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Abstract

We derive asymptotic theory for the extremogram and cross-extremogram of a
bivariate GARCH(1, 1) process. We show that the tails of the components
of a bivariate GARCH(1, 1) process may exhibit power-law behavior but,
depending on the choice of the parameters, the tail indices of the components
may differ. We apply the theory to 5-minute return data of stock prices
and foreign-exchange rates. We judge the fit of a bivariate GARCH(1, 1)
model by considering the sample extremogram and cross-extremogram of the
residuals. The results are in agreement with the independent and identically
distributed hypothesis of the two-dimensional innovations sequence. The cross-
extremograms at lag zero have a value significantly distinct from zero. This
fact points at some strong extremal dependence of the components of the
innovations.
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1. The extremogram and the cross-extremogram

In this paper we conduct an empirical study of extremal serial dependence in a
bivariate return series. Our main tools for describing extremal dependence will be the
extremogram and the cross-extremogram. For the sake of argument and for simplicity,
we restrict ourselves to bivariate series Xt = (X1,t, X2,t)

′, t ∈ Z. We assume that (Xt)
has the following structure:

Xt = ΣtZt, t ∈ Z, (1.1)

where (Zt) constitutes an independent and identically distributed (iid) bivariate noise
sequence and

Σt = diag(σ1,t, σ2,t), t ∈ Z,
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where σi,t is the (non-negative) volatility of Xi,t. We will assume that (Xt), (Σt)
constitute strictly stationary sequences and that Σt is predictable with respect to the
filtration generated by (Zs)s≤t. We also assume that Zt = (Z1,t, Z2,t)

′ has mean zero
and covariance matrix (standardized to correlations)

P =

(
1 ρ
ρ 1

)
, (1.2)

where ρ = corr(Z1,t, Z2,t). Later, we will choose parametric models for (Xt) such as
univariate GARCH(1, 1) models both for Xi,t, i = 1, 2, or a vector GARCH(1,1) model;
see Section 2.2 for model descriptions. In the context of these parametric models, the
choice of the covariance matrix P as a correlation matrix is a matter of identifiability of
the model since one can always swap a positive constant multiplier between Σt and Zt.

The extremogram and cross-extremogram for a stationary sequence (Xt) were intro-
duced in Davis and Mikosch [13] and further developed in Davis et al. [14, 15]. These
quantities can be defined in different ways: they are proportional to each other (such
as the covariance function and the correlation function of a stationary process). In this
paper we define the extremogram and cross-extremogram of a bivariate sequence (Xt)
in standardized form such that they assume values in [0, 1]:

(
ρ11(h) ρ12(h)
ρ21(h) ρ22(h)

)
, h = 0, 1, 2, . . . ,

where




ρ11(h)
ρ22(h)
ρ12(h)
ρ21(h)


 = lim

x→∞




P(X1,h ∈ xA | X1,0 ∈ xA)
P(X2,h ∈ xB | X2,0 ∈ xB)
P(X2,h ∈ xB | X1,0 ∈ xA)
P(X1,h ∈ xA | X2,0 ∈ xB)


 . (1.3)

Here A, B are sets bounded away from zero and we assume that these limits exist.
Typically, we choose intervals (1,∞), (−∞,−1) for A, B and we also suppress the
dependence on A, B in the ρij-notation. Notice that xA = {xy : y ∈ A} has
interpretation as an extreme event if x is sufficiently large. Thus, the extremogram
ρii(h) describes the likelihood of an extreme event at lag h given there is an extreme
event in the ith component at time zero. Correspondingly, the cross-extremogram
ρij(h) for i 6= j describes the likelihood of an extreme event at time-lag h in the
jth component given there is an extreme event at time zero in the ith component.
In general, ρ12(h) 6= ρ21(h). The limits ρij can be understood as generalizations of
the (upper) tail dependence coefficient ρ = limq↑1 P(Y > F←Y (q) | X > F←X (q)) for
a bivariate vector (X,Y ) to the time series context. Here F←X (q), F←Y (q) are the q-
quantiles of the distributions of X, Y , respectively. The tail-dependence coefficients
have been proposed for measuring extremal dependence in a bivariate vector in the
context of quantitative risk management; see e.g. McNeil et al. [25].

Moreover, each of the quantities ρij(h) has interpretation as a limiting covariance
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or cross-covariance function. For example,

ρ11(h) = lim
x→∞

cov(1(X1,0 ∈ xA),1(X1,h ∈ xA)) + [P(X1,0 ∈ xA)]2

P(X1,0 ∈ xA)

= lim
x→∞

cov(1(X1,0 ∈ xA),1(X1,h ∈ xA))

P(X1,0 ∈ xA)

= lim
x→∞

P(X1,h ∈ xA | X1,0 ∈ xA).

The limits ρij(h) in (1.3) do not automatically exist. A convenient theoretical assump-
tion for their existence is the condition of regular variation of the time series (Xt).
This notion is explained in Section 2.1. Its close relationship with GARCH models
is investigated in Section 2.2. Return series are often heavy-tailed and therefore it
is attractive to model them by a regularly varying model. For example, under mild
conditions the GARCH model automatically ensures that sufficiently high moments
of the series are infinite. In particular, univariate and multivariate GARCH models
exhibit power laws. This will be explained in Section 2.2. In Section 3 we investigate
the tail behavior of a bivariate GARCH(1, 1) process. Exploiting Kesten’s [21] theory
for stochastic recurrence equations, we find that these processes have power-law tail
behavior, possibly with distinct tail indices in each component. In Section 4 we apply
this theory to the extremogram and cross-extremogram of bivariate GARCH(1, 1)
processes. In particular, we show that these processes have exponentially decaying
extremograms and, in this sense, “short serial extremal dependence”. In Section 5
we apply the results to the empirical (cross-)extremograms for simulated bivariate
GARCH(1, 1) processes. Assuming that bivariate return data have GARCH(1, 1)
structure, we also apply the empirical (cross-)extremograms to the data and their
residuals. While the data themselves exhibit some serial extremal dependence the
(cross-)extremograms of the residuals (after fitting an AR-GARCH(1, 1) model) are
in agreement with the iid hypothesis. However, the noise variables show some clear
extremal dependence between the components.

