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THE EIGENVALUES OF THE SAMPLE COVARIANCE MATRIX OF A

MULTIVARIATE HEAVY-TAILED STOCHASTIC VOLATILITY MODEL

ANJA JANSSEN, THOMAS MIKOSCH, MOHSEN REZAPOUR, AND XIAOLEI XIE

Abstract. We consider a multivariate heavy-tailed stochastic volatility model and analyze the

large-sample behavior of its sample covariance matrix. We study the limiting behavior of its
entries in the infinite-variance case and derive results for the ordered eigenvalues and corresponding

eigenvectors. Essentially, we consider two different cases where the tail behavior either stems from

the iid innovations of the process or from its volatility sequence. In both cases, we make use of
a large deviations technique for regularly varying time series to derive multivariate α-stable limit

distributions of the sample covariance matrix. While we show that in the case of heavy-tailed
innovations the limiting behavior resembles that of completely independent observations, we also

derive that in the case of a heavy-tailed volatility sequence the possible limiting behavior is more

diverse, i.e. allowing for dependencies in the limiting distributions which are determined by the
structure of the underlying volatility sequence.

1. Introduction

1.1. Background and Motivation. The study of sample covariance matrices is fundamental for
the analysis of dependence in multivariate time series. Besides from providing estimators for vari-
ances and covariances of the observations (in case of their existence), the sample covariance matrices
are a starting point for dimension reduction methods like principal component analysis. Accord-
ingly, the special structure of sample covariance matrices and their largest eigenvalues has been
intensively studied in random matrix theory, starting with iid Gaussian observations and more re-
cently extending results to arbitrary distributions which satisfy some moment assumptions like in
the four moment theorem of Tao and Vu [43].

However, with respect to the analysis of financial time series, such a moment assumption is often
not suitable. Instead, in this work, we will analyze the large sample behavior of sample covariance
matrices under the assumption that the marginal distributions of our observations are regularly
varying with index α < 4 which implies that fourth moments do not exist. In this case, we would
expect the largest eigenvalues of the sample covariance matrix to inherit heavy-tailed behavior as
well; see for example Ben Arous and Guionnet [5], Auffinger et al. [2], Soshnikov [41, 42], Davis et
al. [12], Heiny and Mikosch [27] for the case of iid entries. Furthermore, in the context of financial
time series we have to allow for dependencies both over time and between different components
and indeed it is the very aim of the analysis to discover and test for these dependencies from the
resulting sample covariance matrix as has for example been done in Plerou et al. [37] and Davis
et al. [19, 18]. The detection of dependencies among assets also plays a crucial role in portfolio
optimization based on multi-factor prizing models, where principal component analysis is one way
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to derive the main driving factors of a portfolio; cf. Campbell et al. [9] and recent work by Lam
and Yao [33].

The literature on the asymptotic behavior of sample covariance matrices derived from dependent
heavy-tailed data is, however, relatively sparse up till now. Starting with the analysis of the sample
autocorrelation of univariate linear heavy-tailed time series in Davis and Resnick [20, 21], the theory
has recently been extended to multivariate heavy-tailed time series with linear structure in Davis et
al. [19, 18], cf. also the recent survey article by Davis et al. [12]. But most of the standard models
for financial time series such as GARCH and stochastic volatility models are non-linear. In this
paper we will therefore focus on a class of multivariate stochastic volatility models of the form

Xit = σit Zit , t ∈ Z , 1 ≤ i ≤ p,(1.1)

where (Zit) is an iid random field independent of a strictly stationary ergodic field (σit) of non-
negative random variables; see Section 2 for further details. Stochastic volatility models have been
studied in detail in the financial time series literature; see for example Andersen et al. [1], Part II.
They are among the simplest models allowing for conditional heteroscedasticity of a time series. In
view of independence between the Z- and σ-fields dependence conditions on (Xit) are imposed only
via the stochastic volatility (σit). Often it is assumed that (log σit) has a linear structure, most
often Gaussian.

In this paper we are interested in the case when the marginal and finite-dimensional distributions
of (Xit) have power-law tails. Due to independence between (σit) and (Zit) heavy tails of (Xit) can
be due to the Z- or the σ-field. Here we will consider two cases: (1) the tails of Z dominate the
right tail of σ and (2) the right tail of σ dominates the tail of Z. The third case when both σ and
Z have heavy tails and are tail-equivalent will not be considered in this paper. Case (1) is typically
more simple to handle; see Davis and Mikosch [14, 15, 16] for extreme value theory, point process
convergence and central limit theory with infinite variance stable limits. Case (2) is more subtle
as regards the tails of the finite-dimensional distributions. The literature on stochastic volatility
models with a heavy-tailed volatility sequence is so far sparse but the interest in these models
has been growing recently; see Mikosch and Rezapour [34], Kulik and Soulier [32] and Janßen and
Drees [30]. In particular, it has been shown that these models offer a lot of flexibility with regard
to the extremal dependence structure of the time series, ranging from asymptotic dependence of
consecutive observations (cf. [34]) to asymptotic independence of varying degrees (cf. [32] and [30]).

1.2. Aims, main results and structure. After introducing the general model in Section 2 we
first deal with the case of heavy-tailed innovations and a light-tailed volatility sequence in Section
3. The first step in our analysis is to describe the extremal structure of the corresponding process
by deriving its so-called tail process; see Section 2.3 and Proposition 3.1. This allows one to apply
an infinite variance stable central limit theorem from Mikosch and Wintenberger [35] (see Appendix
A) to derive the joint limiting behavior of the entries of the sample covariance matrix of this model.
This leads to the main results in the first case: Theorems 3.3 and 3.6. They say, roughly speaking,
that all values on the off-diagonals of the sample covariance matrix are negligible compared to
the values on the diagonals. Furthermore, the values on the diagonal converge, under suitable
normalization, to independent α-stable random variables, so the limiting behavior of this class of
stochastic volatility models is quite similar to the case of iid heavy-tailed random variables. This
fairly tractable structure allows us also to derive explicit results about the asymptotic behavior of
the ordered eigenvalues and corresponding eigenvectors which can be found in Sections 3.3 and 3.4.
In particular, we will see that in this model the eigenvectors are basically the unit canonical basis
vectors which describe a very weak form of extremal dependence. With a view towards portfolio
analysis, our assumptions imply that large movements of the market are mainly driven by one single
asset, where each asset is equally likely to be this extreme driving force.
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In the second case of a heavy-tailed volatility sequence combined with light-tailed innovations,
which we analyze in Section 4, we see that the range of possible limiting behaviors of the entries of
the sample covariance matrix is more diverse and depends on the specific structure of the underlying
volatility process. We make the common assumption that our volatility process is log-linear, where
we distinguish between two different cases for the corresponding innovation distribution of this
process. Again, for both cases, we first derive the specific form of the corresponding tail process
(see Proposition 4.4) which then allows us to derive the limiting behavior of the sample covariance
matrix entries, leading to the main results in the second case: Theorems 4.6 and 4.10. We show that
the sample covariance matrix can feature non-negligible off-diagonal components, therefore clearly
distinguishing from the iid case, if we assume that the innovations of the log-linear volatility process
are convolution equivalent. We discuss concrete examples for both model specifications and the
corresponding implications for the asymptotic behavior of ordered eigenvalues and corresponding
eigenvectors at the end of Section 4.

Section 5 contains a small simulation study which illustrates our results for both cases and also
includes a real-life data example for comparison. From the foreign exchange rate data that we
use, it is notable that the corresponding sample covariance matrix features a relatively large gap
between the largest and the second largest eigenvalue and that the eigenvector corresponding to the
largest eigenvalue is fairly spread out, i.e., all its components are of a similar order of magnitude.
This implies that the model discussed in Section 3 may not be that suitable to catch the extremal
dependence of this data, and that there is not one single component that is most affected by extreme
movements but instead all assets are affected in a similar way. We perform simulations for three
different specifications of models from Sections 3 and 4. They illustrate that the models analyzed
in Section 4 are capable of exhibiting more diverse asymptotic behaviors of the sample covariance
matrix and in particular non-localized dominant eigenvectors.

Some useful results for the (joint) tail and extremal behavior of random products are gathered
in Appendix B. These results may be of independent interest when studying the extremes of
multivariate stochastic volatility models with possibly distinct tail indices. We mention in passing
that there is great interest in non-linear models for log-returns of speculative prices when the number
of assets p increases with the sample size n. We understand our analysis as a first step in this
direction.

2. The model

We consider a stochastic volatility model

Xit = σit Zit , i, t ∈ Z ,(2.1)

where (Zit) is an iid field independent of a strictly stationary ergodic field (σit) of non-negative
random variables. We write Z, σ, X for generic elements of the Z-, σ- and X-fields such that σ and
Z are independent. A special case appears when σ > 0 is a constant: then (Xit) constitutes an iid
field.

For the stochastic volatility model as in (1.1) we construct the multivariate time series

Xt = (X1t, . . . , Xpt)
′, t ∈ Z,(2.2)

for a given dimension p ≥ 1. For n ≥ 1 we write Xn = vec
(
(Xt)t=1,...,n

)
∈ Rp×n and consider the

non-normalized sample covariance matrix

Xn(Xn)′ = (Sij)i,j=1,...,p , Sij =

n∑
t=1

XitXjt , Si = Sii .(2.3)
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2.1. Case (1): Z dominates the tail. We assume that Z is regularly varying with index α > 0,
i.e.,

P(Z > x) ∼ p+
L(x)

xα
and P(Z < −x) ∼ p−

L(x)

xα
, x→∞ ,(2.4)

where p+ and p− are non-negative numbers with p+ + p− = 1 and L is a slowly varying function.
If we assume E[σα+δ] < ∞ for some δ > 0 then, in view of a result by Breiman [8] (see also
Lemma B.1), it follows that

P(X > x) ∼ E[σα]P(Z > x) and P(X < −x) ∼ E[σα]P(Z < −x) , x→∞ ,(2.5)

i.e., X is regularly varying with index α. Moreover, we know from a result by Embrechts and Goldie
[24] that for independent copies Z1 and Z2 of Z, Z1Z2 is again regularly varying with index α; cf.
Lemma B.1. Therefore, using again Breiman’s result under the condition that E[(σi0σj0)α+δ1(i 6=
j) + σα+δ

i0 ] <∞ for some δ > 0, we have

P(±XitXjt > x) ∼

{
E[(σit σjt)

α]P(±Zi Zj > x) i 6= j ,

E[σα]P(Z2 > x) i = j ,
x→∞ .(2.6)

2.2. Case (2): σ dominates the tail. We assume that σ ≥ 0 is regularly varying with some index
α > 0: for some slowly varying function `,

P(σ > x) = x−α `(x) ,

and E[|Z|α+δ] <∞ for some δ > 0. Now the Breiman result yields

P(X > x) ∼ E[Zα+]P(σ > x) and P(X < −x) ∼ E[Zα−]P(σ > x) , x→∞ .

Since we are also interested in the tail behavior of the products XitXjt we need to be more precise
about the joint distribution of the sequences (σit). We assume

σit = exp
( ∞∑
k,l=−∞

ψkl ηi−k,t−l

)
, i, t ∈ Z ,(2.7)

where (ψkl) is a field of non-negative numbers (at least one of them being positive) such that (without
loss of generality) maxkl ψkl = 1 and (ηit) is an iid random field such that a generic element η satisfies

P
(
eη > x) = x−α L(x) ,(2.8)

for some α > 0 and a slowly varying function L. We also assume
∑
k,l ψkl <∞ to ensure absolute

summability of log σit. A distribution of η that fits into this scheme is for example the exponential
distribution; cf. also Rootzén [40] for further examples and extreme value theory for linear processes
of the form

∑∞
l=−∞ ψl ηt−l.

