−X′(U)|α−|Y (U)−Y ′′(U)|α)] ,(2.1)

where EU denotes expectation with respect to U .

2.3. Sample distance covariance. Let (X1, Y1), . . . , (Xn, Yn) be an iid sample with distribution
PX,Y and let Pn,X,Y be the corresponding empirical distribution with marginals Pn,X and Pn,Y .
Then we can define the sample distance covariance given by

Tn(X,Y ) = e 1 d(Pn,X,Y , Pn,X ⊗ Pn,Y )

=
1

n2

n∑
j1=1

n∑
j2=1

exp
(∫

[0,1]

∫
R

e is (Xj1 (x)−Xj2 (x))g(s) ds

∫
R

e is (Yj1 (x)−Yj2 (x))g(s) dsdx
)

+
1

n4

n∑
j1=1

n∑
j2=1

n∑
j3=1

n∑
j4=1

exp
(∫

[0,1]

∫
R

e is (Xj1 (x)−Xj2 (x))g(s) ds

∫
R

e is (Yj3 (x)−Yj4 (x))g(s)dsdx
)

−2 Re
1

n3

n∑
j1=1

n∑
j2=1

n∑
j3=1

exp
(∫

[0,1]

∫
R

e is (Xj1 (x)−Xj2 (x))g(s) ds

∫
R

e is (Yj1 (x)−Yj3 (x))g(s) dsdx
)
.
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Remark 2.4. This estimator is the exact sample analog of the distance covariance. However, this
estimator is of V -statistics-type and leads to an additional bias. For practical purposes, one should
avoid summation over diagonal and subdiagonal terms, making the estimator of U -statistics-type.
Then, for example, the first expression would turn into

1

n(n− 1)

n∑
j1=1

n∑
j2=1,j2 6=j1

exp
(∫

[0,1]

∫
R

e is (Xj1 (x)−Xj2 (x))g(s) ds

∫
R

e is (Yj1 (x)−Yj2 (x))g(s) dsdx
)
.

Since the bias is asymptotically negligible and we are interested only in asymptotic results we stick
to the original version of the sample distance covariance. In Section 3 we consider a distinct version
of distance covariance; see (3.3). By virtue of its construction diagonal and subdiagonal terms
vanish in its sample version, i.e., a bias problem does not appear.

Example 2.5. Assume that g is the density of a suitably scaled symmetric α-stable random variable.
Then

e 1 d(Pn,X,Y , Pn,X ⊗ Pn,Y )

=
1

n2

n∑
j1=1

n∑
j2=1

exp
(∫

[0,1]
e−|Xj1 (x)−Xj2 (x)|

α−|Yj1 (x)−Yj2 (x)|
α
dx
)

+
1

n4

n∑
j1=1

n∑
j2=1

n∑
j3=1

n∑
j4=1

exp
(∫

[0,1]
e−|Xj1 (x)−Xj2 (x)|

α−|Yj3 (x)−Yj4 (x)|
α
dx
)

− 2

n3

n∑
j1=1

n∑
j2=1

n∑
j3=1

exp
(∫

[0,1]
e−|Xj1 (x)−Xj2 (x)|

α−|Yj1 (x)−Yj3 (x)|
α
dx
)
.

Remark 2.6. The form of the sample distance covariance indicates that one needs to involve
numerical methods for its calculation. In addition, in general we cannot assume that the sample
paths of (Xi, Yi) are completely observed. Then we need to approximate the path-dependent
integrals appearing in the exponents of the expressions above by appropriate sums on a grid.
These problems are not studied further in this paper.

The following result is an immediate consequence of the strong law of large numbers for U -
statistics (see [3]) and the observation that d(Pn,X,Y , Pn,X ⊗ Pn,Y ) is a linear combination of U -
statistics.

Proposition 2.7. Assume that
(
(Xi, Yi)

)
i=1,...,n

is an iid sequence of S2-valued random elements.

Then

d(Pn,X,Y , Pn,X ⊗ Pn,Y )
a.s.→ d(PX,Y , PX ⊗ PY ) , n→∞ .

3. Distance covariance with infinite weight measures

So far we assumed that g is a positive integrable density. In the aforementioned literature
(see for example [6]) positive weight functions g were used which are not integrable over R. In
what follows, we consider an approach with suitable positive non-integrable weight functions which
lead to a distance covariance for stochastic processes. Due to positivity of this weight function
Lemma 1.1 remains valid.