2. Some preliminaries

2.1. Regularly varying time series

We say that an R
d-valued strictly stationary time series (Xt) is regularly varying

with index α > 0 if its finite-dimensional distributions are regularly varying in the
following sense: for every h ≥ 0, the following limits in distribution exist

P(x−1(X0, . . . ,Xh) ∈ · | |X0| > x)
W

−→ P((Y0, . . . ,Yh) ∈ ·), x → ∞,

where the limit vector (Y0, . . . ,Yh) has the same distribution as |Y0|(Θ0, . . . ,Θh),
the distribution of |Y0| is given by P(|Y0| > y) = y−α, y > 1, and |Y0| and
(Θ0, . . . ,Θh) are independent. Of course, the distribution of Θ0, the spectral measure,
is concentrated on the unit sphere S

d−1 = {x ∈ R
d : |x| = 1}. The spectral measure

describes the likelihood of the directions of extreme values of the lagged vector X0.

Here
W

−→ denotes weak convergence and | · | denotes any norm in R
d; from now on we

choose the Euclidean one. The aforementioned definition of a regularly varying time
series is based on work by Basrak and Segers [3] which yields a convenient description
of the topic. Davis and Hsing [12] introduced the notion of a regularly varying time
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series which is attractive for describing serial extremal dependence in the presence of
heavy tails. They used an alternative definition of multivariate regular variation which
is equivalent to the definition above.

A direct consequence of the regular variation of a time series is that

P(|X0| > x) = x−αL(x), x > 0, for a slowly varying function L, (2.1)

i.e., L is a positive function on (0,∞) such that L(cx)/L(x) → 1 as x → ∞ for any
c > 0. Then we also have

P(X0/|X0| ∈ · | |X0| > x)
W

−→ P(Θ0 ∈ ·), x → ∞. (2.2)

Regular variation of the marginal distribution of the time series is equivalent to the set
of relations (2.1) and (2.2). A further consequence is that P(s′X0 > x)/P(|X0| > x) →
eα(s) as x → ∞ for any choice of s ∈ S

d−1 and some function eα such that eα(s0) 6= 0
for some s0 ∈ S

d−1 and eα(ts) = t−αeα(s), t > 0. For proofs of the aforementioned
properties and further reading on regular variation, we refer to Bingham et al. [4] and
Resnick [28, 29] in the univariate and multivariate cases, respectively.

A particular consequence of the property of regular variation of a time series (Xt) is
the fact that the limits in (1.3), leading to the extremogram and cross-extremogram, are
well defined. For this reason, we will assume that (Xt) is regularly varying or we will
assume that a deterministic monotone-increasing transformation of the components
Xi,t, i = 1, 2, of Xt results in a regularly varying time series. Such transformations
can be necessary, for example, if both components are not regularly varying or if both
components have rather different tail behavior. These cases are relevant for real-life
time series. As an example, assume that (Xt) is a bivariate strictly stationary Gaussian
time series. This is not a regularly varying time series. However, the extremogram
and cross-extremogram of this sequence exist for various sets A, B, for example, if
A = B = (1,∞) (a corresponding remark applies if A or B is the set (−∞,−1)).
Denote the marginal distribution functions of the components Xi,t, i = 1, 2 by FXi,0

respectively. If G denotes the distribution function of a t-distribution with α degrees
of freedom then calculation yields that

(
G←(FX1,0

(X1,t)), G
←(FX2,0

(X2,t))
)
, t ∈ Z, (2.3)

has G-distributed marginals and one can indeed show that the transformed time series
is regularly varying with index α. The same transformation arguments apply to a
non-Gaussian time series but, in contrast to a Gaussian time series, in general one
cannot ensure that the resulting time series is regularly varying in the sense defined
above. Given that a transformation of the type (2.3) yields a regularly varying time
series, one can modify the cross-extremogram e.g. for the sets A = B = (1,∞) in the
following way:

ρ12(h) = lim
q↑1

P(X2,h > F←X2,0
(q) | X1,0 > F←X1,0

(q))

= lim
x→∞

P(G←(FX2,0
(X2,h)) > x | G←(FX1,0

(X1,0)) > x).

For practical purposes, we will replace the high quantiles F←Xi,0
(q), i = 1, 2, by their

empirical versions, such as the 97%, 98%, . . . component-wise empirical quantiles,
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depending on the sample size available.1

Regular variation of a time series is a convenient theoretical property but it cannot
be tested on data. In what follows, we will assume a GARCH model for (Xt). This
model ensures regular variation of the sequence.