2.3. Regularly varying sequences. In Sections 3.1 and 4.1 we will elaborate on the joint tail
behavior of the sequences (σit), (Xit), (σitσjt), and (XitXjt). We will show that, under suitable
conditions, these sequences are regularly varying with positive indices.

The notion of a univariate regularly varying sequence was introduced by Davis and Hsing [13].
Its extension to the multivariate case does not represent difficulties; see Davis and Mikosch [17].
An Rd-valued strictly stationary sequence (Yt) is regularly varying with index γ > 0 if each of
the vectors (Yt)t=0,...,h, h ≥ 0, is regularly varying with index γ, i.e., there exist non-null Radon

measures µh on [−∞,∞]d(h+1)\{0} which are homogeneous of order −γ such that

P(x−1(Yt)t=0,...,h ∈ ·)
P(‖Y0‖ > x)

v→ µh(·) .(2.9)
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Here
v→ denotes vague convergence on the Borel σ-field of [−∞,∞]d(h+1)\{0} and ‖ · ‖ denotes any

given norm; see Resnick’s books [38, 39] as general references to multivariate regular variation.
Following Basrak and Segers [4], an Rd-valued strictly stationary sequence (Yt) is regularly

varying with index γ > 0 if and only if there exists a sequence of Rd-valued random vectors (Θh)
independent of a Pareto(γ) random variable Y , i.e., P(Y > x) = x−γ , x > 1, such that for any
k ≥ 0,

P(x−1(Y0, . . . ,Yk) ∈ · | ‖Y0‖ > x)
w→ P

(
Y (Θ0, . . . ,Θk) ∈ ·

)
, x→∞ .(2.10)

We call (Θh) the spectral tail process of (Yt) and (YΘh) the tail process. We will use both defining
properties (i.e., (2.9) and (2.10)) of a regularly varying sequence.

3. Case (1): Z dominates the tail

3.1. Regular variation of the stochastic volatility model and its product processes.

Proposition 3.1. We assume the stochastic volatility model (2.1) and that Z is regularly varying
with index α > 0 in the sense of (2.4).

(1) If E[σα+ε] <∞ for some ε > 0 the sequence (Xit)t∈Z is regularly varying with index α and
the corresponding spectral tail process (Θi

h)h≥1 vanishes.
(2) For any i 6= j, if E[(σi0σj0)α+ε] <∞ for some ε > 0 then the sequence (XitXjt) is regularly

varying with index α and the corresponding spectral tail process (Θij
h )h≥1 vanishes.

Remark 3.2. If E[(σikσjl)
α+εik,jl ] <∞ for some εik,jl > 0 and any (i, k) 6= (j, l) it is also possible

to show the joint regular variation of the processes (XitXjt), i 6= j, with index α. The description
of the corresponding spectral tail process is slightly tedious. It is not needed for the purposes of
this paper and therefore omitted.

Proof. Regular variation of the marginal distributions of (Xit) and (XitXjt) follows from Breiman’s
result; see (2.5) and (2.6). As regards the regular variation of the finite-dimensional distributions
of (Xit), we have for h ≥ 1,

P(|Xih| > x | |Xi0| > x) =
P(min(|Xi0|, |Xih|) > x)

P(|Xi0| > x)

≤ P(max(σi0, σih) min(|Zi0|, |Zih|) > x)

P(|Xi0| > x)
→ 0 , x→∞ .

In the last step we used Markov’s inequality together with the moment condition E[σα+ε] <∞ and
the fact that min(|Zi0|, |Zih|) is regularly varying with index 2α. This means that Θi

h = 0 for h ≥ 1.
Similarly, for i 6= j, h ≥ 1,

P(|XihXjh| > x | |Xi0Xj0| > x) ≤ P(max(σi0σj0, σihσjh) min(|Zi0Zj0|, |ZihZjh|) > x)

P(|Xi0Xj0| > x)
→ 0 .

In the last step we again used Markov’s inequality, the fact that Zi0Zj0 is regularly varying with
index α (see Embrechts and Goldie [24]; cf. Lemma B.1(1) below), hence min(|Zi0Zj0|, |ZihZjh|) is

regularly varying with index 2α, and the moment condition E[(σi0σj0)α+ε] <∞. Hence Θij
h = 0 for

i 6= j, h ≥ 1. �

3.2. Infinite variance stable limit theory for the stochastic volatility model and its
product processes.

Theorem 3.3. Consider the stochastic volatility model (2.1) and assume the following conditions:

(1) Z is regularly varying with index α ∈ (0, 4) \ {2}.
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(2)
(
(σit)t=1,2,...

)
i=1,...,p

is strongly mixing with rate function (αh) such that for some δ > 0,

∞∑
h=0

α
δ/(2+δ)
h <∞ .(3.1)

(3) The moment condition

E[σ2 max(2+δ,α+ε)] <∞(3.2)

holds for the same δ > 0 as in (3.1) and some ε > 0.

Then

a−2
n

(
S1 − cn, . . . , Sp − cn

) d→ (ξ1,α/2, . . . , ξp,α/2) ,(3.3)

where (ξi,α/2) are iid α/2-stable random variables which are totally skewed to the right,

cn =

{
0 α ∈ (0, 2) ,
nE[X2] α ∈ (2, 4) ,

(3.4)

and (an) satisfies nP(|X| > an)→ 1 as n→∞.

Remark 3.4. From classical limit theory (see Feller [26], Petrov [36]) we know that (3.3) holds for
an iid random field (Xit) with regularly varying X with index α ∈ (0, 4). In the case α = 2 one
needs the special centering cn = nE[X21(|X| ≤ an)] which often leads to some additional technical
difficulties. For this reason we typically exclude this case in the sequel.

Remark 3.5. It follows from standard theory that α-mixing of (σit) with rate function (αh) implies
α-mixing of (Xit) with rate function (4αh); see Davis and Mikosch [16].

Proof. Recall the definition of (Xt) from (2.2). We will verify the conditions of Theorem A.1 for
X2
t = (X2

it)i=1,...,p, t = 0, 1, 2, . . ..

(1) We start by verifying the regular variation condition for (Xt); see (2.10). We will determine the
sequence (Θh) corresponding to (Xt). We have for t ≥ 1, with the max-norm ‖ · ‖,

P
(
‖Xt‖ > x | ‖X0‖ > x

)
≤

P
(
‖Xt‖ > x ,∪pi=1{|Xi0| > x}

)
P(‖X0‖ > x)

≤
p∑
i=1

P
(
‖Xt‖ > x , |Xi0| > x

)
P(‖X0‖ > x)

≤
p∑
i=1

p∑
j=1

P
(
|Xjt| > x , |Xi0| > x

)
P(|X| > x)

≤
p∑
i=1

p∑
j=1

P
(

max(σjt, σi0) min(|Zjt|, |Zi0|) > x
)

P(σ|Z| > x)
.

We observe that by Breiman’s result and in view of the moment condition (3.2), for t ≥ 1 and some
positive constant c,

P
(

max(σjt, σi0) min(|Zjt|, |Zi0|) > x
)

P(σ|Z| > x)
∼ c P(min(|Zjt|, |Zi0|) > x)

P(|Z| > x)
,

and the right-hand side converges to zero as x→∞. We conclude that Θh = 0 for h ≥ 1. We also
have for i 6= j,

P(|Xi0| > x , |Xj0| > x)

P(|X| > x)
≤

P
(

max(σi0, σj0) min(|Zi0|, |Zj0|) > x
)

P(σ|Z| > x)
→ 0 , x→∞ .
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Then, in a similar way, one can show

P(X0/‖X0‖ ∈ · | ‖X0‖ > x)
w→ P(Θ0 ∈ ·) =

1

p

p∑
i=1

(
p+εei(·) + p−ε−ei(·)

)
.(3.5)

where ei are the canonical basis vectors in Rp, εx is Dirac measure at x and p± are the tail balance
factors in (2.4).

We conclude that the spectral tail process (Θ
(2)
h ) of (X2

t ) is given by Θ
(2)
h = 0 for h ≥ 1 and

from (3.5) we also have

P(Θ
(2)
0 ∈ ·) =

1

p

p∑
i=1

εei(·) .(3.6)

In particular, the condition
∑∞
i=1 E[‖Θ(2)

i ‖] <∞ in Theorem A.1(4) is trivially satisfied.

(2) Next we want to prove the mixing condition (A.1) for the sequence (X2
t ). We start by observing

that there are integer sequences (ln) and (mn) such that kn αln → 0, ln = o(mn) and mn = o(n).
Then we also have for any γ > 0,

kn P
( ln∑
t=1

X2
t1(‖Xt‖ > εan) > γa2

n

)
≤ kn ln P(‖Xt‖ > εan) ≤ c ln/mn = o(1) .(3.7)

Relation (A.1) turns into

Eeis
′a−2
n

∑n
t=1 X2

t1(‖Xt‖>εan) −
(
Eeis

′a−2
n

∑mn
t=1 X2

t1(‖Xt‖>εan)
)kn → 0 , s ∈ Rp .

In view of (3.7) it is not difficult to see that we can replace the sum in the former characteristic
function by the sum over the index set Jn = {1, . . . ,mn−ln,mn+1, . . . , 2mn−ln, . . . , } ⊂ {1, . . . , n}
and in the latter characteristic function by the sum over the index set {1, . . . ,mn−ln}. Without loss
of generality we may assume that n/mn is an integer. Thus it remains to show that the following
difference converges to zero for every s ∈ Rp:∣∣∣E[eis′a−2

n

∑
t∈Jn X2

t1(‖Xt‖>εan)
]
−
(
E
[
eis
′a−2
n

∑mn−ln
t=1 X2

t1(‖Xt‖>εan)
])kn ∣∣∣

=
∣∣∣ kn∑
v=1

E
[ v−1∏
j=1

e
is′a−2

n

∑jmn−ln
t=(j−1)mn+1

X2
t1(‖Xt‖>εan)

×
(
e
is′a−2

n

∑vmn−ln
t=(v−1)mn+1

X2
t1(‖Xt‖>εan) − E

[
e
is′a−2

n

∑vmn−ln
t=(v−1)mn+1

X2
t1(‖Xt‖>εan)])]

×
kn∏

j=v+1

E
[
e
is′a−2

n

∑jmn−ln
t=(j−1)mn+1

X2
t1(‖Xt‖>εan)]∣∣∣ .

In view of a standard inequality for covariances of strongly mixing sequences of bounded random
variables (see Doukhan [22], p. 3) the right-hand side is bounded by c knαln which converges to zero
by construction. Here and in what follows, c stands for any positive constant whose value is not of
interest. Its value may change from line to line. This finishes the proof of the mixing condition.

(3) Next we check the anti-clustering condition (A.2) for (Xt) with normalization (an), implying
the corresponding condition for (X2

t ) with normalization (a2
n). By similar methods as for part (1)
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of the proof, assuming that ‖ · ‖ is the max-norm, we have

P
(

max
t=l,...,mn

‖Xt‖ > γan | ‖X0‖ > γan
)

≤
mn∑
t=l

P
(
‖Xt‖ > γan | ‖X0‖ > γan

)
≤ c

mn∑
t=l

p∑
i=1

p∑
j=1

P
(
|Xit| > γan , |Xj0| > γan

)
P(|Z| > γan)

≤ c

mn∑
t=l

p∑
i=1

p∑
j=1

P
(

max(σit, σj0) min(|Zit|, |Zj0|) > γan
)

P(|Z| > γan)

≤ c

mn∑
t=l

p∑
i=1

p∑
j=1

P
(
σit min(|Zit|, |Zj0|) > γan

)
P(|Z| > γan)

.