To begin, note that if the function g is not necessarily integrable but is symmetric, then appealing
to (1.2) and using the symmetry of both the cosine function and the function g we have

d(PX,Y , PX ⊗ PY )

=

∞∑
k=1

P(N(1) = k)

∫
[0,1]k

E
[ ∫

R2k

(
cos(s′k(Xk −X′k)) cos(t′k(Yk −Y′k))
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+ cos(s′k(Xk −X′k)) cos(t′k(Y
′′
k −Y′′′k ))− 2 cos(s′k(Xk −X′k)) cos(t′k(Yk −Y′′k))

)
k∏
j=1

g(sj)g(tj) dskdtk

]
dxk ,(3.1)

where Xk = (X(x1), . . . , X(xk))
′, Yk = (Y (x1), . . . , Y (xk))

′ and (X′k,Y
′
k) is an independent copy

of (Xk,Yk) while Y′′k ,Y
′′′
k are iid copies of Yk independent of everything else. Since

cosu cos v = 1− (1− cosu)− (1− cos v) + (1− cosu)(1− cos v) ,(3.2)

we have

d(PX,Y , PX ⊗ PY )

=
∞∑
k=1

P(N(1) = k)

∫
[0,1]k

E
[ ∫

R2k

(
(1− cos(s′k(Xk −X′k)))(1− cos(t′k(Yk −Y′k)))

+(1− cos(s′k(Xk −X′k)))(1− cos(t′k(Y
′′
k −Y′′′k )))

−2(1− cos(s′k(Xk −X′k)))(1− cos(t′k(Yk −Y′′k)))
)

k∏
j=1

g(sj)g(tj) dskdtk

]
dxk .

Next we replace the product kernels
∏k
j=1 g(sj) above by other positive measurable functions on

Rk. Inspired by [6] we choose the functions

gk(s) = ck |s|−k−α , s ∈ Rk , α ∈ (0, 2) ,

where the constant ck = ck(α) > 0 is such that∫
Rk

(1− cos(s′x)) gk(s) ds = |x|α , x ∈ Rk .

The corresponding distance covariance between X and Y becomes:

d(PX,Y , PX ⊗ PY )

=
∞∑
k=1

P(N(1) = k)

∫
[0,1]k

E
[ ∫

R2k

(
(1− cos(s′k(Xk −X′k)))(1− cos(t′k(Yk −Y′k)))

+(1− cos(s′k(Xk −X′k)))(1− cos(t′k(Y
′′
k −Y′′′k )))

−2(1− cos(s′k(Xk −X′k)))(1− cos(t′k(Yk −Y′′k)))
)

×gk(sk)gk(tk) dskdtk
]
dxk .

By Fubini’s theorem and the order statistics property of the Poisson process,

d(PX,Y , PX ⊗ PY )

=
∞∑
k=1

P(N(1) = k)

∫
[0,1]k

(
E[|Xk −X′k|α|Yk −Y′k|α] + E[|Xk −X′k|α]E[|Y′′k −Y′′′k |α]

−2E[|Xk −X′k|α|Yk −Y′′k |α]
)
dxk

= E[|XN −X′N |α|YN −Y′N |α] + E[|XN −X′N |α |Y′′N −Y′′′N |α]

−2E[|XN −X′N |α|YN −Y′′N |α]

= I1 + I2 − 2 I3 ,
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(3.3)

where XN = (X(T1), . . . , X(TN(1)))
′, YN = (Y (T1), . . . , Y (TN(1)))

′, etc. In particular, all the
expectations are finite if

(3.4) sup
0≤x≤1

E[|X(x)|α + |Y (x)|α + |X(x)Y (x)|α] <∞ .

An empirical version of I1 is then given by

Î1 =
1

ln

1

n2

∑
1≤i,j≤n

ln∑
k=1

|Xi,Nk −Xj,Nk |
α|Yi,Nk −Yj,Nk |

α ,

where ((Xk, Yk)) are iid copies of (X,Y ) independent of the iid copies (Ni) of the homogeneous

Poisson process N . The empirical versions Î2, Î3 of I2, I3 are defined in an analogous way. The
integer sequence (ln) is such that ln →∞.