2.2. Univariate GARCH(1, 1) models

From Bollerslev [5] recall the notion of a univariate GARCH(1, 1) model

Xt = σtZt, t ∈ Z, (2.4)

where (Zt) is an iid unit-variance mean-zero sequence and (σt) is a positive volatility
sequence whose dynamics are given by the causal non-zero solution to the stochastic
recurrence equation

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1 = α0 + (α1Z

2
t−1 + β1)σ

2
t−1, t ∈ Z. (2.5)

Here α0 > 0, α1 > 0, and β1 ≥ 0 are constants. The probabilistic structure of (σ2
t ) can

be investigated in the context of solutions to the general stochastic recurrence equation

Yt = AtYt−1 +Bt, t ∈ Z, (2.6)

where (At, Bt), t ∈ Z, constitutes an R
2
+-valued iid sequence. Indeed, (σ2

t ) satisfies this
equation with Bt = α0 and At = α1Z

2
t−1+β1. Based on the theory for these equations

(see Bougerol and Picard [8]), we conclude that a strictly stationary positive solution
(σ2

t ) to (2.5) exists if and only if

E log(α1Z
2
0 + β1) < 0 and α0 > 0. (2.7)

In view of Jensen’s inequality and since EZ2
0 = 1, E log(α1Z

2
0+β1) ≤ logE(α1Z

2
0+β1) =

log(α1 + β1). Therefore the condition α1 + β1 < 1 ensures strict stationarity as well
as second-order stationarity of (σt) and (Xt), but the condition (2.7) is much more
general and also allows for certain choices of α1, β1 such that α1 + β1 ≥ 1; see Nelson
[27], Bougerol and Picard [8]. In the latter cases, E[X2

0 ] = ∞.
The solution to (2.6) has a rather surprising property which was discovered by

Kesten [21]; see also Goldie [18]. Under mild conditions, there exists a positive constant
c0 such that P(Y0 > x) ∼ c0x

−α for some α > 0. We apply the aforementioned theory
to (2.5) and get the following result which can be found in Goldie’s [18] paper as
regards the marginal distributions. Mikosch and Stărică [26] proved that (σt) and (Xt)
are regularly varying time series.

Proposition 1. Assume that α0 > 0, Z0 has Lebesgue density and there exists α > 0
such that

E(α1Z
2
0 + β1)

α/2 = 1, (2.8)

and E
[
(α1Z

2
0 + β1)

α/2 log+(α1Z
2
0 + β1)

]
< ∞. Then there exists a unique strictly

stationary causal non-zero solution to (2.5) and (2.4), and there exists a constant

c0 > 0 such that

P(σ0 > x) ∼ c0x
−α, x → ∞. (2.9)

1We also experimented with the corresponding high quantiles underlying the theoretical (in the
case of simulations) or fitted (in the case of real-life data) GARCH models. The results for the
empirical (cross-)extremograms were essentially the same as for using the empirical quantiles but the
computational efforts for calculating the theoretical quantiles were substantial.
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Moreover, as x → ∞,

P(X0 > x) ∼ E[(Z+

0 )α]P(σ0 > x) and P(X0 ≤ −x) ∼ E[(Z−0 )α]P(σ0 > x), (2.10)

where x± = max(0,±x). In addition, the sequences (σt) and (Xt) are regularly varying

with index α.

Relation (2.10) is an immediate consequence of (2.9) and a result of Breiman [10]
about the tails of products of independent random variables; cf. Jessen and Mikosch
[20].

3. Bivariate GARCH(1, 1) processes and their properties

Our next goal is to consider multivariate extensions of the GARCH(1, 1) model of
the type described in (1.1). A simple way of doing this is by assuming that both
component sequences (Xi,t), i = 1, 2, constitute univariate GARCH(1, 1) processes,
i.e., (Xt) in (1.1) is specified via the vector recursion

(
σ2
1,t

σ2
2,t

)
=

(
α01

α02

)
+

(
α11 0
0 α22

)(
X2

1,t−1

X2
2,t−1

)
+

(
β11 0
0 β22

)(
σ2
1,t−1

σ2
2,t−1

)

=

(
α01

α02

)
+

(
α11Z

2
1,t−1 + β11 0
0 α22Z

2
2,t−1 + β22

)(
σ2
1,t−1

σ2
2,t−1

)
,

and (Zt) is an iid sequence with covariance matrix P given in (1.2). We can apply
the univariate theory to the components (σ2

i,t), i = 1, 2. There exist unique strictly

stationary solutions (σ2
i,t), i = 1, 2, if and only if α0i 6= 0 and E log+(αiiZ

2
i,0 + βii) < 0

for i = 1, 2, and the resulting unique bivariate processes (Σt) and (Xt) are strictly
stationary. Notice that the dependence structure between the univariate component
processes is then completely determined by the dependence structure of the components
of the noise (Zt). We can also apply Proposition 1 to get conditions for power-law tails
and regular variation of the component processes of (Xt).

Remark 1. The crucial condition for the component-wise tail behavior is (2.8). Since
the distributions of Zi,0, i = 1, 2, and the parameter sets (αii, βii), i = 1, 2, may be
distinct, X1,t and X2,t will in general have different tail indices α1 and α2, respectively.
This fact can be considered an advantage when studying multivariate return series
because there is empirical evidence that the components of these series have distinct
tail indices.

There exist various extensions of a univariate GARCH model to the multivariate
case. We stick here to the constant conditional correlation model of Bollerslev [6] and
Jeantheau [19]. It is the model (1.1) with specification

(
σ2
1,t

σ2
2,t

)
=

(
α01

α02

)
+

(
α11 α12

α21 α22

)(
X2

1,t−1

X2
2,t−1

)
+

(
β11 β12

β21 β22

)(
σ2
1,t−1

σ2
2,t−1

)

=

(
α01

α02

)
+

(
α11Z

2
1,t−1 + β11 α12Z

2
2,t−1 + β12

α21Z
2
1,t−1 + β21 α22Z

2
2,t−1 + β22

)(
σ2
1,t−1

σ2
2,t−1

)
.

