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In this paper, we deal with the asymptotic distribution of the maximum increment of a random walk with a
regularly varying jump size distribution. This problem is motivated by a long-standing problem on change
point detection for epidemic alternatives. It turns out that the limit distribution of the maximum increment
of the random walk is one of the classical extreme value distributions, the Fréchet distribution. We prove the
results in the general framework of point processes and for jump sizes taking values in a separable Banach
space.
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1. Introduction

We commence by considering a sequence (Xi) of independent random variables and denote the
partial sums by

S0 = 0, Sn = X1 + · · · + Xn, n ≥ 1.

Our original goal is to investigate the asymptotic behavior of the quantities

Tn = max
1≤�<n

max
0≤k≤n−�

(
�(1 − �/n)

)−1/2
(Sk+� − Sk − �Xn), n ≥ 1, (1.1)

where Xn denotes the sample mean of X1, . . . ,Xn. The normalization in Tn is motivated by the
fact that, under the assumption of i.i.d. finite variance Xi , var(Sk+� −Sk −�Xn) is proportional to
�(1 − �/n). In their book on change point analysis, Csörgő and Horvath [5] mention that nothing
seems to be known about the distributional properties of Tn. There exist several approaches to
replace the original problem by a more tractable one. One way is to restrict the range over which
the maximum is taken to �n ≤ � ≤ n − �n for some �n → ∞ satisfying �n = o(n); see, for
example, Yao [24]. Alternatively, one can change the normalizing constants

√
�(1 − �/n) in a

suitable way; see, for example, Račkauskas and Suquet [20].
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Statistics of type Tn appear in the context of tests for change points in the mean under epidemic
alternatives. This problem can be formulated as follows: given that X1, . . . ,Xn are independent
random variables, test the null hypothesis of constant mean

• H0 :EX1 = EX2 = · · · = EXn = μ

against the epidemic alternative

• HA : There exist integers 1 ≤ k∗ < m∗ < n such that

EX1 = · · · = EXk∗ = EXm∗+1 = · · · = EXn = μ,

EXk∗+1 = · · · = EXm∗ = ν and μ �= ν.

One-sided alternatives such as μ > ν or μ < ν can also be considered. Under the alternative
HA, the mean value ν in the period [k∗,m∗] is interpreted as an epidemic deviation from the
usual mean μ and �∗ = m∗ − k∗ is called the duration of the epidemic state. To the best of our
knowledge, this kind of change point problem was formulated for the first time by Levin and
Kline [19] in the context of abortion epidemiology. In the one-sided case, they proposed the test
statistic max1≤�≤n max0≤k≤n−�(Sk+� −Sk − �Xn − �δ/2), where δ represents the smallest incre-
ment in the mean which is sufficiently important to be detected. Simultaneously, epidemic-type
models were introduced by Commenges, Seal and Pinatel [4] in connection with experimental
neurophysiology. They suggested a circular representation of the model, allowing both �∗ and
n− �∗ to be interpreted as durations of the epidemic state. Models with an epidemic-type change
in the mean were also used for detecting changed segments in non-coding DNA sequences [1]
and for studying structural breaks in econometric contexts [3].

The form of the test statistics Tn is motivated by a log-likelihood argument. Indeed, assuming
(Xi) to be i.i.d. normal under the hypothesis H0 against the epidemic alternative μ < ν, the test
statistics Tn is asymptotically equivalent to the square root of a slightly generalized log-likelihood
ratio statistics. In the case of a two-sided epidemic alternative μ �= ν, the log-likelihood ratio
statistics under H0 is asymptotically equivalent to the quantity

T̃n = max
1≤�<n

(
�(1 − �/n)

)−1/2
max

0≤k≤n−�
|Sk+� − Sk − �Xn|. (1.2)

Two-sided epidemic alternatives, and hence test statistics such as T̃n, are also meaningful in the
case of multivariate observations Xi . In this paper, we will even deal with sequences (Xi) of i.i.d.
random elements with values in a separable Banach space.

Under the null hypothesis, when μ = EX1 is assumed to be known, it is reasonable to re-
place the sample mean Xn in the quantities Tn and T̃n by μ. One then obtains the following
ramifications of Tn and T̃n:

Mn = max
1≤�≤n

�−1/2 max
0≤k≤n−�

(Sk+� − Sk − �μ),

(1.3)
M̃n = max

1≤�≤n
�−1/2 max

0≤k≤n−�
|Sk+� − Sk − �μ|.

Here, the choice of normalizing constants is again motivated by the fact that the variance
var(Sk+� − Sk) is proportional to �. An inspection of the quantities Tn, T̃n, Mn and M̃n shows
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that under H0, we may assume, without loss of generality, that the random variables Xi , i ≥ 1,
have mean zero.

Various maximal elements of the random field (�−1/2(Sk+� −Sk))�=1,...,n,k=0,...,n−� have been
widely discussed in the literature. Darling and Erdős [7] proved for a sequence (Xi) of i.i.d.
standard normal random variables and suitable constants an > 0 and bn ∈ R that

lim
n→∞P

(
a−1
n

(
max

�=1,...,n
�−1/2S� − bn

)
≤ x

)
= �(x) = e−e−x

, x ∈ R. (1.4)

Einmahl [11] showed that the Darling–Erdős result (1.4) holds for suitable an > 0 and bn ∈ R if
and only if E(X2I{|X|≥x}) = o((log logx)−1) as x → ∞. The limit distribution � is the Gumbel
or double exponential extreme value distribution. Note that for a sequence (Xi) of i.i.d. standard
normal random variables, there exist constants cn > 0 and dn ∈ R such that

lim
n→∞P

(
c−1
n

(
max

i=1,...,n
Xi − dn

)
≤ x

)
= �(x), x ∈ R;

see [14] and, for example, [12], Example 3.3.29. A result in the same spirit was obtained by
Siegmund and Venkatraman [23], who showed that for i.i.d. standard normal random variables
Xi , i = 1,2, . . . , there exist constants an > 0 and bn ∈ R such that (a−1

n (Mn −bn)) has a Gumbel
limit distribution. Another proof of this result is given in [16]. Finally, the famous Erdős–Rényi
laws are also closely related to the maximum increments of a random walk. These laws study the
maxima of the random sequence (Sk+�n − Sk)k=1,...,n for sequences �n → ∞ with �n = o(n);
see, for example, [10] for distributional convergence of the Erdős–Rényi statistic.