By stationarity the probabilities on the right-hand side do not depend on t ≥ l. Therefore and by
Breiman’s result, the right-hand side is bounded by

cmn

P
(

min(|Zit|, |Zj0|) > γan
)

P(|Z| > γan)
= O((mn/n)[n P(|Z| > an)]) = o(1) .

This proves (A.2) for (Xt).

(4) Next we check the vanishing small values condition (A.3) for the partial sums of (X2
t ) and

α ∈ (2, 4). It is not difficult to see that it suffices to prove the corresponding result for the component
processes:

lim
ε↓0

lim sup
n→∞

P
(∣∣∣ n∑

t=1

(
X2
it1(|Xit| ≤ εan)− E[X2

it1(|Xit| ≤ εan)]
)∣∣∣ > γa2

n

)
= 0 ,(3.8)

γ > 0 , i = 1, . . . , p .

We have

a−2
n

n∑
t=1

σ2
itE
[
Z2
it1(|Xit| ≤ εan) | σit]− a−2

n nE[X2
it1(|Xit| ≤ εan)]

= a−2
n

n∑
t=1

(σ2
it − E[σ2

it])E[Z2]− a−2
n

n∑
t=1

(
σ2
itE[Z2

it1(|Xit| > εan) | σit]− E[X2
it1(|Xit| > εan)]

)
= I1 + I2 .

The sequence (σ2
it) satisfies the central limit theorem with normalization

√
n. This follows from

Ibragimov’s central limit theorem for strongly mixing sequence whose rate function (αh) satisfies
(3.1) and has moment E[σ2(2+δ))] <∞ (see (3.2)); cf. Doukhan [22], p. 45. We know that

√
n/a2

n →
0 for α ∈ (2, 4). Therefore I1

P→ 0. We also have

E[I2
2 ] ≤ n

a4
n

E
[
σ4(E[Z21(|X| > εan) | σ])2

]
+2

n

a4
n

n∑
h=1

|cov(σ2
i0E
[
Z2
i01(|X2

i0| > εan) | σi0], σ2
ihE
[
Z2
ih1(|X2

ih| > εan) | σih])|

= I3 + I4 .
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In view of the moment conditions on σ and since E[Z2] <∞, I3 ≤ c(n/a4
n)→ 0. In view of Doukhan

[22], Theorem 3 on p. 9, we have

I4 ≤ c
n

a4
n

n∑
h=1

α
δ/(2+δ)
h (E|σ|2(2+δ))2/(2+δ) → 0 .

Thus it suffices for (3.8) to prove

lim
ε↓0

lim sup
n→∞

P
(∣∣∣ n∑

t=1

(
σ2
itE[Z2

it1(|Xit| ≤ εan) | σit]−X2
it1(|Xit| ≤ εan)

)∣∣∣ > γ a2
n

)
= 0 , γ > 0 .

The summands are independent and centered, conditional on the σ-field generated by (σit)t=1,...,n.

An application of Čebyshev’s inequality conditional on this σ-field and Karamata’s theorem yield,
as n→∞,

E
[
P
(∣∣∣ n∑

t=1

(
σ2
itE[Z2

it1(|Xit| ≤ εan) | σit]−X2
it1(|Xit| ≤ εan)

)∣∣∣ > γ a2
n

∣∣(σis))]
≤ c a−4

n E
[ n∑
t=1

var(X2
it1(|Xit| ≤ εan) | σit) | (σis)

]
≤ c n ε4 E[|X/(εan)|41(|X| ≤ εan)]→ c ε4−α .

The right-hand side converges to zero as ε ↓ 0.
This proves that all assumptions of Theorem A.1 are satisfied. Therefore the random variables

on the left-hand side of (3.3) converge to an α-stable random vector with log-characteristic function∫ ∞
0

E
[
ei y t

′∑∞
j=0 Θ(2)

j − ei y t
′∑∞

j=1 Θ(2)

j − i y t′1(1,2)(α/2)
]
d(−yα/2)

=

p∑
j=1

1

p

∫ ∞
0

E
[
ei y tj − i y tj1(1,2)(α/2)

]
d(−yα/2) , t = (t1, . . . , tp)

′ ∈ Rp,

where we used (3.6) and that Θ
(2)
h = 0 for h ≥ 1. One easily checks that all summands in this

expression are homogeneous functions in tj of degree α/2. Therefore, the limiting random vector
in (3.3) has the same distribution as the sum

∑p
j=1 ejξj,α/2 for iid ξj,α/2 which are α/2-stable and

totally skewed to the right (because all the summands in Sj are non-negative). �

3.3. Eigenvalues of the sample covariance matrix. We have the following approximations:

Theorem 3.6. Assume that one of the following conditions holds:

(1) (Xit) is an iid field of regularly varying random variables with index α ∈ (0, 4). If E[|X|] <
∞ we also assume E[X] = 0.

(2) (Xit) is a stochastic volatility model (2.1) satisfying the regular variation, mixing and mo-
ment conditions of Theorem 3.3. If E[|Z|] <∞ we also assume E[Z] = 0.

Then, with Xn as in (2.3),

a−2
n ‖Xn(Xn)′ − diag(Xn(Xn)′)‖2

P→ 0 ,

where ‖ · ‖2 is the spectral norm and (an) is a sequence such that nP(|X| > an)→ 1.
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Proof. Part (1). Recall that for a p× p matrix A we have ‖A‖2 ≤ ‖A‖F , where ‖ · ‖F denotes the
Frobenius norm. Hence

a−4
n ‖Xn(Xn)′ − diag(Xn(Xn)′)‖22 ≤ a−4

n ‖Xn(Xn)′ − diag(Xn(Xn)′)‖2F
=

∑
1≤i 6=j≤p

(
a−2
n Sij

)2
.(3.9)

In view of the assumptions, (XitXjt)t=1,2,..., i 6= j, is an iid sequence of regularly varying random
variables with index α which is also centered if E[|X|] <∞. We consider two different cases.
The case α ∈ (0, 2). According to classical limit theory (see Feller [26], Petrov [36]) we have for

i 6= j, b−1
n Sij

d→ ξα, (see (2.3) for the definition of Sij) where ξα is an α-stable random variable
and (bn) is chosen such that nP(|X1X2| > bn)→ 1 for independent copies X1, X2 of X. Since (bn)
and (a2

n) are regularly varying with indices 1/α and 2/α, respectively, the right-hand side in (3.9)
converges to zero in probability.

The case α ∈ [2, 4). In this case the distribution of X1X2 is in the domain of attraction of the
normal law. Since X1X2 has mean zero we can apply classical limit theory (see Feller [26], Petrov

[36]) to conclude that b−1
n Sij

d→ N , where (bn) is regularly varying with index 1/2 and N is centered
Gaussian. Since bn/a

2
n → 0 we again conclude that the right-hand side of (3.9) converges to zero in

probability.

Part (2). We again appeal to (3.9). Let γ < min(2, α). Then we have for i 6= j, using the
independence of (XitXjt) conditional on ((σit, σjt)) and that the distribution of Z is centered if its
first absolute moments exists, that

a−2γ
n E

[∣∣Sij∣∣γ | ((σit, σjt))] ≤ c
n

a2γ
n

1

n

n∑
t=1

(σitσjt)
γ(E|Z|γ)2 ,

cf. von Bahr and Esséen [44] and Petrov [36], 2.6.20 on p. 82. In view of the moment condition (3.2)
we have E[(σiσj)

γ ] < ∞ and n/a2γ
n → 0 if we choose γ sufficiently close to min(2, α). Then the

right-hand side converges to zero in view of the ergodic theorem. An application of the conditional

Markov inequality of order γ yields a−2
n Sij

P→ 0 . This proves the theorem. �

Corollary 3.7. Assume that (Xit) is either

(1) an iid field of regularly varying random variables with index α ∈ (0, 4) and E[X] = 0 if
E[|X|] <∞, or

(2) a stochastic volatility model of regularly varying random variables with index α ∈ (0, 4)\{2}
satisfying the conditions of Theorem 3.6(2).

Then

a−2
n max

i=1,...,p

∣∣λ(i) − S(i)

∣∣ P→ 0 ,

where (λi) are the eigenvalues of Xn(Xn)′, λ(1) ≥ · · · ≥ λ(p) are their ordered values and S(1) ≥
· · · ≥ S(p) are the ordered values of S1, . . . , Sp defined in (2.3). In particular, we have

a−2
n

(
λ(1) − cn, . . . , λ(p) − cn

) d→
(
ξ(1),α/2, . . . , ξ(p),α/2

)
,(3.10)

where (cn) is defined in (3.4) for α 6= 2 and in Remark 3.4 for α = 2, (ξi,α/2) are iid α/2-stable
random variables given in Theorem 3.3 for the stochastic volatility model and in Remark 3.4 for the
iid field, and ξ(1),α/2 ≥ · · · ≥ ξ(p),α/2 are their ordered values.
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Proof. We have by Weyl’s inequality (see Bhatia [7]) and Theorem 3.6,

a−2
n max

i=1,...,p

∣∣λ(i) − S(i)

∣∣ ≤ a−2
n ‖Xn(Xn)′ − diag(Xn(Xn)′)‖2

P→ 0 .(3.11)

If (Xit) is an iid random field (see Remark 3.4) or a stochastic volatility model satisfying the
conditions of Theorem 3.6(2) we have (3.3). Then (3.11) implies (3.10). �

Remark 3.8. If α ∈ (2, 4) we have E[X2] <∞. Therefore (3.10) reads as

n

a2
n

(λ(i)

n
− E[X2]

)
i=1,...,p

d→ (ξ(i),α/2)i=1,...,p .(3.12)

We notice that n/a2
n → ∞ for α ∈ (2, 4) since (n/a2

n) is regularly varying with index 1 − 2/α. In
particular, if tr(Xn(Xn)′) denotes the trace of Xn(Xn)′ we have for i ≤ p,

λ(i)

tr(Xn(Xn)′)
=

λ(i)/n

(λ1 + · · ·+ λp)/n

P→ 1

p
.(3.13)

The joint asymptotic distribution of the ordered eigenvalues (λ(i)) is easily calculated from
the distribution of a totally skewed α/2-stable random variable ξ1,α/2; in particular, the limit of

(a−2
n (λ(1) − cn)) has the distribution of max(ξ1,α/2, . . . , ξp,α/2).
For applications, it is more natural to replace the random variables Xit by their mean-centered

versions Xit−Xi, where Xi = (1/n)
∑n
t=1Xit, instead of assuming that they have mean zero. The

previous results remain valid for the sample-mean centered random variables Xit, also in the case
when X has infinite first moment.

3.4. Some applications: Limit results for ordered eigenvalues and eigenvectors of the
sample covariance matrix. In what follows, we assume the conditions of Corollary 3.7.

3.4.1. Spacings. Using the joint convergence of the normalized ordered eigenvalues (λ(i)) we can
calculate the limit of the spectral gaps:(λ(i) − λ(i+1)

a2
n

)
i=1,...,p−1

d→
(
ξ(i),α/2 − ξ(i+1),α/2

)
i=1,...,p−1

.(3.14)

We notice that the ordered values ξ(i),α/2 and linear functionals thereof (such as ξ(i),α/2 −
ξ(i+1),α/2) are again jointly regularly varying with index α/2. This is due to the continuous mapping
theorem for regularly varying vectors; see Hult and Lindskog [28, 29], cf. Jessen and Mikosch [31].

3.4.2. Trace. For the trace of Xn(Xn)′ we have

a−2
n

(
tr(Xn(Xn)′)− p cn

)
= a−2

n

p∑
i=1

(Si − cn)

= a−2
n

p∑
i=1

(λi − cn)
d→ ξ1,α/2 + · · ·+ ξp,α/2

d
= p2/αξ1,α/2 .