(3.1)

Writing Wt = (σ2
1,t, σ

2
2,t)
′,

Bt =

(
α01

α02

)
, and At =

(
α11Z

2
1,t−1 + β11 α12Z

2
2,t−1 + β12

α21Z
2
1,t−1 + β21 α22Z

2
2,t−1 + β22

)
,
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we see that we are again in the framework of the stochastic recurrence equation (2.6),
but this time for vector-valued Bt and matrix-valued At:

Wt = AtWt−1 +Bt, t ∈ Z. (3.2)

Kesten [21] also provided the corresponding theory for stationarity and tails in this case.
Stărică [30] dealt with the corresponding problems for vector GARCH(1, 1) processes,
making use of the theory in Kesten [21], Bougerol and Picard [8] and its specialization to
the tails of GARCH models in Basrak et al. [2]. In the bivariate GARCH(1, 1) case the
theory in Stărică [30] can be written in a more compact form due to the representation
(3.1); in the case of higher-order GARCH models (3.1) has to be written as an equation
for vectors involving both σ2- and X2-terms at more than 1 lag.

According to Bougerol and Picard [8], (3.1) has a unique strictly stationary solution
if the top Lyapunov exponent γ associated with the sequence (At) is negative, i.e.,

γ = lim
n→∞

n−1 log‖A1 · · ·An‖ < 0, (3.3)

where ‖ · ‖ denotes the matrix norm and the limit on the right-hand side exists a.s. In
view of the Remark on p. 122 in [8], a sufficient condition for γ < 0 is that the matrix

EA1 =

(
α11 + β11 α12 + β12

α21 + β21 α22 + β22

)
=:

(
a11 a12
a21 a22

)
(3.4)

has spectral radius smaller than 1. We assume that all entries of EA1 are positive.
Then, by the Perron–Frobenius theorem (see Lancaster [22], Section 9.2), EA1 has
a dominant single positive eigenvalue. Keeping this fact in mind, the largest positive
solution to the characteristic equation det(λI−EA1) = 0 yields the sufficient condition

a11 + a22
2

+

√(a11 − a22
2

)2

+ a12a21 < 1. (3.5)

Next we give sufficient conditions for the regular variation of a bivariate GARCH(1, 1)
process (Xt). The proof is based on Kesten’s fundamental results [21], in particular
Theorem 4. Stărică [30] gave a similar result, referring to Basrak et al. [2] for a related
proof in the situation of a univariate GARCH(p, q) process (see also Fernández and
Muriel [16]). We give a proof by verifying Kesten’s conditions.

Proposition 2. Consider the bivariate GARCH(1, 1) model and assume the following

conditions:

1. condition (3.3);

2. Z0 has Lebesgue density in R
2;

3. there exists p > 0 such that

E[|Z0|
p log+|Z0|] < ∞ and E

[
min
i=1,2

( 2∑

j=1

(αijZ
2
j,0 + βij)

)p]
≥ 2p/2; (3.6)

4. all entries of A0 are positive a.s., α0i > 0, i = 1, 2, and not all values αij,

1 ≤ i, j ≤ 2, vanish.



8 MUNEYA MATSUI AND THOMAS MIKOSCH

Then there exists a unique α ∈ (0, 2p] such that

0 = lim
n→∞

n−1 logE
[
‖A1 · · ·An‖

α/2
]
, (3.7)

there exists a strictly stationary causal non-zero solution (Xt) to (1.1) with specification

(3.1), and (Xt) is regularly varying with index α. In particular, for every n ≥ 1, there

exists a non-null Radon measure µn on R
2n
\{0}, R = {−∞,∞} ∪ R, such that

xα
P
(
x−1(X1, . . . ,Xn) ∈ ·)

V

−→ µn(·), x → ∞.

Here
V

−→ denotes vague convergence and the limit measures have the property µn(t·) =
t−αµn(·), t > 0.

Proof. According to Kesten [21], Theorem 4, there exist

• a unique strictly stationary solution (Wt) to the equation (3.2),

• a positive value α and a non-negative function eα on S
1 such that

lim
x→∞

xα/2
P(u′W0 > x) = eα(u), u ∈ S

1, (3.8)

and the function eα is positive for u ∈ S
1 such that u ≥ 0,

if the following conditions hold:

1. A0 ≥ 0 and B0 ≥ 0 and B0 6= 0, where C ≥ 0 (respectively > 0) means all
entries in C are non-negative (respectively positive);

2. the additive group generated by the numbers log ρ(a1 · · · an) is dense in R, where
ai are elements in the support of the distribution of A0 such that a1 · · · an has
positive entries and ρ is the spectral radius;

3. condition (3.3) holds;

4. there exists α > 0 such that (3.7) holds;

5. E[‖A0‖
α/2 log+‖A0‖] < ∞ and E[|B0|

α/2] < ∞.

Condition 1 holds in view of the assumptions A0 > 0 a.s. and B0 > 0.
Condition 2: we assume that A0 > 0 a.s. Therefore a1 · · · an > 0 for any n ≥ 1 and

any ai in the support of A0. Since we assume a Lebesgue density for Z0 there exists
an open set in R

2 where this density is positive. Therefore and since not all values αij

vanish, there exists a continuum of values ρ(a1) for a1 in the support of A0.
Conditions 3 and 5 follow from the assumptions.
Condition 4: the existence of such an α follows from the existence of p > 0 such

that (3.6) holds. Then α ≤ 2p.
Thus Kesten’s Theorem 4 can be applied. In particular, (3.8) holds. Due to results

in Boman and Lindskog [7] and since W0 is positive, (3.8) implies that W0 is regularly
varying with index α/2 in the sense of Section 2.1.