In this paper, we are concerned with limit results for the quantities T̃n, Tn and M̃n,Mn, in the
case where (Xi) is an i.i.d. sequence of heavy-tailed random variables. We will obtain results
which parallel those in [23] in the light-tailed case. A useful definition of a heavy-tailed random
variable X with distribution F is given via regular variation. The random variable X is regularly
varying with index α > 0 if there exists a slowly varying function L such that F satisfies the tail
balance condition

F(−x) ∼ q
L(x)

xα
and 1 − F(x) ∼ p

L(x)

xα
, x → ∞, (1.5)

where p ∈ (0,1), p + q = 1; see [2] for an encyclopedic treatment of regular variation.
Under the assumption of regular variation with index α on a generic element X of the i.i.d.

sequence (Xi), the theory developed in Section 2 shows that the class of scaling factors �0.5

and (�(1 − �/n))0.5 which appear in the quantities T̃n, Tn and M̃n,Mn is too narrow. Indeed, the
square root character of the normalizations suggests a relationship with the central limit theorem,
at least when var(X) < ∞. However, this argument is potentially misleading. As a matter of
fact, the scaling factors of the maximum increments of such a random walk have to be chosen
depending on the index α. They can range over a large class of scaling functions. For γ ≥ 0, we
define the class of functions

Fγ = {f :f is a positive non-decreasing function on [0,∞), f (1) = 1, f (�) ≥ �γ ,

� ≥ 1 and for any increasing sequence (dn) of positive numbers

such that d2
n/n → 0, it holds that limn→∞ inf1≤�≤dn f (�(1 − �/n))/f (�) = 1}.
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Examples of functions in the class Fγ are f (x) = xγ ′
, where γ ′ ≥ γ , and f (x) = xγ logβ(1+x),

where β > 0.
For any f ∈ Fγ , we introduce the following quantities:

M̃
(γ )
n = max

1≤�≤n
(f (�))−1 max

0≤k≤n−�
|Sk+� − Sk|, n ≥ 1,

T̃
(γ )
n = max

1≤�<n

(
f

(
�(1 − �/n)

))−1 max
0≤k≤n−�

|Sk+� − Sk − �Xn|, n ≥ 1.

We suppress the dependence of the quantities M̃
(γ )
n and T̃

(γ )
n on the function f . It will also

turn out that the asymptotic results of this section do not depend on the concrete form of the
function f ; they only depend on the choice of γ . We observe that M̃n = M̃

(0.5)
n for f (�) = �0.5

and T̃n = T̃
(0.5)
n for f (�) = �0.5 (cf. (1.3) and (1.2)).

The following result is a consequence of the general theory given in Section 2; see Theo-
rem 2.2. In particular, the result describes the asymptotic behavior of the quantities M̃n and T̃n.

Theorem 1.1. Consider an i.i.d. sequence (Xi) of random variables which are regularly varying
with index α > 0 and have mean zero if it exists. Then, for any function f ∈ Fγ , γ > max(0,0.5−
α−1),

lim
n→∞P

(
a−1
n M̃

(γ )
n ≤ x

) = 	α(x) = e−x−α

, x > 0, (1.6)

where the normalizing sequence is given by

an = inf{x ∈ R :P(|X| ≤ x) ≥ 1 − 1/n}. (1.7)

Moreover,

lim
n→∞P

(
a−1
n T̃

(γ )
n ≤ x

) = 	α(x), x > 0. (1.8)

Note that 	α is the Fréchet extreme value distribution. In particular, for any i.i.d. sequence of
regularly varying random variables Xi with index α > 0 and (an) defined in (1.7),

lim
n→∞P

(
a−1
n max

i=1,...,n
|Xi | ≤ x

)
= 	α(x), x ∈ R.

This relation follows from classical results by Gnedenko [14]; see, for example, [12], Theo-
rem 3.3.7, for a more recent reference. Relation (1.6) can thus be interpreted in the sense that the
maximum of the normalized increments |Sk+� − Sk|, � = 1, . . . , n, k = 0, . . . , n − �, of the ran-
dom walk (Sk)k=1,...,n is essentially determined by the maximum of the i.i.d. random variables
|X1|, . . . , |Xn|. The proof of Theorem 2.2, in particular Lemma 2.4, explains the asymptotic
extreme value behavior. We mentioned above that Siegmund and Venkatraman [23] proved an
analogous limit relation for (a−1

n (Mn − bn)), assuming that (Xi) is a sequence of i.i.d. standard
normal random variables. In this case, the Gumbel distribution appears in the limit. The scaling
factor �1−1/2 in Mn is critical for their result to hold. It can be interpreted as a boundary case
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for the distributional limits of (M̃
(γ )
n ) when α → ∞. We also mention that the results in [23]

go well beyond proving convergence in distribution; they also give bounds for the probabilities
P(a−1

n (Mn − bn) > x) as n → ∞. Such bounds cannot be achieved with the methods used in
this paper.

It is worth mentioning that the statistics T̃
(γ )
n , with f (x) = xγ and γ close to max{0,1/2 −

1/α}, allow one to detect epidemic changes in the mean, provided that the duration of the epi-
demic state is of the order �∗ = O(nθ ), where θ > max{1/α,2/(2 + α)}. Thus, for large α, it
is possible to detect short epidemics. We refer to Csörgő and Horvath [5] and Račkauskas and
Suquet [20] for details on applications of statistics of the type Tn to epidemic change problems.

The paper is organized as follows. In Section 2.1, we introduce the notion of a regularly vary-
ing random element with values in a Banach space and give several examples of such elements.
The main result of this paper (Theorem 2.2) is given in Section 2.2. It proves that the normalized
maximum increment of a driftless random walk with values in a separable Banach space and
with regularly varying jump sizes converges in distribution to a Fréchet distribution. We comple-
ment this result with one-sided versions for real-valued random variables. Section 3 contains the
proofs of the results of Section 2.

2. General results

In this section, we work in a framework more general than that of Section 1. Our generalizations
are twofold: (1) we consider i.i.d. sequences (Xi) of Banach space valued, regularly varying
random elements; (2) we allow for more general normalizations of the increments Sk+� − Sk ,
� = 1, . . . , n, k = 0, . . . , n−�. In the following subsection, we introduce the notion of a regularly
varying random element and in the subsequent subsection, we develop the asymptotic theory for
T̃n, M̃n and related maximum increment quantities.

2.1. Regular variation in a Banach space

Consider a separable Banach space (B,‖ · ‖). We say that a B-valued random element X is
regularly varying with index α > 0 if there exists a boundedly finite non-null measure μ on
B0 = B\{0} such that

μn(·) = nP (a−1
n X ∈ ·) ŵ→ μ(·), n → ∞,

where
ŵ→ is convergence in the sense that

∫
B0

f dμn → ∫
B0

f dμ for any bounded and continuous
function f on B0 with bounded support and where

an = inf{x ≥ 0 :P(‖X‖ ≤ x) ≥ 1 − n−1} (2.1)

denotes the (1 − n−1)-quantile of the distribution function of ‖X‖. For locally compact B, in
particular for B = R

d for some d ≥ 1, ŵ-convergence coincides with vague convergence and
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the boundedly finite measures are the Radon measures; see [6], Appendix A2.6. The measure μ

necessarily satisfies the relation μ(t ·) = t−αμ(·), t > 0. Moreover,

P(‖X‖ > x) = x−αL(x) for a slowly varying function L.

In the case B = R, the notion of regular variation of X coincides with the definition given in (1.5),
provided that P(X > x) ∼ pP (|X| > x) for some positive p. We refer to Hult and Lindskog [15]
for an insightful survey on regular variation in complete separable metric spaces. There, one also
finds a useful relation in terms of spherical coordinates which is equivalent to regular variation
of X with index α > 0: for every t > 0,

nP (‖X‖ > tan,X/‖X‖ ∈ ·) w−→ t−αP̃ (·), n → ∞, (2.2)

where (an) is given by (2.1) and P̃ (·) is a probability measure on the unit sphere S = {x ∈
B :‖x‖ = 1}, called the spectral measure of X, and

w−→ denotes weak convergence on the Borel
σ -field BS of S.

Examples of regularly varying random elements with values in a separable Banach space can
be found in, for example, [8] or [18]. Those examples include max-stable random fields on [0,1]d
with a.s. continuous sample paths and regularly varying finite-dimensional distributions [8]. In
this case, the index α can be any positive number. Infinite variance stable processes with values
in a separable Banach space constitute another class of regularly varying random elements; see
[18], Chapter 5, in particular Corollary 5.5. In this case, α is necessarily smaller than 2.