Moreover, we have the joint convergence of the normalized and centered (λ(i)) and tr(Xn(Xn)′) =
λ1 + · · ·+ λp. In particular, we have the self-normalized limit relations( λ(i) − cn

tr(Xn(Xn)′)− p cn
)
i=1,...,p

d→
( ξ(i),α/2

ξ1,α/2 + · · ·+ ξp,α/2

)
i=1,...,p

,

and for α ∈ (2, 4), by the strong law of large numbers,

np

a2
n

( λ(i) − cn
tr(Xn(Xn)′)

)
i=1,...,p

d→
ξ(i),α/2

E[X2]
.
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3.4.3. Determinant. Since λi − cn are the eigenvalues of Xn(Xn)′ − cnIp, where Ip is the p × p
identity matrix, we obtain for the determinant

det
(
a−2
n (Xn(Xn)′ − cn Ip)

)
=

p∏
i=1

a−2
n (λ(i) − cn)

d→ ξ(1),α/2 · · · ξ(p),α/2 = ξ1,α/2 · · · ξp,α/2 .

For α ∈ (2, 4), we also have

1

a2
nc
p−1
n

(
det(Xn(Xn)′)− cpn

)
=

p∑
i=1

a−2
n

(
λ(i) − cn

) i−1∏
j=1

λ(j)

cn

d→
p∑
i=1

ξ(i),α/2 =

p∑
i=1

ξi,α/2
d
= p2/α ξ1,α/2 ,

where we used (3.12).

3.4.4. Eigenvectors. It is also possible to localize the eigenvectors of the matrix a−2
n Xn(Xn)′. Since

this matrix is approximated by its diagonal in spectral norm, one may expect that the unit eigen-
vectors of the original matrix are close to the canonical basis vectors. We can write

a−2
n Xn(Xn)′eLj = a−2

n S(j) eLj + εn W ,

where W is a unit vector orthogonal to eLj , Lj is the index of S(j) = SLj and

εn = a−2
n ‖
(
Xn(Xn)′ − S(j)

)
eLj‖`2

P→ 0 ,

from Theorem 3.6 and by equivalence of all matrix norms. According to Proposition A.1 in Benaych-
Georges and Peché [6], there is an eigenvalue a−2

n λ(j) of a−2
n Xn(Xn)′ in some εn-neighborhood of

a−2
n S(j). Define

Ωn = {a−2
n |λ(j) − λ(l)| > dn , l 6= j} ,

for dn = kεn for any fixed k > 1. Then limn→∞ P(Ωn) = 1 because of (3.14) and dn
P→ 0. Hence,

for large n, a−2
n λ(j) and a−2

n λ(l) have distance at least dn with high probability. Another application

of Proposition A.1 in [6] yields that the unit eigenvector V associated with a−2
n λ(j) satisfies the

relation

lim sup
n→∞

P
(
‖V − VLjeLj‖`2 > δ

)
≤ lim sup

n→∞
P
(
{‖V − VLjeLj‖`2 > δ} ∩ Ωn

)
+ lim sup

n→∞
P(Ωcn)

≤ lim sup
n→∞

P
(
{2 εn/(dn − εn) > δ} ∩ Ωn

)
= 1{2/(k−1)>δ} .

For any fixed δ > 0, the right-hand side is zero for sufficiently large k. Since both V and eLj are

unit eigenvectors this means that ‖V − eLj‖`2
P→ 0.

3.4.5. Sample correlation matrix. In Remark 3.8 we mentioned that we can replace the variables Xit

by their sample-mean centered versions Xit−Xi without changing the asymptotic theory. Similarly,
one may be interested in transforming the Xit as follows:

X̃it =
Xit −Xi

σ̂i
, σ̂2

i =

n∑
t=1

(Xit −Xi)
2 .



EIGENVALUES OF THE SAMPLE COVARIANCE MATRIX OF A STOCHASTIC VOLATILITY MODEL 13

Then the matrix

X̃n(X̃n)′ =
( n∑
t=1

X̃itX̃jt

)
i,j=1,...,p

,

is the sample correlation matrix. We write λ̃i, i = 1, . . . , p, for the eigenvalues of X̃n(X̃n)′ and

λ̃(1) ≥ · · · ≥ λ̃(p) for their ordered values.
We notice that the entries of this matrix are all bounded in modulus by one. In particular, the

diagonal consists of ones. We do not have a complete limit theory for the eigenvalues λ̃i. We restrict
ourselves to iid (Xit) to explain the differences.

Lemma 3.9. Assume that (Xit) is an iid field of random variables.

(1) If E[X2] <∞ then
√
n max
i=1,...,p

|λ̃i − 1| = OP(1) .

(2) If X is regularly varying with index α ∈ (0, 2) then

a2
n

bn
max
i=1,...,p

|λ̃i − 1| = OP(1) ,

where (an) and (bn) are chosen such that P(|X| > an) ∼ P(|X1X2| > bn) ∼ n−1 for iid
copies X1, X2 of X.

Remark 3.10. Notice that the lemma implies λ̃i
P→ 1 for i = 1, . . . , p, and the analog of relation

(3.13) remains valid.

Proof. Part(1) We assume without loss of generality that 1 = E[X2]. Then by classical limit theory,
√
n
(
X̃n(X̃n)′ − diag(X̃n(X̃n)′)

)
=
√
n
(
X̃n(X̃n)′ − Ip

)
=

(
1(i 6= j)

n−1/2
∑n
t=1(Xit −Xi)(Xjt −Xj)

(σ̂i/
√
n)(σ̂j/

√
n)

)
d→

(
Nij1(i 6= j)

)
,

where Nij , 1 ≤ i < j ≤ n, are iid N(0, 1) and Nij = Nji. By Weyl’s inequality,
√
n max
i=1,...,p

∣∣∣λ̃(i) − 1
∣∣∣ ≤ √n‖X̃n(X̃n)′ − Ip‖2 = OP(1) .

Part(2) If X is regularly varying with index α ∈ (0, 2), we have that (a−2
n σ̂2

i ) converges to a vector of

iid positive α/2-stable random variables (ξi), while for every i 6= j, b−1
n

∑n
t=1(Xit−Xi) (Xjt−Xj)

d→
ξij and the limit ξij is α-stable. Then by Weyl’s inequality

a2
n

bn
max
i=1,...,p

∣∣∣λ̃(i) − 1
∣∣∣ ≤ a2

n

bn
‖X̃n(X̃n)′ − Ip‖2 = OP(1) .

�

4. Case (2): σ dominates the tail

In this section we assume the conditions of Case (2); see Section 2.2. Our goal is to derive results
analogous to Case (1): regular variation of (Xit), infinite variance limits for Sij and limit theory for
the eigenvalues of the corresponding sample covariance matrices. It turns out that this case offers a
wider spectrum of possible limit behaviors and that we have to further distinguish our assumptions
about the distribution of η. So, in addition to (2.8) we assume that either

(4.1) E[eηα] =∞
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or

(4.2) lim
x→∞

P(η1 + η2 > x)

P(η1 > x)
= c ∈ (0,∞) ⇔ lim

x→∞

P(eη1 · eη2 > x)

P(eη1 > x)
= c ∈ (0,∞)

hold, where η1 and η2 are independent copies of η.

Remark 4.1. Following Cline [11], we call the distribution of a random variable η convolution
equivalent if eη is regularly varying and relation (4.2) holds. The assumptions (4.1) and (4.2) are
mutually exclusive, since the only possible finite limit c in (4.2) is given by c = 2E[eηα]; see Davis
and Resnick [21]. There are, however, regularly varying distributions of eη which satisfy E[eηα] <∞
but not (4.2). An example is given in Cline [11], p. 538; see also Lemma B.1(3) for a necessary and
sufficient condition ensuring (4.2).

As we will see later, relations (4.1) and (4.2) cause rather distinct limit behavior of the sam-
ple covariance matrix. In particular, (4.2) allows for non-vanishing off-diagonal elements of the
normalized sample covariance matrices, in contrast to Case (1).

For notational simplicity, define

ψ = max
k,l

ψkl and Λ = {(k, l) : ψkl = ψ} .

Recall that for convenience we assume that ψ = 1; if the latter condition does not hold we can
replace (without loss of generality) the random variables ηkl by ψηkl and the coefficients ψkl by
ψkl/ψ. For given (i, j), we define

(4.3) ψij = max
k,l

(ψkl + ψk+i−j,l) .

Notice that 1 ≤ ψij ≤ 2. For d ≥ 1, we write i = (i1, . . . , id), j = (j1, . . . , jd) for elements of Zd. For
given i and j we also define

ψi,j = max
1≤l≤d

ψil,jl .

4.1. Regular variation. We start by showing that the volatility sequences are regularly varying.

Proposition 4.2. Under the aforementioned conditions and conventions (including that either (4.1)
or (4.2) hold),

(1) each of the sequences (σit)t∈Z, i = 1, 2, . . ., is regularly varying with index α,
(2) each of the sequences (σitσjt)t∈Z, i, j = 1, 2, . . ., is regularly varying with corresponding

index α/ψij,
(3) For d ≥ 1 and i, j ∈ Z, the d-variate sequence ((σik,tσjk,t)1≤k≤d)t∈Z is regularly varying with

index α/ψi,j.

Remark 4.3. Part (3) of the proposition possibly includes degenerate cases in the sense that for
some choices of (ik, jk), (σik,tσjk,t) is regularly varying with index α/ψik,jk > α/ψi,j.

Part (3) implies (2) in the case d = 1. Part (2) implies (1) by setting i = j and observing that,
by non-negativity of σ, regular variation of (σ2

it) with index α/2 is equivalent to regular variation
of (σit) with index α.

Proof. To give some intuition we start with the proof of the marginal regular variation of σ, although
it is just a special case of (1). We have

σit = e
∑

(k,l)∈Λ ηi−k,t−l e
∑

(k,l) 6∈Λ ψklηi−k,t−l =: σit,Λσit,Λc .(4.4)

We first verify that σ = σΛσΛc is regularly varying with index α. Since |Λ| <∞ by our assumptions,
and in view of Embrechts and Goldie [24], Corollary on p. 245, cf. also Lemma B.1(1) below, the
product σΛ is regularly varying with index α. The random variable σΛc is independent of σΛ.
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Similarly to Mikosch and Rezapour [34] (see also the end of this proof for a similar argumentation)
one can show that σΛc has moment of order α + ε for sufficiently small positive ε. Therefore, by
Breiman’s lemma [8],

P(σ > x) ∼ E[σαΛc ]P(σΛ > x) , x→∞ .

This proves regular variation with index α of the marginal distributions of (σit).
In the remainder of the proof we focus on (3). For a given choice of i, j, t ∈ Zd, we write

(4.5) Λi,j,t = {(m,n) : ψil−m,tl−n + ψjl−m,tl−n = ψi,j for some 1 ≤ l ≤ d}.

We will show that the random vector (σi1,t1σj1,t1 , . . . , σid,tdσjd,td) =: σ′ is regularly varying with
index α/ψi,j which proves (3). Note that

σi,tσj,t =
∏
(k,l)

exp(ψklηi−k,t−l)
∏

(k′,l′)

exp(ψk′l′ηj−k′,t−l′)

=
∏

(m,n)

exp((ψi−m,t−n + ψj−m,t−n)ηm,n)

and write

σ = diag




∏
(m,n)∈Λci,j,t

eηm,n(ψi1−m,t1−n+ψj1−m,t1−n)

...∏
(m,n)∈Λci,j,t

eηm,n(ψid−m,td−n+ψjd−m,td−n)


′ ·


∏

(m,n)∈Λi,j,t

eηm,n(ψi1−m,t1−n+ψj1−m,t1−n)

...∏
(m,n)∈Λi,j,t

eηm,n(ψid−m,td−n+ψjd−m,td−n)


=: A Z,

(4.6)

where diag((a1, . . . , ak)) is any diagonal matrix with diagonal elements a1, . . . , ak. We notice that
A and Z are independent.