Next we show that the finite-dimensional distributions of (Wt) are regularly varying.
By induction,

Wt = ΠtW0 +Rt,
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where Πt = At · · ·A1, Rt =
∑t−1

i=1
At · · ·At−i+1Bt−i + Bt for t ≥ 1, and all vectors

are interpreted as column vectors. With this interpretation we write

(W1, . . . ,Wt) = (Π1, . . . ,Πt)W0 + (R1, . . . ,Rt), t ≥ 1, (3.9)

where (Π1, . . . ,Πt), (R1, . . . ,Rt) have moments of order 1

2
α with respect to the

corresponding matrix norms and are independent of W0. Now an application of the
multivariate Breiman theorem in Basrak et al. [1] yields the regular variation of the
finite-dimensional distributions of the bivariate series (Wt) with index 1

2
α, due to the

regular variation of W0 with the same index. Hence (Σt) = ((diag(Wt))
1/2) inherits

regular variation with index α. Here x1/2 for any matrix or vector x refers to taking
square roots for all entries.

It remains to show that (Xt) is regularly varying with index α. We write Σ̃t =

(diag(Wt − Rt))
1/2. It is not difficult to see that |(Σt − Σ̃t)Zt| is dominated by

c|Rt|
1/2|Zt| for some constant c and this bound has finite α moment. Therefore

lim
x→∞

xα
P
(
|(Σ1Z1, . . . ,ΣtZt)− (Σ̃1Z1, . . . , Σ̃tZt)| > x

)
= 0.

SinceW0 is regularly varying with index 1

2
α an application of the multivariate Breiman

result (see Basrak et al. [1]) shows that (Π1, . . . ,Πt)W0 is regularly varying with index
1

2
α as well. Combining these facts, we conclude that

(Σ̃1Z1, . . . , Σ̃tZt) and (Σ1Z1, . . . ,ΣtZt)

have the same tail behavior and are regularly varying with index α; cf. Jessen and
Mikosch [20]. In particular, we have

P
(
x−1/2

(
(diag(Π1W0))

1/2Z1, . . . , (diag(ΠtW0))
1/2Zt

)
∈ · | |W0| > x

)

W

−→ P(Y0

(
(diag(Π1Θ0))

1/2Z1, . . . , (diag(ΠtΘ0))
1/2Zt

)
∈ ·

)
,

where P(Y0 > x) = x−α for x > 1, Y0 is independent of Θ0,Z1, . . . ,Zt, and Θ0 has
the spectral distribution of W0. �

Remark 2. In view of Kesten’s result, relation (3.8) holds for any u ∈ S
1 and eα(u) 6=

0 for u ≥ 0. In particular, for u1 = (0, 1) and u2 = (1, 0) we conclude that P(σi,0 >
x) ∼ cix

−α as x → ∞, where both constants ci are positive. In turn, Breiman’s result
[10] ensures that

P(X±i,0 > x) ∼ E[(Z±i,0)
α]P(σi,0 > x), x → ∞, i = 1, 2.

This means that the right and left tails of the distribution of X0 are equivalent and
they have the same tail index α. Equivalent tail behavior of the component series is not
necessarily an advantage as regards realistic modeling of the extremes of multivariate
return models: there is statistical evidence that univariate return series have distinct
tail indices. This case is more easily modeled under the assumption αij = βij = 0 for
i 6= j (see Remark 1), where the components of Xt may have different tail behavior,
providing more flexibility for component-wise extremes.

The crucial condition in Proposition 2 which makes the difference from Proposition 1
is the assumption that all entries of A0 must be positive and random. This condition
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is also satisfied if αii > 0 for i = 1, 2, and αij = 0 and βij > 0 for i 6= j, i.e., the
off-diagonal elements in the matrix A0 may be positive constant.

The case when A0 is an upper or lower triangular matrix is not covered by Propo-
sition 2. For example, assume that α21 = β21 = 0. Then we have the GARCH(1, 1)
equation

σ2
2,t = α02 + (α22Z

2
2,t−1 + β22)σ

2
2,t−1, t ∈ Z,

which can be solved and, under the conditions of Proposition 1, the solution has tail
index 1

2
α2 > 0. Writing Ct = α01 + (α12Z

2
2,t−1 + β12)σ

2
2,t−1, we get

σ2
1,t = Ct + (α11Z

2
1,t−1 + β11)σ

2
1,t−1, t ∈ Z.

This is again a 1-dimensional recurrence equation but now the coefficients (Ct, α11Z
2
1,t−1+

β11), t ∈ Z, constitute a dependent strictly stationary sequence. Appealing to Brandt
[9], a unique causal solution to this equation exists but its theoretical properties are
not straightforward due to the dependence of the coefficient sequence. However, the
tail of σ2

1,0 is asymptotically at least as heavy as the tail of σ2
2,0. Indeed, as x → ∞,

P(σ2
1,t > x) ≥ P(Ct > x)

≥ P
(
(α12Z

2
2,t−1 + β12)σ

2
2,t−1 > x

)

∼ E
[
(α12Z

2
2,t−1 + β12)

α2/2
]
P(σ2

2,t > x).

In the last step we applied Breiman’s theorem and used stationarity.