Another important example which is of interest in the context of epidemic change point de-
tection is a regularly varying sample covariance operator, which we define next. Denote the dual
of B by B∗ and let L(B∗, B) be the Banach space of bounded linear operators u : B∗ → B with
norm

‖u‖ = sup
x∗∈B∗ : ‖x∗‖≤1

‖u(x∗)‖.

For x, y ∈ B, the operator x ⊗ y : B∗ → B is defined by (x ⊗ y)(x∗) = x∗(x)y, x∗ ∈ B∗. It is
immediate that x ⊗ y ∈ L(B∗, B) and ‖x ⊗ y‖ = ‖x‖‖y‖.

Let X be a B-valued random element with mean zero and finite second moment. The covari-
ance operator cov(X) = Q of X then maps B∗ into B and is defined by

Qx∗ = E(x∗(X)X), x∗ ∈ B∗,

where the expectation is defined in the Bochner sense.
Assume that X is defined on the probability space (�, F ,P ). Then, for each ω ∈ �, (X ⊗

X)(ω) = X(ω) ⊗ X(ω) ∈ L(B∗, B). Evidently, X ⊗ X :� → L(B∗, B) is measurable, that is,
X ⊗ X is a random element with values in the separable Banach space L(B∗, B). To see this,
let (Xn) be a sequence of simple functions that converge to X a.s. One then checks that ‖Xn ⊗
Xn −X⊗X‖ ≤ (‖Xn‖+‖X‖)‖Xn −X‖ and, hence, Xn ⊗Xn converge to X⊗X a.s. Moreover,
Xn⊗Xn are simple functions in L(B∗, B). For this random linear operator, one can define regular
variation with index α > 0 in the usual way. We give the following result without a proof. It
follows by means of a standard continuous mapping argument.
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Lemma 2.1. If a random element X with values in B is regularly varying with index α > 0, then
X ⊗ X is regularly varying with index α/2.

2.2. Results on the maximum increment of random walks

2.2.1. Formulation of the main result

Throughout this section, we consider an i.i.d. sequence of random elements Xi , i = 1,2, . . . , with
values in a separable Banach space B. We assume that a generic element X of this sequence is
regularly varying with index α > 0. If α > 1, E‖X‖ < ∞ and then its expectation μ = EX exists
in the Bochner sense. Since we are interested in quantities of the type T̃n and M̃n defined in (1.2)
and (1.3), respectively, we assume, without loss of generality, that μ = 0 whenever μ exists.
Recall the definition of the class of functions Fγ , γ ≥ 0, from Section 1 and the definitions

of the quantities M̃
(γ )
n and T̃

(γ )
n which we adjust to the case of Banach space valued random

elements. Of course, f (�) = �γ , � ≥ 0, is a possible choice for f ∈ Fγ .
The following theorem is the main result of this paper.

Theorem 2.2. Let (Xi) be a sequence of i.i.d. random elements with values in a separable Ba-
nach space B and assume that X is regularly varying with index α > 0. In addition, assume that
EX = 0 if E‖X‖ < ∞ and

sup
n≥1

E‖n−1/βSn‖ < ∞ for

{
β = 2, if α > 2,
everyβ < α, if 1 < α ≤ 2.

(2.3)

Then, for f ∈ Fγ , γ > max(0,0.5−α−1), with the normalizing sequence (an) defined as in (2.1),

lim
n→∞P

(
a−1
n M̃

(γ )
n ≤ x

) = 	α(x), x > 0, (2.4)

lim
n→∞P

(
a−1
n T̃

(γ )
n ≤ x

) = 	α(x), x > 0. (2.5)

Remark 2.3. It follows from (2.4) and classical extreme value theory for i.i.d. sequences that
the limit distributions of (a−1

n M
(γ )
n ) and (a−1

n maxi=1,...,n ‖Xi‖) coincide; see, for example, [12],
Theorem 3.3.7. A theoretical explanation of this phenomenon is provided by Lemma 2.4.

The following result is the key to the proof of Theorem 2.2. In particular, it explains why the
quantities

a−1
n (f (�))−1 max

0≤k≤n−�
‖Sk+� − Sk‖, � ≥ 2,

do not have any influence on the limit behavior of a−1
n M̃

(γ )
n .

Lemma 2.4. Assume that (Xn) is an i.i.d. sequence of regularly varying random elements with
values in a separable Banach space B and index α > 0. The following statements then hold:
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(1) for any f ∈ Fγ , γ ≥ 0 and h ≥ 1,

lim
n→∞P

(
a−1
n max

1≤�≤h
(f (�))−1 max

0≤k≤n−�
‖Sk+� − Sk‖ ≤ x

)
= 	α(x), x > 0;

(2) if we assume, in addition, that EX = 0 if E‖X‖ < ∞ and that (Xn) satisfies the condi-
tion (2.3), then for any δ > 0 and f ∈ Fγ , γ > max(0,0.5 − α−1), we have

lim
h→∞ lim sup

n→∞
P

(
max

h≤�≤n
(f (�))−1 max

0≤k≤n−�
‖Sk+� − Sk‖ > δan

)
= 0.

2.2.2. A discussion of Theorem 2.2 and its assumptions

In the following remarks, we provide a detailed discussion of the statements and assumptions of
Theorem 2.2.

Remark 2.5. For γ ≥ 1, both relations (2.4) and (2.5) are trivially satisfied. Indeed,

max
0≤k≤n−1

‖Xk‖ ≤ M̃
(γ )
n ≤ max

1≤�≤n
(f (�))−1 max

0≤k≤n−�

k+�∑
i=k+1

‖Xk‖ ≤ max
1≤k≤n

‖Xk‖

for each f ∈ Fγ with γ ≥ 1. (2.4) then follows in view of Remark 2.3.

Remark 2.6. Under the assumptions of Theorem 2.2, the sequence (a−1
n M̃

(γ )
n ) has the same limit

distribution as the sequence

a−1
n ζ

(γ )
n = a−1

n max
1≤�≤n

(f (�))−1 max
k=0,...,n−�

‖Sk+� − Sk − �Xn‖, n ≥ 1.

To prove this statement, first assume that γ ≥ 1. The argument of Remark 2.5 then shows that
it suffices to consider the asymptotic behavior of the sequence (a−1

n max1≤k≤n ‖Xk − Xn‖). If

E‖X‖ < ∞, then the strong law of large numbers ensures that Xn
a.s.−→ EX as n → ∞ and

therefore a−1
n Xn

P−→ 0 as n → ∞. If α ∈ (0,1), then a−1
n ‖Xn‖ ≤ a−1

n n−1 ∑n
i=1 ‖Xi‖ P−→ 0 as

n → ∞. In this case, a−1
n

∑n
i=1 ‖Xi‖ d−→ Yα for some α-stable random variable Yα as n → ∞

since ‖X‖ is regularly varying with index α; see [13], Section XVII, 5. The remaining case α = 1
with E‖X‖ = ∞ is similar. In this case, again applying [13], Section XVII, 5, a−1

n

∑n
i=1(‖Xi‖−

E(‖X‖I{‖X‖≤an}))
d−→ Yα as n → ∞. Then, as n → ∞,

a−1
n ‖Xn‖ ≤ n−1a−1

n

n∑
i=1

(‖Xi‖ − E
(‖X‖I{‖X‖≤an}

)) + a−1
n E

(‖X‖I{‖X‖≤an}
) = oP (1).