Consider iid copies (Yj) of eη. There exist suitable numbers (aij)1≤i≤d,1≤j≤p with p = |Λi,j,t|
such that the components of Z have representation in distribution

∏p
j=1 Y

aij
j , 1 ≤ i ≤ d. By

assumption, Yj is regularly varying with index α and satisfies either assumption (B.7) or E[Y αj ] =∞.

Furthermore, for each j there exists one 1 ≤ i ≤ d such that aij = amax = ψi,j by the definition of
Λi,j,t. An application of Proposition B.3 shows that Z is regularly varying with index α/ψi,j and
limit measure µZ which is given as µ in Proposition B.3 (ii) (if (4.1) holds) or Proposition B.3 (i)
(if (4.2) holds). Now, choose ε, δ > 0 such that

ψil−m,tl−n + ψjl−m,tl−n
ψi,j

(1 + δ) < 1− ε, (m,n) ∈ Λci,j,t, 1 ≤ l ≤ d,

which is possible by the definition of Λi,j,t and the summability constraint on the coefficients. Then
we have

E
[
‖A‖α(1+δ)/ψi,j

op

]
≤

d∑
l=1

∏
(m,n)∈Λci,j,t

E
[
eηm,nα(1+δ)(ψil−m,tl−n+ψjl−m,tl−n)/ψi,j

]

≤
d∑
l=1

∏
(m,n)∈Λci,j,t

E
[
eηm,nα(1−ε)

](1+δ)(ψil−m,tl−n+ψjl−m,tl−n)/((1−ε)ψi,j)

<∞,
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where we used Jensen’s inequality for the penultimate step and the summability condition of the
coefficients for the final one. Thus we have verified all conditions of the multivariate Breiman
lemma in Basrak et al. [3], implying that σ inherits regular variation from Z with corresponding
index α/ψi,j and limit measure µσ(·) = E[µZ(A−1·)]. �

Proposition 4.4. Assume that the aforementioned conditions (including either (4.1) or (4.2)) hold
and that in addition E[|Z|α+δ] <∞ for some δ > 0. Then the following statements hold:

(1) Each of the sequences (Xit)t∈Z, i ∈ Z, is regularly varying with index α.

If (4.1) holds then the corresponding spectral tail process satisfies Θi
t = 0 a.s., t ≥ 1, and

P(Θi
0 = ±1) = E[Zα±]/E[|Z|α].

If (4.2) holds, then for any Borel set B = B0 × · · · ×Bn ⊂ Rn+1,

P((Θi
t)t=0,...,n ∈ B) =

∑
(u,v)∈Λ

(0)
i

1

|Λ(0)
i |

E
[
1

((
1((u, v) ∈ Λ

(t)
i ) Xit
|Xi0|

)
t=0,...,n

∈ B
)
|Xi0|α

]
E[|Xi0|α]

,(4.7)

where Λ
(t)
i = {(u, v) : ψi−u,t−v = 1}, t = 0, . . . , n.

(2) Each of the sequences (XitXjt)t∈Z, i, j ∈ Z, is regularly varying with index α/ψij.

If (4.1) holds then the corresponding spectral tail process satisfies Θij
t = 0 a.s., t ≥ 1, and

P(Θij
0 = ±1) = E[(ZiZj)

α/ψij

± ]/E[|ZiZj |α/ψ
ij

].

If (4.2) holds, then for any Borel set B = B0 × · · · ×Bn ⊂ Rn+1,

P((Θij
t )t=0,...,n ∈ B)

=
∑

(u,v)∈Λ
(0)
i,j

1

|Λ(0)
i,j |

E
[
1

((
1((u, v) ∈ Λ

(t)
i,j )

XitXjt
|Xi0Xj0|

)
t=0,...,n

∈ B
)
|Xi0Xj0|α/ψ

ij

]
E[|Xi0Xj0|α/ψij ]

,(4.8)

where Λ
(t)
i,j = {(u, v) : ψi−u,t−v + ψj−u,t−v = ψij}, t = 0, . . . , n.

(3) For d ≥ 1 and i, j ∈ Zd, the d-variate sequence ((XiktXjkt)1≤k≤d)t∈Z is jointly regularly
varying with index α/ψi,j.

Remark 4.5. (1) Equation (4.7) shows that in this case the distribution of (Θi
t)t≥0 is a mixture

of |Λ(0)
i | distributions, where each distribution gets the weight 1/|Λ(0)

i |. Heuristically speak-

ing, a distribution in this mixture that corresponds to a specific (u, v) ∈ Λ
(0)
i has interpreta-

tion as the distribution of (Xit/|Xi0|)t≥0, given that we have seen an extreme observation of

|Xi0| caused by an extreme realization of eηu,v . The variables eηu,v , (u, v) ∈ Λ
(0)
i , are those

which have a maximum exponent (equal to 1) in the product
∏

(u,v) exp(ψi−u,−vηu,v) = σi0.

They are therefore the factors which are most likely to make σi0, hence Xi0, extreme.
An analogous interpretation can be derived from (4.8) for the distribution of (Θij

t )t≥0.
(2) Note that for fixed i, j, the inner indicator functions in (4.7) and (4.8) are positive only for

finitely many t. Hence there are only finitely many t ≥ 1 such that P(Θi
t 6= 0) > 0 and

P(Θ
(ij)
t 6= 0) > 0.

(3) Using similar techniques as in the proof of cases (1) and (2) below, one can also give an ex-
plicit expression for the resulting d-dimensional spectral tail process of ((XiktXjkt)1≤k≤d)t∈Z
in (3). However, due to its complexity, we refrain from stating it here.
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Proof. We start by showing that all mentioned sequences are regularly varying. Exemplarily, we
show this for case (2). Very similar arguments can be used for the two other cases. For n ≥ 0 write

(XitXjt)
′
t=0,...,n = diag

(
(ZitZjt)

′
t=0,...,n

)
· (σitσjt)′t=0,...,n .

Since ψij ≥ 1 our moment assumption on Z implies that E[|Z|α/ψij+δ] < ∞ for some δ > 0. Then
Proposition 4.2 allows us to apply the aforementioned multivariate Breiman lemma, yielding the
regular variation of the vector (XitXjt)t=0,...,n with index α/ψij . From the first definition given in
Section 2.3, this implies the regular variation of the sequence.

As for the derivation of the explicit form of the spectral tail process in (1) and (2), we restrict

ourselves to derive the distribution of the spectral tail process (Θij
t )t≥0 in part (2); part (1) is

similar.
If µσij

n denotes the vague limit measure of (σi,0σj,0, . . . , σi,nσj,n)′ the multivariate Breiman lemma

yields the vague limit measure µXij

n of (Xi,0Xj,0, . . . , Xi,nXj,n)′ given by

µXij

n (B) = cE
[
µσij

n (×nt=0(Bt/(ZitZjt)))
]

= cE

µ̃σij

n

×nt=0

Bt/
ZitZjt ∏

(u,v)∈Λci,j,n

eηu,v(ψi−u,t−v+ψj−u,t−v)

(4.9)

for any µXij

n -continuity Borel set B = ×nt=0Bt ∈ [−∞,∞]n+1 \ {0} bounded away from 0, Λi,j,n is

equal to Λi,j,t as defined in (4.5) with i = (i, . . . , i), j = (j, . . . , j), t = (0, . . . , n), and µ̃σij

n is the
limit measure of the regularly varying vector

( ∏
(u,v)∈Λi,j,n

eηu,v (ψi−u,t−v+ψj−u,t−v)
)
t=0,...,n

,(4.10)

see the proof of Proposition 4.2. The distribution of the tail process of (XitXjt) (cf. Section 2.3) is
then determined by

P((YΘij
t )t=0,...,n ∈ B) = lim

x→∞

P((XitXjt/x)t=0,...,n ∈ B, |Xi0Xj0|/x > 1)

P(|Xi0Xj0|/x > 1)
(4.11)

=
µXij

n (B ∩
(
[−∞,∞]\[−1, 1]× [−∞,∞]n)

)
µXij

n

(
[−∞,∞]\[−1, 1]× [−∞,∞]n

) .

The concrete forms of µ̃σij

n , hence of µXij

n , now depend on whether (4.1) or (4.2) holds.

We first assume (4.1). Note that Λi,j,n = ∪nt=0Λ
(t)
i,j , where Λ

(t)
i,j = {(u, v) : ψi−u,t−v + ψj−u,t−v =

ψij}. Indeed, we easily see that Λ
(t)
i,j = Λ

(0)
i,j + (0, t), t = 1, . . . , n. We apply Proposition B.3(ii)

to derive the specific form of the limit measure µ̃σij

n of (4.10). Each component of this vector

contains |Λ(0)
i,j | factors with maximal exponent ψij . For the t-th component, those are the factors

exp(ηu,v(ψi−u,t−v + ψj−u,t−v)), (u, v) ∈ Λ
(t)
ij . Hence peff = |Λ(0)

i,j | and Peff = {Λ(0)
i,j + (0, t), t =
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0, . . . , n}. By (B.12), the measure µ̃σij

n , up to a constant multiple, is given by

µ̃σij

n (B) = c

n∑
s=0

∫ ∞
0

P
((

1(ψi−u,t−v + ψj−u,t−v = ψij ∀ (u, v) ∈ Λ
(s)
i,j )zψ

ij

∏
(u,v)∈Λi,j,n\Λ(s)

i,j

eηu,v(ψi−u,t−v+ψj−u,t−v)

)
0≤t≤n

∈ B
)
να(dz)

= c

n∑
s=0

∫ ∞
0

P
((

1(t = s)zψ
ij ∏

(u,v)∈Λi,j,n\Λ(s)
i,j

eηu,v(ψi−u,t−v+ψj−u,t−v)

)
0≤t≤n

∈ B
)
να(dz),

where να(dx) = αx−α−1dx. The s-th measure in the sum above is concentrated on the s-th axis.

Therefore the limit measure µ̃σij

n is concentrated on the axes. By (4.9), this implies that µXij

n is

concentrated on the axes as well. Therefore µXij

n (B ∩ ([−∞,∞]\[−1, 1]) × [−∞,∞]n) = 0 as soon

as one Bi, 1 ≤ i ≤ n, in B = ×ni=0Bi is bounded away from 0. With (4.11) this gives YΘij
t = 0 a.s.

for t ≥ 1 and therefore Θij
t = 0 a.s. for t ≥ 1. The law of Θij

0 follows from the univariate Breiman
lemma.

Next assume (4.2). By Proposition B.3(i), the vague limit measure µ̃σij

n is up to a constant given
by

µ̃σij

n (B)

=
∑

(u,v)∈Λi,j,n

∫ ∞
0

P
((

1((u, v) ∈ Λ
(t)
i,j )z

ψij
∏

(ũ,ṽ)∈Λi,j,n
(ũ,ṽ)6=(u,v)

e(ψi−ũ,t−ṽ+ψj−ũ,t−ṽ)ηũ,ṽ

)
t=0,...,n

∈ B
)
να(dz).