4. The extremogram and cross-extremogram for a bivariate GARCH(1, 1)
process

Davis and Mikosch [13] showed for a univariate GARCH(1, 1) process under the
conditions of Proposition 1 that

ρσ(h) = lim
x→∞

P(σh > x | σ0 > x)

= lim
x→∞

P(σ2
h > x | σ2

0 > x) = E[min(1,Π
α/2
h )], h ≥ 1,

where At = α1Z
2
t−1+β1, t ∈ Z and Πh = Ah · · ·A1. While the value of these quantities

is not known it is possible to determine their asymptotic order for large h. By convexity
of the function g(h) = E[Ah

0 ] and since g(α/2) = 1 we have E[Ap
0] < 1 for p < 1

2
α.

Therefore

ρσ(h) ≤ E[min(1,Πp
h)] ≤ E[Πp

h] = (E[Ap
0])

h, h ≥ 1,

and the right-hand side converges to zero exponentially fast. The extremogram of the
X-sequence inherits this rate. Written in the form σ2

h = α0 + Ahσ
2
h−1 = Πhσ

2
0 + Rh,
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since R0.5
h Z+

h has a finite α moment, multiple use of Breiman’s result yields

ρX(h) = lim
x→∞

P(σhZh > x | σ0Z0 > x)

= lim
x→∞

P(min(σhZ
+

h , σ0Z
+

0 ) > x)

P(σ0Z
+

0 > x)

≤ lim sup
x→∞

P(σ0 min(Π0.5
h Z+

h , Z+

0 ) > x/2)

P(σ0Z
+

0 > x)
+ lim sup

x→∞

P(R0.5
h Z+

h > x/2)

P(σ0Z
+

0 > x)

= const.
E
[(
min(Π0.5

h Z+

h , Z+

0 )
)α]

E[(Z+

0 )α]

≤ const. (E[Ap
0])

h.

This means that ρX(h) inherits the exponential rate from ρσ(h). Both rates indicate
that the σ- and X-sequences have rather “short extremal memory”. This fact is in
agreement with the empirical results of Section 5.

Similar calculations can be done in the bivariate case. We restrict ourselves to the
σ-sequences. We assume the conditions of Proposition 2; in this case both components
σ2
i,t, i = 1, 2, of the vector Wt in (3.2) have the same tail index. Using relation (3.9),

we see that

ρij(h) = lim
x→∞

P(σ2
j,h > x | σ2

i,0 > x)

= lim
x→∞

P(σ2
j,h > x, σ2

i,0 > x)

P(σ2
i,0 > x)

≤ lim
x→∞

P(|Wh| > x, |W0| > x)

P(|W0| > x)
×

P(|W0| > x)

P(σ2
i,0 > x)

.

The limit of the latter ratio converges to a constant by virtue of regular variation.
Thus the extremograms ρij are bounded by the extremogram ρ|W| of (|Wt|) times this

constant. However, (3.9) and the independence of W0 and Rh imply that for p < 1

2
α,

ρ|W|(h) = lim
x→∞

P(|Wh| > x, |W0| > x)

P(|W0| > x)

≤ lim sup
x→∞

P(‖Πh‖ |W0| > x/2, |W0| > x)

P(|W0| > x)
+ lim

x→∞
P(|Rh| >

1

2
x)

= const.E[min(1, ‖Πh‖
α/2)]

≤ const.E[min(1, ‖Πh‖
p)]

≤ const.E[‖Πh‖
p], h ≥ 1.

The right-hand side converges to zero at an exponential rate in view of E[‖Πh0
‖p] < 1

for a sufficiently large h0.
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5. An empirical study of the extremogram and the cross-extremogram

5.1. Estimation of the extremogram and cross-extremogram

Davis and Mikosch [13] and Davis et al. [14] proposed estimators of the quantities
ρij(h), h ∈ Z, for given sets A, B bounded away from zero:

ρ̂ij(h) =

∑n−h
t=1

1(Xj,t+h ∈ F̂←Xj,0
(1− 1/m)×B,Xi,t ∈ F̂←Xi,0

(1− 1/m)×A)
∑n

t=1
1(Xi,t ∈ F̂←Xi,0

(1− 1/m)×A)
(5.1)

for some sequence m = mn → ∞ such that m = o(n) as n → ∞. In order to
ensure standard asymptotic properties such as consistency and asymptotic normality,
[13, 14] assumed the strong mixing condition and regular variation for the sequence
(Xt), possibly after a monotone transformation of its components as explained in
Section 2.1. The aforementioned growth conditions on the sequence (mn) are standard
in extreme-value statistics and cannot be avoided. They ensure that sufficiently high
thresholds F←Xi,0

(1 − 1/m), i = 1, 2, are chosen. These thresholds guarantee that
a certain fraction of the data is taken which may be considered extreme as regards
distance from the origin. For practical purposes, we take the corresponding empirical
(1 − 1/m)-quantiles of the components. Although we do not have a theoretical justi-
fication for this replacement, we have simulation evidence that this approach works.
In the GARCH(1, 1) case the theoretical quantiles can be determined by Monte-Carlo
simulation using estimated GARCH(1, 1) parameters for the model. The results for the
sample extremogram based on the theoretical and empirical quantiles were essentially
the same, where we neglect the uncertainty of estimating parameters.