In the last step, we also applied Karamata’s theorem; see [2], Section 1.6.
We now consider the case γ ∈ (0,1). Since f ∈ Fγ , it suffices to show that as n → ∞,

a−1
n max

1≤�≤n
�−γ ‖�Xn‖ = a−1

n n1−γ ‖Xn‖ P−→ 0. (2.6)
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Assume that α > 2 and γ > 0.5 − 1/α. Then, by virtue of (2.3), as n → ∞,

a−1
n n1−γ ‖Xn‖ = a−1

n n−γ+0.5‖n−0.5Sn‖ P−→ 0.

If α ∈ (1,2], choose β in (2.3) such that γ > 1/β − 1/α. Then, as n → ∞,

a−1
n n1−γ ‖Xn‖ = a−1

n n−γ+1/β‖n−1/βSn‖ P−→ 0.

For α ∈ (0,1), we again use the fact that (a−1
n

∑n
k=1 ‖Xk‖) has an α-stable limit as n → ∞:

a−1
n n1−γ ‖Xn‖ ≤ n−γ a−1

n

n∑
k=1

‖Xk‖ P−→ 0.

Similarly, for α = 1, as n → ∞,

a−1
n n1−γ ‖Xn‖ ≤ n−γ

[
a−1
n

(
n∑

k=1

‖Xk‖−nE‖X‖I{‖X‖≤an}

)
+n1−γ a−1

n E‖X‖I{‖X‖≤an}

]
P−→ 0.

Remark 2.7. If α > 2, then condition (2.3) is fulfilled if the sequence (Xi) satisfies the central
limit theorem in B, that is, n−1/2Sn

d−→ Y as n → ∞ for some Gaussian element in B (see
Corollary 10.2 in [18]). If the space B is of type 2 (e.g., any finite-dimensional space, Hilbert
space or Lebesgue space Lp with p ≥ 2), then (2.3) follows from regular variation for α > 2.

Similarly, if α ∈ (1,2) and a−1
n Sn

d−→ Yα as n → ∞ for some α-stable limit in B, then (2.3)
is satisfied. This limit always exists in a finite-dimensional space as a consequence of regular
variation; see [22].

Remark 2.8. The condition γ > max(0,0.5−α−1) divides the α values into two sets. For α ≤ 2,
this condition is satisfied for all γ > 0, whereas it restricts γ to (0.5 −α−1,∞) for α > 2. Under
the assumption (2.3), this condition is a natural one. Indeed, assume for the moment that the Xi ’s
are real-valued. By the definition of (an), an = n1/α/�(n) for some slowly varying function �

and hence

a−1
n M̃

(γ )
n ≥ n−α−1−γ+0.5�(n)|n−0.5Sn|.

If γ < 0.5 − α−1, then the left-hand side converges in probability to infinity since (n−0.5Sn)

converge in distribution to a Gaussian random variable. Hence, the normalization (an) does not
ensure the stochastic boundedness of (a−1

n M̃
(γ )
n ).

With a stronger normalization, a non-degenerate limit distribution of the sequence (M̃
(γ )
n ) can

be achieved by an application of the invariance principle in Hölder space. Following [21], choose
f (�) = �γ for γ < 0.5 −α−1 and some α > 2 and assume that the central limit theorem for (Xn)

holds. Then, as n → ∞,

n−0.5+γ M̃
(γ )
n

d−→ RW,Q = sup
s,t∈[0,1],s �=t

‖WQ(t) − WQ(s)‖
|t − s|γ , (2.7)
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where (WQ(t))0≤t≤1 is the B-valued Wiener process corresponding to the covariance operator
Q = cov(X).

Remark 2.9. Remark 2.8 shows that γ = 0.5 − α−1 for α > 2 is the borderline which divides
the possible limit distributions of the normalized sequence (M̃

(γ )
n ) into two classes: the Fréchet

extreme value distribution, as described in Theorem 2.2, and the distribution of the functional
RW,Q of a Wiener process given in (2.7). In the former case, only the extremes in the sample
‖X1‖, . . . ,‖Xn‖ are responsible for the limit distribution, whereas in the latter case, the limit
distribution is obtained by an application of the functional central limit theorem acting on the
increments of the random walk (Sn).

The limit distribution of the normalized sequence (M̃
(0.5−α−1)
n ) is, in general, unknown; it

very much depends on the asymptotic behavior of the slowly varying function L in the tail
P(‖X‖ > x) = x−αL(x). To illustrate the complexity of the situation, we briefly consider two
different cases. If L(x) → 0 as x → ∞, then the limiting relation (2.7) proved in [21] still applies

with f (�) = �γ . If L(x) ∼ c ∈ (0,∞) as x → ∞, then one can show that (a−1
n M̃

(0.5−α−1)
n ) is sto-

chastically bounded. However, none of the sequences (a−1
n Mn1) and (a−1

n Mn2) is asymptotically
negligible in this case, where, for any h ≥ 1 and εn → 0 as n → ∞,

Mn1 = max
1≤�≤h

�−0.5+α−1
max

0≤k<n−�
‖Sk+� − Sk‖,

Mn2 = max
nεn≤�≤n

�−0.5+α−1
max

0≤k<n−�
‖Sk+� − Sk‖.

This is in stark contrast to the situation described in Lemma 2.4. By the latter result, (a−1
n Mn1)

converges in distribution to a Fréchet-distributed random variable. On the other hand, by adapting
the proof of Theorem 8 in [20], one can deduce that a−1

n Mn2
d−→ RW,Q as n → ∞ is possible,

at least for B = R.

2.2.3. One-sided results for real-valued random variables

In the remainder of this section, we restrict our attention to a real-valued i.i.d. sequence (Xi).
We note that the two-sided relations (1.6) and (1.8) in Theorem 1.1 immediately follow from
Theorem 2.2 by choosing B = R. However, in the real-valued case, one can also study one-sided
versions of Theorem 2.2, for example, the asymptotic behavior of the quantities, for f ∈ Fγ ,
γ ≥ 0 and n ≥ 1,

M
(γ )
n = max

1≤�≤n
(f (�))−1 max

0≤k≤n−�
(Sk+� − Sk),

m
(γ )
n = min

1≤�≤n
(f (�))−1 min

0≤k≤n−�
(Sk+� − Sk).

Theorem 2.10. Assume that (Xi) is an i.i.d. sequence of real-valued random variables with
distribution F which is regularly varying with index α > 0, in the sense of (1.5). In addition,
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assume that EX = 0 if the mean of X exists. Then, for f ∈ Fγ , γ > max(0,0.5 − α−1),

lim
n→∞P

(
(p1/αan)

−1m
(γ )
n ≤ −x, (p1/αan)

−1M
(γ )
n ≤ y

)
(2.8)

= 	α(y)
(
1 − 	q/p

α (x)
)
, x, y > 0,

where the normalizing sequence (an) is defined as in (1.7) and p ∈ (0,1) appears in the tail
balance condition (1.5).