For sets B such that B ∩ ({0} × [−∞,∞]n) = ∅ it suffices thereby to sum only over (u, v) ∈ Λ
(0)
i,j

instead over all (u, v) ∈ Λi,j,n = ∪nt=0Λ
(t)
i,j . For these sets we have by Breiman’s lemma (cf. (4.9)),

µXij

n (B)/c

=
∑

(u,v)∈Λ
(0)
i,j

∞∫
0

P
(

(1((u, v) ∈ Λ
(t)
i,j )z

ψij
∏

(ũ,ṽ) 6=(u,v)

e(ψi−ũ,t−ṽ+ψj−ũ,t−ṽ)ηũ,ṽZitZjt)t=0,...,n ∈ B
)
να(dz)

=
∑

(u,v)∈Λ
(0)
i,j

∞∫
0

P
(

(1((u, v) ∈ Λ
(t)
i,j )z

ψijXitXjte
−ψijηu,v )t=0,...,n ∈ B

)
να(dz),

where we used that if (u, v) ∈ Λ
(t)
i,j , then∏

(ũ,ṽ) 6=(u,v)

e(ψi−ũ,t−ṽ+ψj−ũ,t−ṽ)ηũ,ṽ =
σitσjt

e(ψi−u,t−v+ψj−u,t−v)ηu,v
=

σitσjt

eψ
ijηu,v

.

Fubini’s Theorem and a substitution finally simplify this expression to∑
(u,v)∈Λ

(0)
i,j

E
[∫ ∞

0

1

((
1((u, v) ∈ Λ

(t)
i,j )z

ψijXitXjte
−ψijηu,v

)
t=0,...,n

∈ B
)
να(dz)

]

=
∑

(u,v)∈Λ
(0)
i,j

E

[∫ ∞
0

1

((
1((u, v) ∈ Λ

(t)
i,j )y

XitXjt

|Xi0Xj0|

)
t=0,...,n

∈ B

)
|Xi0Xj0|α/ψ

ij

e−αηu,vν α

ψij
(dy)

]
.
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Note that the range of the inner integral in the last expression can be changed from (0,∞) to (1,∞),
if B ∩ [−1, 1]× [−∞,∞]n = ∅. Therefore, by writing

B̃0 = B0 \ [−1, 1] , B̃t = Bt, t ≥ 1, B̃ = ×nt=0B̃t ,

we get from (4.11) that

P
(
(YΘij

t )t=0,...,n ∈ B
)

=
µXij

n (B̃)

µXij

n (([−∞,∞]\[−1, 1])× [−∞,∞]n)

=

∑
(u,v)∈Λ

(0)
i,j

E
[∫∞

1
1

((
1((u, v) ∈ Λ

(t)
i,j )y

XitXjt
|Xi0Xj0|

)
t=0,...,n

∈ B
)
|Xi0Xj0|α/ψ

ij

e−αηu,vν α

ψij
(dy)

]
∑

(u,v)∈Λ
(0)
i,j

E
[
|Xi0Xj0|α/ψije−αηu,v

]

=
∑

(u,v)∈Λ
(0)
i,j

1

|Λ(0)
i,j |

E
[
1

((
1((u, v) ∈ Λ

(t)
i,j )Y

XitXjt
|Xi0Xj0|

)
t=0,...,n

∈ B
)
|Xi0Xj0|α/ψ

ij

]
E
[
|Xi0Xj0|α/ψij

] ,

where Y is a Pareto(α/ψij) random variable, independent of all other random variables in the
expression. For the last equation, we expanded both numerator and denominator by multiplying

with E(eαηu,v ), noting that for (u, v) ∈ Λ
(0)
i,j the random variable eαηu,v is independent both of the

indicator function and of |Xi0Xj0|α/ψ
ij

e−αηu,v . From the law of the tail process (YΘij
t ) we can now

see that the law of the spectral tail process (Θij
t ) satisfies (4.8). �

4.2. Infinite variance stable limit theory for the stochastic volatility model and its
product processes. In the following result we provide central limit theory with infinite variance
stable limits for the sums Sij ; see (2.3).

Theorem 4.6. We consider the stochastic volatility model (2.1) and assume the special form of (σit)
given in (2.7) with ψ = 1. For given (i, j), define a sequence (bn) such that nP(|Xi0Xj0| > bn)→ 1
as n→∞. Assume the following conditions:

(1) The conditions of Proposition 4.4 hold, ensuring that E[|Z|α/ψij+ε] < ∞ for some ε > 0

and (XitXjt) is regularly varying with index α/ψij and spectral tail process (Θij
h ).

(2) (σitσjt) is α-mixing with rate function (αh) and there exists δ > 0 such that αn = o(n−δ).
(3) Either
(i) α/ψij < 1, or
(ii) i 6= j, α/ψij ∈ [1, 2) and Z is symmetric, or

(iii) i = j, α/ψii = α/2 ∈ (1, 2) and the mixing rate in (2) satisfies supn n
∑∞
h=rn

αh < ∞ for

some integer sequence (rn) such that nrn/b
2
n → 0 as n→∞.

Then

b−1
n (Sij − cn)

d→ ξij,α/ψij ,(4.12)

where ξij,α/ψij is a totally skewed to the right α/ψij-stable random variable and

cn =

{
nE[X2] i = j and α ∈ (2, 4) ,
0 i 6= j or α/ψij < 1 ,
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Remark 4.7. (1) If (αh) decays at an exponential rate one can choose rn = C log n for a
sufficiently large constant C. Then supn n

∑∞
h=rn

αh < ∞ and nrn/b
2
n → 0 hold. These

conditions are also satisfied if αh ≤ cn−(1+γ) for some γ > 0, rn = Cnξ for some ξ > 0 and
1/γ ≤ ξ < 2ψij/α− 1.

(2) The sequence (XitXjt) inherits α-mixing from (σitσjt); see Remark 3.5.
(3) It is possible to prove joint convergence for 1 ≤ i, j ≤ p in (4.12). Due to different tail

behavior for distinct (i, j) the normalizing sequences (bn) = (bijn ) typically increase to infinity
at different rates. Then it is only of interest to consider the joint convergence of those
Sij whose summands XitXjt have the same tail index α/ψij . More precisely, it suffices
to consider those Sij with the property that XitXjt is tail-equivalent to X2

it. The joint
convergence follows in a similar way as in the proof below, by observing that Theorem A.1
is a multivariate limit result. The joint limit of Sij in (4.12) with equivalent tails of index
α̃ (say) is jointly α̃-stable with possible dependencies in the limit vector.

(4) The strongest normalization is needed for Si = Sii. Recall that the summands X2
it of Si are

regularly varying with index α/2, i.e., ψii = 2. Let (an) be such that nP(|X| > an) → 1.

Under the conditions of Theorem 4.6, we have that a−2
n (Si − cn)

d→ ξi,α/2, i = 1, . . . , p for a

jointly α/2-stable limit. If α/2 < α/ψij for some i 6= j, then bn/a
2
n → 0, hence a−2

n Sij
P→ 0.

It is possible that XitXjt is regularly varying with index α/2 but nevertheless bn/a
2
n → 0;

see Example 4.8 which deals with the case E[eαη] =∞.

Proof. We apply Theorem A.1 to the sequence (XitXjt), cf. also Remark A.2.

(1) The regular variation condition on (XitXjt) with index α/ψij is satisfied by assumption. More-
over, Θh = 0 for sufficiently large h; see Remark 4.5.

(2) The assumption about the mixing coefficients in condition (2) implies that for a sufficiently small
ε ∈ (0, 1) and mn = n1−ε there exists an integer sequence ln = o(mn) such that knαln → 0. For
this choice of mn and ln, the proof of the mixing condition for the sums of the truncated variables

Sij =

n∑
t=1

XitXjt1(|XitXjt| > εbn)

is now analogous to the proof of the corresponding property in Theorem 3.3.

(3) We want to show that

lim
l→∞

lim sup
n→∞

n

mn∑
t=l

P
(
|XitXjt| > bn , |Xi0Xj0| > bn

)
= 0(4.13)

for mn = n1−ε as above. Write

σitσjt =
∏

(m,n)

exp((ψi−m,t−n + ψj−m,t−n)ηm,n)

and set Λε,t = {(m,n) : ψi−m,t−n + ψj−m,t−n ≥ 8−1ψijε}, t ∈ Z. Without loss of generality we
assume that l is so large that Λε,t ∩ Λε,0 is empty for all t ≥ l. Then write for t ≥ l,

σitσjt = σit,jt,Λε,t · σit,jt,Λε,0 · σit,jt,Λcε,0,t , σi0σj0 = σi0,j0,Λε,0 · σi0,j0,Λε,t · σi0,j0,Λcε,0,t ,

where

σit1,jt1,Λε,t2 =
∏

(m,n)∈Λε,t2

exp((ψi−m,t1−n + ψj−m,t1−n)ηm,n).
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We conclude that (σit,jt,Λε,t ,σit,jt,Λε,0 , σi0,j0,Λε,0 , σi0,j0,Λε,t) and (σit,jt,Λcε,0,t ,σi0,j0,Λcε,0,t) are inde-

pendent. We have

P
(
|XitXjt| > bn , |Xi0Xj0| > bn

)
≤ P

(
max(|Zi0Zj0|, |ZitZjt|) max(σit,jt,Λcε,0,t , σi0,j0,Λcε,0,t)

min(σi0,j0,Λε,0σi0,j0,Λε,t , σit,jt,Λε,tσit,jt,Λε,0) > bn
)
.

The distribution of max(σit,jt,Λcε,0,t , σi0,j0,Λcε,0,t) is stochastically dominated uniformly for t ≥ l by a

distribution which has moment of order 8α/(ψijε) > 2α/ψij . Furthermore,

min(σi0,j0,Λε,0σi0,j0,Λε,t , σit,jt,Λε,tσit,jt,Λε,0)

≤ min
( ∏

(m,n)∈Λε,0∪Λε,t

exp((ψi−m,−n + ψj−m,−n)(ηm,n)+),

∏
(m,n)∈Λε,0∪Λε,t

exp((ψi−m,t−n + ψj−m,t−n)(ηm,n)+)
)

≤ min
( ∏

(m,n)∈Λε,0

exp(ψij(ηm,n)+)
∏

(m′,n′)∈Λε,t

exp(8−1ψijε(ηm′,n′)+),

∏
(m′,n′)∈Λε,t

exp(ψij(ηm′,n′)+)
∏

(m,n)∈Λε,0

exp(8−1ψijε(ηm,n)+)
)

≤ min
( ∏

(m,n)∈Λε,0

exp((ψij + 8−1ψijε)(ηm,n)+),
∏

(m,n)∈Λε,t

exp((ψij + 8−1ψijε)(ηm,n)+)
)
.

The right-hand side is regularly varying with index 2α/(ψij(1 + 8−1ε)). A stochastic domination
argument and an application of Breiman’s lemma show that uniformly for l ≤ t ≤ mn,

mn nP
(
|XitXjt| > bn , |Xi0Xj0| > bn

)
= n2−εo

(
b−2α/(ψij(1+4−1ε))
n

)
= n2−εo(n−2/(1+2−1ε)) = o(1)

which yields (4.13).

(4) We check the vanishing small values condition. For any fixed δ, we write

XitXjt = XitXjt1(|XitXjt| ≤ δbn) , i 6= j ,

X2
it = X2

it1(X2
it ≤ δbn)− E[X2

it1(X2
it ≤ δbn)] ,

Sij =

n∑
t=1

XitXjt , Si = Sii .