Although central limit theory can be shown for ρ̂ij at a finite number of lags h, the
asymptotic covariance structure is not tractable. Davis et al. [14] propose two methods
for the construction of credible confidence bands: the stationary bootstrap and random
permutations. In this paper, we stick to the latter procedure. It is based on the simple
idea that, if the sample X1, . . . ,Xn were iid, random permutations of the sample
would not change its dependence structure, hence the distributions of the empirical
extremogram and cross-extremogram would not change under permutations. In what
follows, we calculate the (cross-)extremograms based on 100 random permutations
of the sample. First we calculate the 100 extremogram values at each lag. Then
we choose the 96% empirical quantile at each lag and finally take the maximum of
empirical quantiles over the lags of interest. This value is shown as a solid horizontal
line in the corresponding graphs. This procedure is quick and clean: if the sample
(cross-)extremogram at a given lag is above the horizontal line this is an indication of
disagreement with the iid hypothesis.2

5.2. Simulated GARCH(1, 1) data

We provide a brief study of the sample (cross-)extremograms of simulated bivariate
GARCH(1, 1) processes and their residuals. We choose bivariate GARCH(1, 1) models
with iid bivariate t-distributed innovations (Zt) with 10 degrees of freedom and co-
variance matrix P given in (1.2). We simulate from the model (3.1) with parameters

2Alternatively, one could plot the curve connecting the 96% empirical quantiles at each lag.
However, this line could vary from lag to lag. We prefer to choose the line representing the maximum
of all lag-wise 96% empirical quantiles, which presents a conservative confidence band.
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Figure 1: Cross-extremograms of Examples (1) (left 2 × 2 graphs, ref. (5.3)) and (2) (right
2×2 graphs). In both cases we observe serial extremal dependence in extremograms, whereas
extremal dependence in cross-terms is observed only in (2). The reason is that (1) exhibits
component-wise independence, while (2) does not by virtue of the setting αij , βij 6= 0 for
i 6= j, and ρ 6= 0. In the latter case, we also observe large spikes at lag zero caused by ρ 6= 0.

(α01, α02) = (10−6, 10−6) (the magnitude of these parameters is in agreement with
values estimated from return data) and specified matrices and correlations

(
α11 α12

α12 α22

) (
β11 β12

β12 β22

)
, ρ. (5.2)

We start by considering examples with respective symmetric parameter matrices (5.2):

(1)

(
.1 0
0 .1

)
,

(
.8 0
0 .8

)
, 0; (2)

(
.1 .02
.02 .1

)
,

(
.8 .04
.04 .8

)
, .7.

Here we always choose small α-values while the diagonal β-values are close to 1. This
is in agreement with estimated parameters on return data. We generate samples of size
n = 50, 000, using the R package ‘ccgarch’3, and calculate the (cross-)extremograms
ρ̂ij(h) in (5.1) with A = B = (1,∞). The simulation results for Examples (1) and (2)
are given in Figure 1. In each figure, (cross-)extremograms are given by 2 × 2 graphs
as functions of time-lag h, (

ρ̂11(h) ρ̂12(h)
ρ̂21(h) ρ̂22(h)

)
. (5.3)

These figures indicate that small changes in the α- or β-values may lead to major
changes in the extremal dependence structure. In Example (2) we also observe large

3Note that estimation with “ccgarch” requires choosing initial values. In most cases, we first
examine component-wise univariate GARCH(1, 1) fits by the R package “fGarch” and then we choose
these estimates as initial values. If the univariate estimation does not converge we try several initial
values on a grid of size 0.1. In this case, the estimates sometimes differ by attaining local minima.
Judging from the residuals, the eigenvalues of the estimated parameters (3.4) and the values of the
likelihood functions, we choose an “optimal” estimator. Except for one case of stock-return data (see
Section 5.4), this procedure works.
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Figure 2: Left 2× 2 graphs, ref. (5.3): (cross-)extremogram of residuals based on a bivariate
QMLE fit. Right 2× 2 graphs: (cross-)extremogram of residuals from component-wise MLE
fits. There is no difference in both cases, where serial extremal dependencies have been
removed except for lag 0.

spikes in the cross-extremograms at lag zero due to ρ 6= 0. This is in contrast to
Example (1) with ρ = 0.

Our next goal is to show (cross-)extremograms of the residuals of simulated bivariate
GARCH(1, 1) models. Although we know the innovations sequence in this case, we
want to illustrate how standard maximum-likelihood estimation (MLE) techniques
work. In particular, we expect that the empirical extremograms of the residuals should
be close to zero. The estimation is done in two ways: (1) we fit component-wise
univariate GARCH(1, 1) models, applying MLE and assuming Student t-distributions
for the innovations; (2) following Ling and McAleer [23] (see also Francq and Zaköıan
[17]), we apply bivariate Gaussian quasi-MLE (QMLE). We consider the model (3.1)
with given parameter (α01, α02) = (10−6, 10−6) and parameter matrices (5.2) as follows:

(3)

(
.1 0
.05 .1

)
,

(
.8 .03
0 .8

)
, .7.

Component-wise univariate MLE (left) and bivariate QMLE (right) respectively
yield the following estimation results:

α̂i β̂i degree for t
i = 1 .137 .831 9.81
i = 2 .169 .802 10.00

(
.130 0
.056 .125

)
,

(
.778 .025
.039 .790

)
, .7.

Despite the misspecification of a bivariate GARCH(1, 1) model, univariate estimation
leads to reasonable estimation results. (Cross-)extremograms of residuals in Figure 2
indicate that extremal cross-serial dependence is not present in the residuals of both
bivariate GARCH(1, 1) fit (Fig. 2: left) and component-wise univariate fits (Fig. 2:
right). However, another example in Matsui and Mikosch [24] shows that univariate
fits do not remove all cross-dependencies from the residuals (in this case the degrees
of freedom were not correctly estimated). In [24] we experimented with distinct
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Figure 3: Five-minute returns of USD-DEM and USD-FRF foreign exchange rates. Left
2×2 graphs, ref. (5.3): (cross-)extremograms of the original data. The extremograms oscillate
strongly while the cross-extremograms show little extremal serial dependence. Right 2 × 2
matrix: (cross-)extremograms of the residuals after an AR-GARCH fit. Except for lag zero,
serial extremal dependence has been removed.

parameter sets close to the true ones and we also replaced univariate MLE by univariate
Gaussian QMLE. In all cases, one cannot remove all cross-dependencies of the residuals.
Therefore bivariate GARCH(1, 1) fitting is recommended if one suspects dependence
in the noise sequence.