Remark 2.11. We note that as n → ∞,

(p1/αan)
−1(m(γ )

n ,M
(γ )
n

) d−→ (
y(γ ), Y (γ )

)
,

where the limit distribution is given in (2.8). In particular, y(γ ) is independent of Y (γ ) and the
range statistic M

(γ )
n − m

(γ )
n has the limit, as n → ∞,

(p1/αan)
−1(M(γ )

n − m
(γ )
n

) d−→ Y (γ ) − y(γ ).

The limit distribution is the convolution 	α ∗	
q/p
α , corresponding to the sum of two independent

Fréchet-distributed random variables.

Consider the following one-sided version of the statistics T̃
(γ )
n :

T
(γ )
n = max

1≤�<n

(
�(1 − �/n)

)−γ max
0≤k≤n−�

(Sk+� − Sk − �Xn), n ≥ 1.

Theorem 2.12. Assume that (Xi) is an i.i.d. sequence of real-valued random variables with
distribution F which is regularly varying with index α > 0, in the sense of (1.5). In addition,
assume that EX = 0 if the mean of X exists. Then, for any γ > max(0,0.5 − α−1),

lim
n→∞P

(
(p1/αan)

−1T
(γ )
n ≤ x

) = 	α(x), x > 0. (2.9)

The following quantity has a structure similar to M
(γ )
n for f ∈ Fγ :

M̂
(γ )
n = max

�=1,...,n
(f (�))−1 max

k=�+1,...,n−�
(Sk+� + Sk−� − 2Sk).

In contrast to the quantities M
(γ )
n , where we need to assume that EX = 0 for α > 1 in order to

guarantee the asymptotic results of Theorem 2.10, centering of the Xi ’s in M̂
(γ )
n is automatic.

Indeed, the random variables Sk+� + Sk−� − 2Sk are symmetric.
The following result is analogous to Theorem 2.10.

Theorem 2.13. Assume that (Xi) is an i.i.d. sequence of real-valued random variables with
distribution F which is regularly varying with index α > 0, in the sense of (1.5). Then, with (an)
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defined in (2.1), for f ∈ Fγ , γ > max(0,0.5 − α−1),

lim
n→∞P

(
a−1
n M̂

(γ )
n ≤ x

) = 	2
α(x), x > 0.

3. Proofs

3.1. Proof of Lemma 2.4(1)

The following analog of Davis and Resnick [9], Theorem 2.2, in the case B = R is the key to this
result.

Lemma 3.1. Let (Xi) be an i.i.d. sequence of random elements with values in B. Assume that X

is regularly varying with index α > 0 and limit measure μ. Then, for any h ≥ 1,

N̂n =
n∑

t=1

ε
a−1
n (Xt ,...,Xt+h−1)

d−→ N̂ =
∞∑
i=1

ε(Ji ,0,...,0) +
∞∑
i=1

ε(0,Ji ,0,...,0) + · · · +
∞∑
i=1

ε(0,...,0,Ji ), n → ∞,

where εx is Dirac measure at x and J1, J2, . . . are the points of a Poisson random measure with
mean measure μ on B0 equipped with the Borel σ -field. Moreover, on the right-hand side, in the
subscripts of the ε’s, there are vectors of length h. Here, convergence in distribution is in the
space of point measures Mp on Bh

0 , equipped with the vague topology; see [6], Section 9.1.

We postpone the proof until the end of this subsection.

Remark 3.2. According to Daley and Vere-Jones [6], Theorem 9.1.VI, N̂n
d−→ N̂ is equivalent

to the convergence of the finite-dimensional distributions

(N̂n(B1), . . . , N̂n(Bm))
d−→ (N̂(B1), . . . , N̂(Bm)), n → ∞,

for any choice of bounded continuity sets Bi of B0. Moreover, according to [6], Corol-
lary 9.1.VIII, it suffices that the sets Bi run through any covering semiring of bounded continuity
sets for the limiting measure PN̂ (·) = P(N̂ ∈ ·). This means that every open set in B0 can be
represented as a finite or countable union of sets from this semiring. Since B0 is separable, an
important example of such a semiring is obtained by first taking the open spheres S(dk, rj ) with
centers at the points dk of a countable dense set and radii rj forming a countable dense set in
(0,1), then forming intersections and finally taking proper differences; see [6], page 617. We
will make use of such a semiring in the proof of Lemma 3.1.
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A combination of this lemma and the continuous mapping argument analogous to the one in
the proof of Davis and Resnick [9], Theorem 2.4, yields

Nn =
n∑

t=1

ε
a−1
n (Xt ,Xt+Xt+1,...,Xt+···+Xt+h−1)

(3.1)
d−→

∞∑
i=1

ε(Ji ,...,Ji ) +
∞∑
i=1

ε(0,Ji ,...,Ji ) + · · · +
∞∑
i=1

ε(0,...,0,Ji ) = N, n → ∞.

Here, the vectors in the subscripts of the ε’s have length h. Write

B(y) = {(x1, . . . , xh) ∈ Bh :‖xi‖ ≤ y, i = 1, . . . , h} (3.2)

and, for f ∈ Fγ , γ ≥ 0,

M̃
(γ )

n� = (f (�))−1 max
0≤k≤n

‖Sk+� − Sk‖, � = 1,2, . . . .

Then, for y > 0, by (3.1), as n → ∞,

P
(
Nn(B(y)c) = 0

) = P
(
a−1
n M̃

(0)
n1 ≤ y, . . . , a−1

n M̃
(0)
nh ≤ y

)
→ P

(
N(B(y)c) = 0

)
(3.3)

= P
(

sup
i≥1

‖Ji‖ ≤ y, sup
i≥1

‖Ji‖ ≤ y, . . . , sup
i≥1

‖Ji‖ ≤ y
)
.

Since (Ji) constitute a Poisson random measure on B0 with mean measure μ, the transformed
points (‖Ji‖) constitute a Poisson random measure on (0,∞) with mean measure ν given by

ν(y,∞) = μ({x ∈ B0 :‖x‖ > y}) = y−αμ({x ∈ B0 :‖x‖ > 1}) = y−α, y > 0.

In the last step, we used the definition of (an). Moreover, we assumed that P(N(∂B(y)c) =
0) = 1. However,

N(∂B(y)c) = N({x ∈ Bh :‖xi‖ = y,‖xj‖ ≤ y, j �= i, for any i = 1, . . . , h})

≤
h∑

i=1

N({x ∈ Bh :‖xi‖ = y}) = 0 a.s.

since the expectation of the right-hand expression is zero. Hence, ν(y,∞) = y−α , y > 0. Writing
the points ‖Ji‖ in descending order, they have the representation

�
−1/α

1 > �
−1/α

2 > · · · ,
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where (�i) are the arrivals of a unit-rate homogeneous Poisson process on (0,∞). Therefore,
and by (3.3), we conclude that for h ≥ 1, as n → ∞,

P
(
a−1
n max

�≤h
M̃

(γ )

n� ≤ x
)

= P
(
a−1
n max

�≤h
(f (�))−1M̃

(0)
n� ≤ x

)
→ P

(
sup
i≥1

�
−1/α
i ≤ x, (f (2))−1 sup

i≥1
�

−1/α
i ≤ x, . . . , (f (h))−1 sup

i≥1
�

−1/α
i ≤ x

)
= P(�

−1/α

1 ≤ x)

= e−x−α = 	α(x), x > 0.

This concludes the proof of Lemma 2.4(1).