Assume α/ψij ∈ [1, 2), i 6= j. Then, by symmetry of the random variables Zit and Karamata’s
theorem for any γ > 0 as n→∞, E[Sij ] = 0 and

P(|Sij | > γbn) ≤ (γbn)−2var(Sij)

= n (γbn)−2E[(XitXjt)
2]

∼ γ−2 δ2−α ,

and the right-hand side converges to zero as δ ↓ 0.
For i = j and α/ψii > 1 we need a different argument. We have by Čebyshev’s inequality,

P(|Si| > γ bn) ≤ γ−2b−2
n var

(
Si
)

= γ−2 (n/b2n)
∑
|h|<n

(1− h/n) cov(X2
i0, X

2
ih) .
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For |h| ≤ h0 for any fixed h0, (n/b2n)|cov(X2
i0, X

2
ih)| vanishes by letting first n→∞ and then δ ↓ 0.

This follows by Karamata’s theorem. Standard bounds for the covariance function of an α-mixing
sequence (see Doukhan [22], p. 3) yield

(n/b2n)
∑

rn≤|h|<n

|cov(X2
i0, X

2
ih)| ≤ c δ2n

∑
rn≤|h|<n

αh ,

where rn → ∞ is chosen such that supn n
∑
rn≤|h|<∞ αh < ∞ and nrn/b

2
n → 0. The right-hand

side converges to zero by first letting n→∞ and then δ ↓ 0. It remains to show that

In = (n/b2n)
∑

h0<|h|≤rn

(1− h/n) cov(X2
i0, X

2
ih)

is asymptotically negligible. We have

|In| ≤ (n/b2n)
∑

h0<|h|≤rn

E[X2
i0X

2
ih1(X2

i0 ≤ δbn, X2
ih ≤ δbn)] + c n rn/b

2
n

≤ (n/b2n)
∑

h0<|h|≤rn

E[X2
i0X

2
ih] + o(1) ,

where we used that n rn/b
2
n → 0. We will show that the summands on the right-hand side are

uniformly bounded by a constant if h0 is sufficiently large. Then limn→∞ In = 0.
We observe that by Hölder’s inequality,

E[X2
i0X

2
ih] = cE[σ2

i0 σ
2
ih]

= cE
[
e
2
∑

(k,l)∈Γξ
ψkl(ηi−k,−l+ηi−k,h−l)e

2
∑

(k,l)6∈Γξ
ψkl(ηi−k,−l+ηi−k,h−l)]

≤ c
(
E
[
e
2r

∑
(k,l)∈Γξ

ψkl(ηi−k,−l+ηi−k,h−l)])1/r(E[e2s
∑

(k,l)6∈Γξ
ψkl(ηi−k,−l+ηi−k,h−l)])1/s ,

where Γξ = {(k, l) : ψik > ξ} for some positive ξ, s, t such that 1/r+1/s = 1. Since σ2
i0 has moments

up to order α/ψii ∈ (1, 2) and (ηi−k,−l)(k,l)∈Γξ and (ηi−k,h−l)(k,l)∈Γξ are independent for sufficiently

large h we can choose r > 1 close to one such that E
[
e2r

∑
(k,l)∈Γξ ψkl(ηi−k,−l+ηi−k,h−l)

]
is finite. This

implies that we choose s sufficiently large. On the other hand, for fixed s we can make ξ so small

that E
[
e2s

∑
(k,l) 6∈Γξ ψkl(ηi−k,−l+ηi−k,h−l)

]
is finite and uniformly bounded for sufficiently large h. Fine

tuning ξ and s, we may conclude that limn→∞ In = 0 as desired.
By Theorem A.1 and Remark A.2 the result now follows; see also the end of the proof of Theo-

rem 3.3 for the form of the resulting limit law. �

Example 4.8. We assume that E[eαη] =∞, hence e2η does not have a finite α/2-th moment. Using
Lemma B.1(5), calculation shows that for i 6= j with ψij = 2,

lim
x→∞

P(|Xi0Xj0| > x)

P(X2 > x)
= 0(4.14)

Define (an) such that nP(|X| > an) → 1. We may conclude from (4.14) and Theorem 4.6 that for

i 6= j we have a−2
n Sij

P→ 0 although both Xi0Xj0 and X2 are regularly varying with index α/2.
By Theorem 4.6 and Remark 4.7 we conclude that

a−2
n (Si − cn)i=1,...,p

d→ (ξi,α/2)i=1,...,p ,(4.15)

where the limit vector consists of α/2-stable components. The spectral tail process (Θh)h≥1 of the
sequence Xt = (X1t, . . . , Xpt)

′, t = 1, 2, . . ., vanishes. This follows by an argument similar to the
proofs of Propositions 4.4 and B.3 under condition (4.1). A similar argument also yields that

lim
x→∞

P(|Xi0| > x , |Xj0| > x)

P(|X| > x)
= 0 , i 6= j .
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Therefore the the distribution of Θ0 is concentrated on the axes and has the same form as Θ
(2)
0 in

(3.6). As in the proof of Theorem 3.3 this implies that the limit random vector in (4.15) has iid
components.

We conclude that the limit theory for Sij , 1 ≤ i, j ≤ p, are very essentially the same in Case (1)
and in Case (2) when the additional condition E[eαη] =∞ holds.

Example 4.9. Assume that (4.2) holds. We may conclude from Theorem 4.6 that a−2
n Sij

P→ 0 for
i 6= j if ψij < 2. The crucial difference to the previous case appears when ψij = 2 for some i 6= j. In
this case, not only the (a−2

n (Si− cn)), i = 1, 2, . . . , have totally skewed to the right α/2-stable limits

but we also have a−2
n Sij

d→ ξij,α/2 for non-degenerate α/2-stable ξij,α/2. From (4.3) we conclude

that if ψij = 2 appears then ψi
′j′ = 2 for all |i′−j′| = |i−j|. This means that non-degenerate limits

may appear not only on the diagonal of the matrix a−2
n (Sij − cn) but also along full sub-diagonals.

In this case, the distribution of Θ0 from the spectral tail process of the sequence Xt = (X1t, . . . , Xpt)
′

does not have to be concentrated on the axes—in contrast to Example 4.8. This implies that the
limiting α/2-stable random variables ξi,α/2, i = 1, . . . , p, are in general not independent. However,
similar to the arguments at the end of the proof of Theorem 3.3, one can show that the distribution
of the limiting random vector (ξi,α/2)i=1,...,p is the convolution of distributions of α/2-stable random
vectors which concentrate on hyperplanes of Rp of dimension less or equal than |{(m,n) : ψmn = 1}|.
4.3. The eigenvalues of the sample covariance matrix of a multivariate stochastic volatil-
ity model. In this section we provide some results for the eigenvalues of the sample covariance
matrix Xn(Xn)′ under the conditions of Theorem 4.6. We introduce the sets

Γp = {(i, j) : 1 ≤ i, j ≤ p such that ψij = 2} , Γcp = {(i, j) : 1 ≤ i, j ≤ p}\Γp

and let (an) be such that nP(|X| > an)→ 1.

Theorem 4.10. Assume that the conditions of Theorem 4.6 hold for (Xit, Xjt), 1 ≤ i, j ≤ p, and
α ∈ (0, 4). Then

a−2
n

∥∥Xn(Xn)′ − X̃n
∥∥

2

P→ 0 , n→∞ ,

where X̃n is a p× p matrix with entries

X̃ij =

n∑
t=1

XitXjt1((i, j) ∈ Γp) , 1 ≤ i, j ≤ p .

Moreover, if E[eαη] =∞ we also have

a−2
n

∥∥Xn(Xn)′ − diag(Xn(Xn)′)
∥∥

2

P→ 0 , n→∞ .

Proof. We have

a−4
n

∥∥Xn(Xn)′ − X̃n
∥∥2

2
≤

∑
(i,j)∈Γcp

(
a−2
n Sij

)2
.

For (i, j) ∈ Γcp we have i 6= j and the sequence (XitXjt) is regularly varying with index α/ψij > α/2.
In view of Theorem 4.6 the right-hand side converges to zero in probability.

In the case when E[eαη] = ∞ we learned in Example 4.8 that a−2
n Sij

P→ 0 whenever i 6= j. This
concludes the proof. �

For any p × p non-negative definite matrix A write λi(A), i = 1, . . . , p, for its eigenvalues and
λ(1)(A) ≥ · · · ≥ λ(p)(A) for their ordered values. For the eigenvalues of Xn(Xn)′ we keep the
previous notation (λi),
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Corollary 4.11. Assume the conditions of Theorem 4.10 and α ∈ (0, 4)\{2}. Then

a−2
n max

i=1,...,p

∣∣λ(i) − λ(i)(X̃
n)
∣∣ P→ 0 .(4.16)

and

a−2
n

(
λ(i) − nE[X2]1(α ∈ (2, 4))

)
i=1,...,p

d→
(
λ(i)

(
(ξkl,α/21((k, l) ∈ Γp))1≤k,l≤p

))
i=1,...,p

,

(4.17)

where (ξij,α/2)(i,j)∈Γp are jointly α/2-stable (possibly degenerate for i 6= j) random variables. More-
over, in the case when E[eαη] =∞ we have

a−2
n

(
λ(i) − nE[X2]1(α ∈ (2, 4))

)
i=1,...,p

d→
(
ξ(i),α/2

)
i=1,...,p

,(4.18)

where (ξi,α/2)i=1,...,p are iid totally skewed to the right α/2-stable random variables with order sta-
tistics ξ(1),α/2 ≥ · · · ≥ ξ(p),α/2.

Proof. Relation (4.16) is an immediate consequence of Theorem 4.10 and Weyl’s inequality; see
Bhatia [7]. We conclude from Theorem 4.6 and Remark 4.7(3) that

a−2
n

(
Sij − nE[X2] 1(α ∈ (2, 4))

)
(i,j)∈Γp

d→
(
ξij,α/2

)
(i,j)∈Γp

.(4.19)

Then (4.17) follows. Relation (4.18) is a special case of (4.17). If E[eαη] = ∞ then, in view of
Example 4.8, only the diagonal elements in (4.19) have non-degenerate iid α/2-stable limits. �

Some conclusions. By virtue of this corollary and in view of Section 3.3 the results for the eigenvalues
in Case (1) and in Case (2) when E[eαη] = ∞ are very much the same. Moreover, the results in
Section 3.4 remain valid in the latter case.

If (4.2) holds, Case (2) is quite different from Case (1); see Example 4.9. In this case not
only the diagonal of the matrix Xn(Xn)′ determines the asymptotic behavior of its eigenvalues
and eigenvectors. Indeed, if ψij = 2 for some i 6= j, then at least two sub-diagonals of Xn(Xn)′

have non-degenerate α/2-limits and these sub-diagonals together with the diagonal determine the
asymptotic behavior of the eigenspectrum. The limiting diagonal elements are dependent in contrast
to Case (1). This fact and the presence of sub-diagonals are challenges if one wants to calculate the
limit distributions of the eigenvalues and eigenvectors.

5. Simulations and data example

In this section we illustrate the behavior of sample covariance matrices for moderate sample sizes
for the models discussed in Sections 3 and 4 and we compare them with a real-life data example.
These data consist of 1567 daily log-returns of foreign exchange (FX) rates from 18 currencies
against the Swedish Kroner (SEK) from January 4th 2010 to April 1st 2016, as made available by
the Swedish National Bank. To start with, the Hill estimators of the tail indices αij , 1 ≤ i, j,≤ 18,
of the cross products XitXjt, 1 ≤ i, j,≤ 18, are visualized in Figure 1. In particular, the Hill
estimators on the diagonal (corresponding to the series X2

it, 1 ≤ i ≤ 18) of the values αi/2, where
αi is the tail index of the ith currency, are of similar size although not identical. Even if all series
had the same tail index the Hill estimator exhibits high statistical uncertainty which even increases
for serially dependent data, cf. Drees [23]. A way to make the data more homogeneous in their tails
is to rank-transform their marginals to the same distribution. We do, however, refrain from such a
transformation to keep the correlation structure of the original data unchanged.