In view of the strong law of large numbers for U -statistics, for fixed l, as n→∞,

1

l

l∑
k=1

Ank =
1

l

1

n2

∑
1≤i,j≤n

l∑
k=1

|Xi,Nk −Xj,Nk |
α|Yi,Nk −Yj,Nk |

α

a.s.→ 1

l

l∑
k=1

E[|XNk −X′Nk |
α|YNk −Y′Nk |

α | Nk] :=
1

l

l∑
k=1

Ak .

Therefore, we can choose a sequence εn ↓ 0 such that

P
(1

l

∣∣∣ l∑
k=1

(Ank −Ak)
∣∣∣ > εn

)
→ 0

and then also choose an integer sequence (rn) such that rn →∞ and

rn P
(1

l

∣∣∣ l∑
k=1

(Ank −Ak)
∣∣∣ > εn

)
→ 0 .

Note that the sequence (rn) can be chosen to be monotone and such that rn − rn−1 ∈ {0, 1} for
each n. Then

P
( 1

rn l

∣∣∣ rn∑
s=1

sl∑
k=(s−1)l+1

(Ank −Ak)
∣∣∣ > εn

)
≤ P

(1

l
sup

s=1,...,rn

∣∣∣ sl∑
k=(s−1)l+1

(Ank −Ak)
∣∣∣ > εn

)
→ 0 .

This means that

1

rn l

rn l∑
k=1

(Ank −Ak)
P→ 0 , n→∞ .

However, by the strong law of large numbers, as n→∞,

1

rn l

rn l∑
k=1

Ak
a.s.→ E[A1] = E[|XN −X′N |α|YN −Y′N |α] .

Hence, for every l there is an (rn) such that

1

rn l

rn l∑
k=1

Ank
P→ E[A1] , n→∞ .
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We conclude that

sup
l rn−1≤v≤l rn

∣∣∣1
v

v∑
k=1

Ank −
1

l rn

lrn∑
k=1

Ank

∣∣∣
≤ rn − rn−1

l rn−1rn

l rn∑
k=1

Ank +
1

lrn

lrn∑
k=lrn−1+1

Ank .

The right-hand side converges in probability to zero, hence we have the law of large numbers for
Î1. Similar arguments apply to Î2, Î3. We summarize:

Proposition 3.1. Let α ∈ (0, 2) and assume that (3.4) holds. Then for any integer sequence (ln)
with ln →∞,

d(Pn,X,Y , Pn,X ⊗ Pn,Y ) =
1

ln

1

n2

∑
1≤i,j≤n

ln∑
k=1

|Xi,Nk −Xj,Nk |
α|Yi,Nk −Yj,Nk |

α

+
1

ln

1

n2

∑
1≤i,j≤n

ln∑
k=1

|Xi,Nk −Xj,Nk |
α 1

ln

1

n2

∑
1≤i,j≤n

ln∑
k=1

|Yi,Nk −Yj,Nk |
α

−2
1

ln

1

n3

∑
1≤i,j,l≤n

ln∑
k=1

|Xi,Nk −Xj,Nk |
α|Yi,Nk −Yl,Nk |

α

P→ d(PX,Y , PX ⊗ PY ) .

4. A simulation study

In what follows, we conduct a small simulation study for the sample distance correlationRn(X,Y )
from Section 2 for the standard normal density g. This choice implies that

Tn(X,Y ) = e 1 d(Pn,X,Y , Pn,X ⊗ Pn,Y )

=
1

n2

n∑
j1=1

n∑
j2=1

exp
(∫

[0,1]
e−|Xj1 (x)−Xj2 (x)|

2/2−|Yj1 (x)−Yj2 (x)|
2/2 dx

)
+

1

n4

n∑
j1=1

n∑
j2=1

n∑
j3=1

n∑
j4=1

exp
(∫

[0,1]
e−|Xj1 (x)−Xj2 (x)|

2/2−|Yj3 (x)−Yj4 (x)|
2/2 dx

)
− 2

n3

n∑
j1=1

n∑
j2=1

n∑
j3=1

exp
(∫

[0,1]
e−|Xj1 (x)−Xj2 (x)|

2/2−|Yj1 (x)−Yj3 (x)|
2/2 dx

)
.