Proof of Lemma 3.1. We follow the proofs of Davis and Resnick [9], Proposition 2.1 and The-
orem 2.2, for the case B = R. For h = 1, the points of N̂n are independent and therefore the
convergence of the finite-dimensional distributions of N̂n to those of N̂ follows from μn

ŵ→ μ as
n → ∞. Therefore, we consider the case h > 1. We write

Ĩn =
n∑

t=1

ε
a−1
n (Xt ,0,...,0)

+ · · · +
n∑

t=1

ε
a−1
n (0,...,0,Xt )

,

where the points of this process are in Bh
0 . Our first aim is to show that N̂n(B) − Ĩn(B)

P−→ 0 as
n → ∞ for bounded Borel sets B ⊂ Bh

0 which are bounded away from zero. For this reason (see
Remark 3.2), it suffices to show that N̂n(B)− Ĩn(B)

P−→ 0 as n → ∞ for sets B from a covering
semiring of Bh

0 . Therefore, it suffices to consider sets B = B1 × · · · × Bh, where each of the sets
Bi ∈ B is an element of the semiring generated by the open spheres S(dk, rj ), as explained in
Remark 3.2. We also assume that μ(∂Bi) = 0, which is possible because (dk) is dense in B and
(rj ) in (0,1), and there exist only countably many atoms of μ because it is finite on bounded
sets.

Since B is bounded away from zero, exactly one of the following two distinct situations may
occur: (C1): B has no intersection with the sets Mi = {(0, . . . ,0, y,0, . . . ,0) ∈ Bh :y ∈ B}, that
is, this set consists of the vectors (0, . . . ,0, y,0, . . . ,0) with y at the ith position; (C2): B ∩Mi =
Bi′ for i = i′ and B ∩ Mi = ∅ for i �= i′. This means that B is either bounded away from the
‘axes’ Mi or exactly one set Bi ⊂ B contains zero. We can now essentially follow the lines of
the proof of Davis and Resnick [9], Proposition 2.1, in order to prove N̂n(B) − Ĩn(B)

P−→ 0 as
n → ∞. (They prove the result for B = R for the more complicated point processes involving
the points (t/n, a−1

n (Xt , . . . ,Xt+h−1), t = 1,2, . . . .)
The proof of [9], Theorem 2.2, can be adapted by replacing the semiring S in [9] by the

semiring of the sets described above. Moreover, Davis and Resnick [9] apply Kallenberg [17],
Theorem 4.2 (which applies to the convergence of point processes on locally compact spaces).
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In our situation, this result can be replaced by the results in [6] on the convergence of point
processes in a separable complete metric space which were mentioned in Remark 3.2 above. An
adaptation of [9], Theorem 2.2, yields that N̂n

d−→ N̂ as n → ∞. �

3.2. Proof of Lemma 2.4(2)

By the definition of the class Fγ , it suffices to prove the result for the functions f (�) = �γ .

We will show that the quantities a−1
n M̃

(γ )

n� for large values of � do not contribute to the limit

distribution of a−1
n M̃

(γ )
n . The key to the proof is the following inequality.

Lemma 3.3. Let (Xi) be an i.i.d. sequence with values in B. Then, for any δ, γ > 0, h ≥ 1 and
H ≤ n,

P
(

max
h≤�≤H

�−γ sup
k≤n

‖Sk+� − Sk‖ > δan

)
≤ 2

J0∑
j=J1

2jP
(

max
1≤k≤2n2−j

‖Sk‖ > δ(n2−j )γ an

)
,

where J0 = log2(n/h), J1 = log2(n/H) + 1 and log2 x denotes the dyadic logarithm.

Here, and in what follows, we abuse notation when we write
∑b

j=a xj instead of
∑

j :a≤j≤b xj

for real values a < b.

Proof of Lemma 3.3. We use a dyadic splitting of the �- and k-index ranges. Recall the defini-
tions of J0, J1, where we assume, for simplicity, that these numbers are integers. Setting

Ij = (n2−j , n2−j+1], j = J1, . . . , J0,

we obtain
J0⋃

j=J1

Ij = {h,h + 1, . . . ,H }

and, therefore,

max
h≤�≤H

�−γ max
k≤n

‖Sk+� − Sk‖ = max
J1≤j≤J0

max
�∈Ij

�−γ max
1≤k≤n

‖Sk+� − Sk‖

≤ max
J1≤j≤J0

(n−12j )γ max
�∈Ij

max
1≤k≤n

‖Sk+� − Sk‖ (3.4)

≤ max
J1≤j≤J0

(n−12j )γ max
�∈Ij

max
1≤i<2j

max
(i−1)n2−j ≤k<in2−j

‖Sk+� − Sk‖.

We observe that for n2−j < � ≤ n2−j+1 and (i − 1)n2−j ≤ k < in2−j ,

‖Sk+� − Sk‖ ≤ ∥∥Sk+� − S[in2−j ]
∥∥ + ∥∥S[in2−j ] − Sk

∥∥
≤ max

in2−j <u<(i+2)n2−j

∥∥Su − S[in2−j ]
∥∥ + max

(i−1)n2−j ≤k<in2−j

∥∥S[in2−j ] − Sk

∥∥.



The limit distribution of the maximum increment of a random walk 1031

Hence, by virtue of (3.4), we obtain the bound

P
(

max
h≤�≤H

�−γ max
k≤n

‖Sk+� − Sk‖ > δan

)
≤ P1 + P2,

where

P1 = P
(

max
J1≤j≤J0

(n−12j )γ max
1≤i<2j

max
in2−j <u<(i+2)n2−j

∥∥Su − S[in2−j ]
∥∥ > δan

)
,

P2 = P
(

max
J1≤j≤J0

(n−12j )γ max
1≤i<2j

max
(i−1)n2−j ≤k<in2−j

∥∥S[in2−j ] − Sk

∥∥ > δan

)
.

Finally, we obtain

P1 ≤
J0∑

j=J1

∑
1≤i<2j

P
(

max
in2−j <u<(i+2)n2−j

∥∥Su − S[in2−j ]
∥∥ > δ(n2−j+2)γ an

)

=
J0∑

j=J1

2jP
(

max
1≤k≤2n2−j

‖Sk‖ > δ(n2−j )γ an

)
.

In the last step, we used the i.i.d. property of (Xi). The corresponding bound for P2 is similar.
�

We are now ready for the second part of Lemma 2.4. We consider the truncated elements

X′
i = XiI{‖Xi‖≤hγ an}, X̃i = X′

i − EX′
i , i = 1, . . . , n,

and the corresponding partial sums S′
k = ∑k

i=1 X′
i and S̃k = ∑k

i=1 X̃i, k = 1, . . . , n, with S′
0 =

S̃0 = 0. By virtue of Lemma 3.3, we conclude that for any δ > 0,

P
(

max
h≤�≤n

�−γ max
0≤k≤n−�

‖Sk+� − Sk‖ > δan

)
≤ P

(
max

1≤k≤n
‖Xk‖ ≥ hγ an

)
+ P

(
max

h≤�≤n
�−γ max

0≤k≤n−�
‖S′

k+� − S′
k‖ > δan

)
(3.5)

≤ P
(

max
1≤k≤n

‖Xk‖ ≥ hγ an

)
+ 2

log2(n/h)∑
j=1

2jQj ,

where

Qj = P
(

max
1≤k≤2n2−j

‖S′
k‖ > δ(n2−j )γ an

)
.