5.3. An analysis of foreign exchange rates

We analyze a bivariate high-frequency time series, consisting of 35,135 five minute
returns of USD-DEM and USD-FRF foreign exchange rates. Throughout this sub-
section we choose the 98% component-wise sample quantiles as the threshold for the
sample (cross-)extremograms. In each plot the horizontal line shows the 96% quantile
obtained from 100 random permutations of the data.

The data exhibit rather strong cross-correlations and autocorrelations ([24, Figure
5]). So it is not unexpected that we also observe dependence of the extreme values
of the two series. This is apparent in the extremograms of Figure 3 (left). After
fitting a bivariate vector AR model of order 19 to the data (chosen by the Schwarz
criterion or Bayesian information criterion, see e.g. [11, Section 9.3]), we fit a bivariate
GARCH(1, 1) model to the residuals, by employing bivariate QMLE. The estimated
matrices (5.2) are as follows:

(
.214 .013
.110 .223

)
,

(
.697 .008
.280 .663

)
, .372.

which satisfy the sufficient condition for stationarity of a bivariate GARCH(1, 1) model;
see (3.5). After the AR fit, the cross-extremograms of the residuals do not vanish
although their values are small. After fitting a bivariate GARCH(1, 1) model to the
residuals of the AR model, the residuals of the resulting AR-GARCH model exhibit
extremal cross-dependence only at time-lag 0; see Figure 3 (right). This means that
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the components of the innovations Zt exhibit extremal dependence. QQ-plots for the
residuals of the vector AR and AR-GARCH models show that t-distributions with 2.5
and 3 degrees of freedom (respectively), give a good fit to the residuals.

5.4. An analysis of stock returns

We consider log-return series of three stock prices from the NY Stock Exchange:
“Caterpillar Inc.”, “FedEx Corporation” and “Exxon Mobil Corporation” (“cat”, “fdx”
and “xom” for short).4 In each series, the raw tick-by-tick trade data have been
processed into 5-minute grid data by taking the last realized trade price in each interval.
Prices have been restricted to exchange trading hours 9:30 a.m. to 4:00 p.m., Monday to
Friday, so that 78 data per day have been collected in the time period from 2009-02-18
9:30 to 2013-12-31 16:00.

The sample (cross-)extremograms of the log-returns of the stock prices are shown in
Figure 4, where we choose the empirical 0.99 quantiles of the returns as the threshold.
Although we observe typical GARCH(1, 1) (cross-)extremograms close to lag 0, there is
a clear seasonal component in these plots, appearing as spikes at lag 78, corresponding
to the beginning and end of the days. A GARCH(1, 1) model (bivariate or component-
wise univariate) cannot explain the seasonal extremal components in the data. How-
ever, the (cross-)extremograms of the residuals after a bivariate GARCH(1, 1) fit show
that most of the serial dependence has been removed from the data, although the
seasonal component is also present in the residuals; see Figure 5. The extremograms
of the log-returns are shown in Figure 4, where the thresholds are chosen as the
component-wise sample quantiles.

We fit a bivariate GARCH(1, 1) model to each pair of stock prices, i.e., (cat, fdx),
(fdx, xom) and (cat, xom). The estimated values of the bivariate QMLE (5.2) for (cat,
fdx), (fdx, xom), (cat, xom), respectively, are

(
.215 .210
.029 .287

)
,

(
.666 .144
.002 .668

)
, .55,

(
.178 .000
.006 .250

)
,

(
.712 .115
.007 .666

)
, .484,

(
.094 .153
.009 .278

)
,

(
.789 .094
.007 .650

)
, .567.

The estimators of the combination (cat, fdx) are unstable and take the boundary
value5 of the sufficient condition (3.5) while the estimates for (fdx, xom) and (cat, xom)
satisfy (3.5). The obvious seasonal component of the data (corresponding to the end
of a trading day at lag 78) probably violates the stationary condition. Nevertheless,
the standardized residuals appear “de-volatilized” in all (cross-)extremograms modulo
the fact that the seasonal component is always present.

4We would like to thank Martin Anders Jönsson for arranging for us the stock-price data.
5In this case, the univariate GARCH(1, 1) fit does not converge. Therefore we examine several

initial values for “ccgarch” on a grid of size 0.1 and choose an “optimal” value based on their likelihoods.
We also tried several optimization methods included in “ccgarch”. Then we calculated the eigenvalues
of (3.4) from the estimates, including the “optimal” ones. However, the largest eigenvalues are very
close to one in all cases. Since “ccgarch” finds the optimal value under the sufficient condition (3.5),
the real optima would certainly violate (3.5).
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Figure 4: (Cross-)extremograms of log-return series of three stock prices (cat, fdx, xom).
Graphs show strong serial extremal dependence in each series together with strong extremal
dependence between the three series. Other than large spikes at lag 0 in cross-extremograms,
we observe spikes at lag 78, which show seasonal fluctuation in a day. Moreover, extremal
data around the beginning, 9:30 a.m., and the end, 4:00 p.m., may exhibit strong dependence.
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