As a matter of fact, simulations of this quantity are highly complex. We choose a moderate sample
size n = 100 and approximate the integrals on [0, 1] by their Riemann sums at an equidistant
grid with mesh 1/50. For (X,Y ), we take a bivariate Brownian motion (B1, B2) with correlation
ρ ∈ [0, 1], i.e.,

cov(B1(s), B2(t)) = ρ min
s,t∈[0,1]

{s, t} , s, t ∈ [0, 1] ,

and a bivariate fractional Brownian motion (W1,W2) with correlation ρ ∈ [0, 1], i.e.,

cov(W1(s),W2(t)) =
ρ

2
{|s|2H + |t|2H − |t− s|2H}, s, t ∈ [0, 1] ,

where we assume that the Hurst parameters of W1 and W2 are the same; see [4] for more general
cross-correlation structures of vector-fractional Brownian motions.
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We compare the behavior of the sample distance correlation

Rn(X,Y ) =
Tn(X,Y )√

Tn(X,X)
√
Tn(Y, Y )

of the aforementioned stochastic processes with the corresponding sample distance correlation from
[6]

RSz
n (X,Y) =

T Sz
n (X,Y)√

T Sz
n (X,X)

√
T Sz
n (Y,Y)

,

where for a sample (Xi,Yi), i = 1, . . . , n, of independent copies of the vector (X,Y),

T Sz
n (X,Y) =

1

n2

n∑
j1=1

n∑
j2=1

|Xj1 −Xj2 ||Yj1 −Yj2 |+
1

n4

n∑
j1=1

n∑
j2=1

n∑
j3=1

n∑
j4=1

|Xj1 −Xj2 ||Yj3 −Yj4 |

−2
1

n3

n∑
j1=1

n∑
j2=1

n∑
j3=1

|Xj1 −Xj2 ||Yj1 −Yj3 | .

We calculate the sample distance correlation RSz
n (X,Y) based on n = 100 iid simulations of the

vector (X,Y) = (X(i/50), Y (i/50))i=1,...,50. The calculation of Rn(X,Y ) and RSz
n (X,Y) is based

on the same simulated sample paths ((Xi, Yi))i=1,...,n.
Figures 1–3 are based on 40 independent simulations of Rn(X,Y ) and RSz

n (X,Y). The 3 left
(right) histograms show Rn(X,Y ) (RSz

n (X,Y)) for 3 different choices of processes (X,Y ). Although
it is difficult to judge from such a small simulation study with rather special stochastic processes,
these graphs give one the impression that both sample distance correlations capture the indepen-
dence or dependence of the processes X and Y quite well. The quantities RSz

n (X,Y) have the
tendency to be larger than Rn(X,Y ).

Finally, we consider two independent piecewise constant processesX and Y on [0, 1] which assume
iid standard normal values on the intervals ((i−1)/50, i/50], i = 1, 2, . . . , 50. This is essentially the
setting of [8] who chose independent vectors of iid normal random variables for the construction
of RSz

n (X,Y). In the right histogram of Figure 4 one can see that RSz
n (X,Y) is typically far from

zero. This was observed in [8] who studied the case when the dimension of the vectors is large
compared to the sample size. On the other hand, our measure Rn(X,Y ) is quite in agreement with
the independence hypothesis.

Of course, more investigations are needed in order to find out about the strengths and weaknesses
of the distance covariances and correlation for processes introduced in this paper. One of the main
problems will be to find reliable confidence bands for the estimator Rn(X,Y ). This is work in
progress.

Acknowledgment. We would like to thank the referee for constructive comments.
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Figure 1. Histograms of Rn(B1, B2) (top) and RSz
n (B1, B2) (bottom) based on 40

samples. The correlations of B1 and B2 are respectively ρ = 0, 0.5, 0.8, from left to
right.
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Figure 2. Histograms of Rn(W1,W2) (top) and RSz
n (W1,W2) (bottom) for H =

0.25 based on 40 samples. The correlations of W1 and W2 are respectively ρ =
0, 0.5, 0.8, from left to right.
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Figure 3. Histograms of Rn(W1,W2) (top) and RSz
n (W1,W2) (bottom) for H =

0.75 based on 40 samples. The correlations of W1 and W2 are respectively ρ =
0, 0.5, 0.8, from left to right.
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Figure 4. Histograms of Rn(X,Y ) (left) and RSz
n (X,Y ) (right) based on 40 sam-

ples, where X and Y are independent piecewise constant processes based on iid
normal random variables.
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