Since ([14]; see, for example, [12], Theorem 3.3.7, for a more recent reference)

lim
h→∞ lim

n→∞P
(

max
1≤k≤n

‖Xk‖ ≥ hγ an

)
= 1 − lim

h→∞ e−h−γα = 0,
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it suffices to show that

lim
h→∞ lim sup

n→∞

log2(n/h)∑
j=1

2jQj = 0. (3.6)

Write

�nj = an(n2−j )γ and N = [2n2−j ].
First, we consider the case α > 1. By assumption, EX = 0 and, therefore, we have

max
1≤k≤N

‖ES′
k‖ = N

∥∥EXI{‖X‖≥hγ an}
∥∥ ≤ NE

(‖X‖I{‖X‖≥hγ an}
)
.

Since ‖X‖ is regularly varying with index α, an application of Karamata’s theorem yields that as
n → ∞,

E
(‖X‖I{‖X‖≥hγ an}

) ∼ cαn−1anh
γ (1−α). (3.7)

Hence, since N ≤ n and, therefore, cn−1N1−γ hγ (1−α) ≤ δ/2 for large n and some constant
c > 0, we have

Qj ≤ P
(

max
1≤k≤N

‖S′
k − ES′

k‖ > δNγ an − cNhγ (1−α)ann
−1

)
≤ Q̃j ,

where

Q̃j = P
(

max
1≤k≤N

‖S̃k‖ > (δ/2)Nγ an

)
.

Since the sequence (‖S̃k‖)k=0,1,... constitutes a submartingale, an application of the Chebyshev
and Doob inequalities for p > 1 yields, for some constant c > 0, that

Q̃j ≤ (δ/2)−p�
−p
nj E

(
max

1≤k≤N
‖S̃k‖p

)
≤ c�

−p
nj E‖S̃N‖p. (3.8)

We proceed by applying an Lp-inequality for sums of independent mean zero random elements
(see [18], Theorem 6.20). We obtain, for p > 2,

E‖S̃N‖p ≤ c[(E‖S̃N‖)p + NE‖X̃1‖p] (3.9)

with a constant c depending on p only. For fixed γ > 0 and α > 1, let us choose β > 0 such that
β < α and γ > β−1 − α−1. We then have

E‖S̃N‖ = E

∥∥∥∥∥
N∑

i=1

X′
i − NEX′

1

∥∥∥∥∥ = E

∥∥∥∥∥SN −
N∑

i=1

XiI{‖Xi‖>hγ an} − NE
(
XI{‖X‖>hγ an}

)∥∥∥∥∥
≤ E‖SN‖ + 2NE

(‖X‖I{‖X‖>hγ an}
)
.

By (3.7) and assumption (2.3), we conclude that

E‖S̃N‖ ≤ c
[
N1/β + Nn−1anh

γ (1−α)
]
. (3.10)
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Again, by regular variation of ‖X‖ and Karamata’s theorem, for p > max(2, α), as n → ∞,

E‖X̃1‖p ∼ cαa
p
n n−1hγ (p−α). (3.11)

Combining (3.8)–(3.11), we obtain

log2(n/h)∑
j=1

2j Q̃j ≤ c

log2(n/h)∑
j=1

2j a
−p
n N−pγ

[
Np/β + Npn−pa

p
n hpγ (1−α) + Na

p
n n−1hγ (p−α)

]
≤ c[I1 + I2 + I3],

where

I1 = a
−p
n n−pγ+p/β

log2(n/h)∑
j=1

2j (1+pγ−p/β),

I2 = n−pγ hp(1−α)

log2(n/h)∑
j=1

2j−pj+pγj ,

I3 = n−pγ hγ (p−α)

log2(n/h)∑
j=1

2pγj .

If γ ≤ 1/β , then using the fact that p > max(2, α), for some constants c > 0 and a slowly varying
function �,

I1 ∼ ca
−p
n n−pγ+p/β(n/h)1+pγ−p/β = ch−1−pγ+p/β(�(n))−pn−p/α+1 = o(1), n → ∞.

If γ > 1/β − 1/p, then I1 = o(1) as n → ∞ by choosing p > 1/(γ − 1/β). Next, we see that
I2 = O(n−p+1) as n → ∞ if γ ≥ 1 and I2 = O(n−pγ ) as n → ∞ if γ < 1 and p > 1/(1 − γ ).

Finally, I3 ≤ ch−γα for some c > 0 and the right-hand side converges to zero as h → ∞. This
proves (3.6) for α > 1.

The case α = 1, EX = 0, can be handled following the lines of the proof above. Then, (3.7)
does not remain valid. However, Karamata’s theorem yields that f1(x) = E‖X‖{‖X‖>x} is a
slowly varying function. This fact suffices to derive the corresponding relations after (3.7).

We now consider the cases 0 < α < 1 and α = 1, E‖X‖ = ∞. We have

log2(n/h)∑
j=1

2jQj ≤
log2(n/h)∑

j=1

2jP (TN − NE‖X′‖ > δNγ an − NE‖X′‖),

where Tk = ∑k
i=1 ‖X′

i‖. Another application of Karamata’s theorem yields, as n → ∞,

E
(‖X‖I{‖X‖≤hγ an}

) ∼
{

cαann
−1hγ (1−α), when α �= 1,

slowly varying, when α = 1.
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We now easily deduce that NE‖X′‖ = o(Nγ an) as n → ∞ for γ > 0. Thus, we have, for large n,
by Kolmogorov’s inequality,

P(TN − NE‖X′‖ > δNγ an − NE‖X′‖) ≤ P
(
TN − NE‖X′‖ > (δ/2)Nγ an

)
≤ cδN

−2γ a−2
n N var(‖X′‖).

By Karamata’s theorem, var(‖X′‖) ∼ cαa2
nn

−1hγ as n → ∞. So, for large n,

log2(n/h)∑
j=1

2jQj ∼ cα,δ

log2(n/h)∑
j=1

2jN1−2γ n−1hγ ≤ cα,δ

log2(n/h)∑
j=1

22γjn−2γ hγ ≤ cα,δh
−γ

and we conclude that (3.6) indeed holds. This completes the proof of the lemma.

3.3. Proof of Theorem 2.2

The proof of (2.4) is immediate from Lemma 2.4. It thus suffices to prove (2.5). We achieve this
by showing that the sequences (a−1

n M̃
(γ )
n ) and (a−1

n T̃
(γ )
n ) have the same asymptotic behavior.

Throughout the proof, we set

V�(i, j) = max
i≤k≤j

‖Sk+� − Sk − �Xn‖, 0 ≤ i < j ≤ n.

The argument of Remark 2.5 allows us to assume that γ ∈ (0,1) and we start by observing that,
in view of Remark 2.6, the sequences (a−1

n M̃
(γ )
n ) and (a−1

n ζ
(γ )
n ) have the same limit distribution.

Next, we observe that (a−1
n ζ

(γ )
n ) has the same limit distribution as

a−1
n ζ

′(γ )
n = a−1

n max
1≤�≤dn

(
f

(
�(1 − �/n)

))−1
V�(0, n − �), n ≥ 1,

for any sequence d2
n → ∞ such that dn/n → 0 as n → ∞. Indeed, we have

inf
1≤�≤dn

(
f

(
�(1 − dn/n)

)
/f (�)

)
ζ

′(γ )
n ≤ ζ

(γ )
n ≤ max

(
ζ

′(γ )
n ,�n

)
,

where �n = max�≥dn(f (�))−1V�(0, n − �) = oP (an) due to Lemma 2.4 and Remark 2.6. By
the definition of the class Fγ , we have that inf1≤�≤dn(f (�(1 − dn/n))/f (�)) → 1 as n → ∞.

Again by Lemma 2.4 and Remark 2.6, we conclude that the sequence (a−1
n ζ

′(γ )
n ) has the same

asymptotic distribution as (a−1
n ζ

′′(γ )
n ), where

ζ
′′(γ )
n = max

1≤�≤n/2

(
f

(
�(1 − �/n)

))−1
V�(0, n − �), n ≥ 1.

Finally, we show that

�n = a−1
n max

n/2<�<n

(
�(1 − �/n)

)−γ
V�(0, n − �)

P−→ 0 as n → ∞. (3.12)



The limit distribution of the maximum increment of a random walk 1035

We use the following identity:

Sk+� − Sk − �Xn =
k+�∑

i=k+1

(Xi − Xn)

= −
[

n∑
i=k+�+1

(Xi − Xn) +
k∑

i=1

(Xi − Xn)

]
.

In view of the identical distributions of the Xi ’s, the proof of (3.12) reduces to showing that, as
n → ∞,

�′
n = a−1

n max
n/2<�<n

(
�(1 − �/n)

)−γ max
0≤k≤n−�

∥∥∥∥∥
k+n−�∑
i=k+1

(Xi − Xn)

∥∥∥∥∥ P−→ 0. (3.13)

By virtue of (2.6), we have

�′
n = a−1

n max
1≤�<n/2

(
�(1 − �/n)

)−γ max
0≤k≤�

∥∥∥∥∥
k+�∑

i=k+1

(Xi − Xn)

∥∥∥∥∥
≤ 2a−1

n max
1≤�<n/2

(
�(1 − �/n)

)−γ max
0≤k≤2�

[‖Sk‖ + �‖Xn‖]

≤ 2γ+1a−1
n max

1≤�<n/2
�−γ max

0≤k≤2�
‖Sk‖ + oP (1)

≤ 22γ+1a−1
n max

1≤k≤n
‖k−γ Sk‖ + oP (1), n → ∞.

By assumption (2.3), choosing β = 2 if γ > 0.5 − 1/α or β < α such that γ > 1/β − 1/α, we
have

a−1
n max

1≤k≤n
k−γ ‖Sk‖ = a−1

n max
1≤k≤n

k−γ+1/β‖k−1/βSk‖

≤ a−1
n max(1, n−γ+1/β) max

1≤k≤n
‖k−1/βSk‖ P−→ 0, n → ∞.

This concludes the proof of the theorem.

3.4. Proof of Theorem 2.10

The proof is similar to that of Theorem 2.2. Lemma 3.1 remains valid with an replaced by bn =
p1/αan, but the limiting Poisson random measure with state space R\{0} has mean measure μ

given by μ(x,∞) = x−α and μ(−∞,−x) = (q/p)x−α for x > 0. Consider the set

B(x, y)c = (−∞,−x) ∪ (y,∞), x, y > 0.
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Recall the definition of Nn (with an replaced by bn) from (3.1). Then, using Lemma 3.1 and the
same ideas as in the proof of Lemma 2.4(1), for h ≥ 1 and x, y > 0,

P
(
Nn(B(x, y)c) = 0

)
= P

(
b−1
n max

�=1,...,h
(f (�))−1 max

k=0,...,n−�
(Sk+� − Sk) ≤ y,

b−1
n min

k=1,...,h
(f (�))−1 min

k=0,...,n−�
(Sk+� − Sk) ≥ −x

)
→ exp

{−μ
(
(−∞,−x) ∪ (y,∞)

)}
= exp{−(q/p)x−α − y−α}
= 	q/p

α (x)	α(y).

Furthermore, for fixed h ≥ 1,

P
(
b−1
n max

�=1,...,h
(f (�))−1 max

k=0,...,n−�
(Sk+� − Sk) ≤ y,

b−1
n min

k=1,...,h
(f (�))−1 min

k=0,...,n−�
(Sk+� − Sk) ≤ −x

)
= P

(
b−1
n max

�=1,...,h
(f (�))−1 max

k=0,...,n−�
(Sk+� − Sk) ≤ y

)
− P

(
b−1
n max

�=1,...,h
(f (�))−1 max

k=0,...,n−�
(Sk+� − Sk) ≤ y,

b−1
n min

k=1,...,h
(f (�))−1 min

k=0,...,n−�
(Sk+� − Sk) > −x

)
→ 	α(y)

(
1 − 	q/p

α (x)
)
, x, y > 0.

The right-hand side can be extended to a bivariate distribution in a natural way. An application
of Lemma 2.4(2) shows that this distribution is the joint limit distribution of b−1

n (m
(γ )
n ,M

(γ )
n ).

3.5. Proof of Theorem 2.12

One can follow the lines of the proof of (2.5) to show that the sequences (b−1
n M

(γ )
n ) and

(b−1
n T

(γ )
n ) have the same limiting distribution.

3.6. Proof of Theorem 2.13

The proof is similar to that of Theorem 2.10. We sketch the main ideas. We first observe that the
symmetric random variable X̂ = X1 − X2 is regularly varying:

P(X1 − X2 > x) ∼ P(X > x) + P(X < −x) = P(|X| > x), x → ∞;
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see [12], Lemma A.3.26. Hence, nP (X1 − X2 > an) → 1 as n → ∞.
Following the lines of the proof of Theorem 2.2, one can show that

lim
h→∞ lim sup

n→∞
P

(
a−1
n max

�=h,...,n
(f (�))−1 max

k=�+1,...,n−�
|Sk+� + Sk−� − 2Sk| > δ

)
= 0, δ > 0.

Hence, it suffices to show that for any fixed h ≥ 1,

lim
n→∞P

(
a−1
n max

�=1,...,h
(f (�))−1 max

k=�+1,...,n−�
(Sk+� + Sk−� − 2Sk) ≤ x

)
= 	2

α(x), x > 0.

This is again achieved by a point process argument in the spirit of Davis and Resnick [9]. The
same argument as in Section 3.1 yields, for any fixed � ≥ 1,

n∑
k=�+1

ε
a−1
n (Xk+1−Xk−1,(Xk+1−Xk−1)+(Xk+2−Xk−2),...,(Xk+1−Xk−1)+···+(Xk+�−Xk−�))

d−→
∞∑
i=1

[
ε(Ji ,,...,Ji ) + ε(−Ji ,...,−Ji )

] +
∞∑
i=1

[
ε(0,Ji ,...,Ji ) + ε(0,−Ji ,...,−Ji )

] + · · ·

+
∞∑
i=1

[
ε(0,...,0,Ji ) + ε(0,...,0,−Ji )

]
, n → ∞,

where (Ji) are the points of a Poisson random measure on B0 with mean measure μ satisfying
μ(x,∞) = μ(−∞,−x] = x−α , x > 0. This limit result implies that for h ≥ 1 and x > 0,

P
(
a−1
n max

l=1,...,h
(f (�))−1 max

k=l+1,...,n−�
(Sk+l + Sk−l − 2Sk) ≤ x

)
→ P

(
sup
i≥1

|Ji | ≤ x, (f (2))−1 sup
i≥1

|Ji | ≤ x, . . . , (f (h))−1 sup
i≥1

|Ji | ≤ x
)

= 	2
α(x), n → ∞.

This concludes the proof.
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