It is clearly visible that some off-diagonal components of the matrix have an estimated tail index
which is comparable to the on-diagonal elements. This implies that the tails of the corresponding
off-diagonal entries Sij , i 6= j, of the sample covariance matrix may be of a similar magnitude as the
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on-diagonal entries Si. This is in stark contrast to the asymptotic behavior of the models analyzed
in Section 3.
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Figure 1. Estimated tail indices of cross products for the FX rates of 18 currencies
against SEK. The indices are derived by Hill estimators with threshold equal to the
97%-quantile of n = 1567 observations.
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(a) Based on FX rate data of 18 foreign currencies against SEK.

Figure 2. Normalized and ordered eigenvalues (left) and eigenvector correspond-
ing to largest eigenvalue (right) of real and simulated data, with n = 1567, p = 18.
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(b) Based on a stochastic volatility model with heavy-tailed innovation sequence.

●

●

●

●

●
●

●

●
●

●
●

● ● ● ●
● ●

●

5 10 15

0.
05

0.
10

0.
15

0.
20

i

λ (
i)

tr
ac

e

●
● ● ●

●

●

●

●

●

●

●

●

● ●
●

●
● ●

5 10 15

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

i

V
i,1

(c) Based on a stochastic volatility model with heavy-tailed volatility sequence that satisfies
assumptions of Example 4.8.
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(d) Based on a stochastic volatility model with heavy-tailed volatility sequence that satisfies
assumptions of Example 4.9.
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Figure 2a shows the ordered eigenvalues of the sample covariance matrix (normalized by its
trace) and the eigenvector of the FX rate data corresponding to the largest eigenvalue. There exists
a notable spectral gap between the largest and second largest eigenvalues and the unit eigenvec-
tor corresponding to the largest eigenvector has all positive and non-vanishing components. For
comparison and to illustrate the variety of the models discussed above we also plot corresponding
realizations of three model specifications from Sections 3 and 4. In all cases we choose p = 18 and
n = 1567 in accordance with the data example. We assume throughout a moving average structure
in the log-volatility process log σit in (2.1). More specifically,

(5.1) σit = exp(

18∑
k=1

ηi−k,t), 1 ≤ i ≤ 18, t ∈ Z.

In accordance with the model properties discussed in Section 3, we first assume iid standard Gaussian
ηi,t and iid Zit with a Student-t distribution with t = 3 degrees of freedom. Figure 2b shows the
normalized eigenvalues and the first unit eigenvector from a realization of this model. We notice
a relatively large gap between the first and second eigenvalue and, in accordance with Section
3.4.4, we see that the first unit eigenvector is relatively close to a unit basis vector. Figure 2c
shows the corresponding realizations for the model (5.1) with a specification according to Example
4.8, i.e., Exponential(3)-distributed iid ηi,t (meaning that P(ηi,t > x) = exp(−3x), x ≥ 0, which
implies α = 3 and E[e3η] = ∞) and iid standard Gaussian Zit. Compared to the first simulated
model, we see a slower decay in the magnitude of the ordered eigenvalues and a more spread
out first unit eigenvector. This observation illustrates that although the limit behavior of this
model and the one analyzed before should be very similar (cf. Example 4.8), convergence to the
prescribed limit appears slower for the heavy-tailed volatility sequence than for the heavy-tailed
innovations. Finally, Figure 2d shows a simulation drawn from (5.1) where the ηi,t are iid such that
P(ηi,t > x) ∼ x−2 exp(−3x), x → ∞, and the Zit are iid standard Gaussian. Again, α = 3, but
direct calculations show that the distribution of ηi,t is convolution equivalent, i.e., it satisfies (4.2)
instead of (4.1). The graphs are in line with the analysis in Example 4.9 and illustrate a very spread
out dominant eigenvector. We note that while none of the three very simple models analyzed in
the simulations above is able to fully describe the behavior of the analyzed data, the two models
with heavy-tailed volatility and light-tailed innovations are able to explain a non-concentrated first
unit eigenvector of the sample covariance matrix and therefore non-negligible dependence between
components as seen in the data.

Appendix A. Some α-stable limit theory

In this paper, we make frequently use of Theorem 4.3 in Mikosch and Wintenberger [35] which
we quote for convenience:

Theorem A.1. Let (Yt) be an Rp-valued strictly stationary sequence, Sn = Y1 + · · · + Yn and
(an) be such that nP(‖Y‖ > an)→ 1. Also write for ε > 0, Yt = Yt1(‖Yt‖ ≤ εan), Yt = Yt−Yt

and

Sl,n =

l∑
t=1

Yt Sl,n =

l∑
t=1

Yt .

Assume the following conditions:

(1) (Yt) is regularly varying with index α ∈ (0, 2) \ {1} and spectral tail process (Θj).
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(2) A mixing condition holds: there exists an integer sequence mn → ∞ such that kn =
[n/mn]→∞ and

Eeit
′Sn/an −

(
Eeit

′Smn,n/an
)kn
→ 0 , n→∞ , t ∈ Rp .(A.1)

(3) An anti-clustering condition holds:

lim
l→∞

lim sup
n→∞

P
(

max
t=l,...,mn

‖Yt‖ > δan | ‖Y0‖ > δan
)

= 0 , δ > 0(A.2)

for the same sequence (mn) as in (2).
(4) If α ∈ (1, 2), in addition E[Y] = 0 and the vanishing small values condition holds:

lim
ε↓0

lim sup
n→∞

P
(
a−1
n ‖Sn − E[Sn]‖ > δ

)
= 0 , δ > 0(A.3)

and
∑∞
i=1 E[‖Θi‖] <∞.

Then a−1
n Sn

d→ ξα for an α-stable Rp-valued vector ξα with log-characteristic function∫ ∞
0

E
[
ei y t

′∑∞
j=0 Θj − ei y t

′∑∞
j=1 Θj − i y t′1(1,2)(α)

]
d(−yα) , t ∈ Rp .(A.4)

Remark A.2. If we additionally assume that Y is symmetric, which implies E[Y] = 0, then the
statement of the theorem also holds for α = 1.

Appendix B. (Joint) Tail behavior for products of regularly varying
random variables

In this paper, we make frequently use of the tail behavior of products of non-negative independent
random variables X and Y . In particular, we are interested in conditions for the existence of the
limit

lim
x→∞

P(XY > x)

P(X > x)
= q .(B.5)

for some q ∈ [0,∞]. We quote some of these results for convenience.

Lemma B.1. Let X and Y be independent random variables.

(1) If X and Y are regularly varying with index α > 0 then XY is regularly varying with the
same index.

(2) If X is regularly varying with index α > 0 and E[Y α+ε] < ∞ for some ε > 0 then (B.5)
holds with q = E[Y α].

(3) If X and Y are iid regularly varying with index α > 0 and E[Y α] < ∞, then (B.5) holds
with q = 2E[|Y |α] iff

lim
M→∞

lim sup
x→∞

P(XY > x,M < Y ≤ x/M)

P(X > x)
= 0 .(B.6)

(4) If X and Y are regularly varying with index α > 0, E[Y α + Xα] < ∞, limx→∞ P(Y >
x)/P(X > x) = 0 and (B.6) holds, then (B.5) holds with q = E[|Y |α].

(5) Assume that E[|Y |α] =∞. Then (B.5) holds with q =∞.

Proof. (1) This is proved in Embrechts and Goldie [24].
(2) This is Breiman’s [8] result.
(3) This is Proposition 3.1 in Davis and Resnick [20].
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(4) This part is proved similarly to (3); we borrow the ideas from [20]. For M > 0 we have the
following decomposition

P(XY > x)

P(X > x)
=

P(XY > x, Y ≤M)

P(X > x)
+

P(XY > x,M < Y ≤ x/M)

P(X > x)
+

P(XY > x, Y > x/M)

P(X > x)

∼ E[Y α1(Y ≤M)] +
P(XY > x,M < Y ≤ x/M)

P(X > x)
+ E[(X ∧M)α]

P(Y > x)

P(X > x)

= E[Y α1(Y ≤M)] +
P(XY > x,M < Y ≤ x/M)

P(X > x)
+ o(1) .

Here we applied Breiman’s result twice. The second term vanishes by virtue of (B.6). Thus q =
E[Y α].
(5) The same argument as for (4) yields as x→∞,

P(XY > x)

P(X > x)
≥ P(XY > x, Y ≤M)

P(X > x)
∼ E[Y α1(Y ≤M)] .

Then (B.5) with q =∞ is immediate. �

Lemma B.2. Let Y1, . . . , Yp ≥ 0 be iid regularly varying random variables with index α > 0.
Assume that

(B.7) lim
t→∞

P(Y1 · Y2 > t)

P(Y1 > t)
= c ∈ (0,∞) .

Then for any a1, . . . , ap ≥ 0 such that amax := maxj=1,...,p aj > 0 and any v > 0 we have

lim
t→∞

P(
∏p
i=1 Y

ai
i > vt)

P(Y amax
1 > t)

=
∑

j:aj=amax

lim
s→0

lim
t→∞

P(
∏p
i=1 Y

ai
i > vt, Y amax

j > st)

P(Y amax
1 > t)

(B.8)

and

lim
s→0

lim sup
t→∞

P(
∏p
i=1 Y

ai
i > vt,maxj=1,...,p Y

amax
j ≤ st)

P(Y amax
1 > t)

= 0.(B.9)

Proof. In view of Davis and Resnick [21] the only possible value for c in (B.7) is 2E[Y α1 ] (which
implies that E[Y α1 ] < ∞). Furthermore, we note that the product

∏
j:aj=amax

Y
aj
j is regularly

varying with index −α/amax; see Embrechts and Goldie [24], Corollary on p. 245. By Breiman’s
lemma this implies that

lim
t→∞

P(
∏p
i=1 Y

ai
i > vt)

P(Y amax
1 > t)

= lim
t→∞

P(Y amax
1 > vt)

P(Y amax
1 > t)

P(
∏p
i=1 Y

ai
i > vt)

P(Y amax
1 > vt)

= v−α/amax

( ∏
j:aj 6=amax

E[Y
αaj/amax

j ]
)

lim
t→∞

P(
∏
j:aj=amax

Y amax
j > vt)

P(Y amax
1 > vt)

.

By Lemma 2.5 in Embrechts and Goldie [25] (cf. also Chover, Ney and Wainger [10]) this equals

v−α/amax
( ∏
j:aj 6=amax

E[Y
αaj/amax

j ]
)
|{j : aj = amax}|E[Y α1 ]|{j:aj=amax}|−1.
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On the other hand, we have∑
j:aj=amax

lim
s→0

lim
t→∞

P(
∏p
i=1 Y

ai
i > vt, Y amax

j > st)

P(Y amax
1 > t)

=
∑

j:aj=amax

lim
s→0

lim
t→∞

P(Y amax
j min(s−1, v−1

∏
k 6=j Y

ak
k ) > t)

P(Y amax
j > t)

=
∑

j:aj=amax

lim
s→0

E[(min(s−1, v−1
∏
k 6=j

Y akk ))α/amax ]

= v−α/amax

∑
j:aj=amax

∏
k 6=j

E[Y
αak/amax

k ]

= v−α/amax

( ∏
j:aj 6=amax

E[Y
αaj/amax

j ]
)
|{j : aj = amax}|E[Y α1 ]|{j:aj=amax}|−1,

where we applied Breiman’s lemma in the second step to the bounded random variable min(s−1,
v−1

∏
k 6=j Y

ak
k ), and the monotone convergence theorem in the penultimate step. This proves (B.8).

To prove (B.9) note that for s > 0,

P(
∏p
i=1 Y

ai
i > vt)

P(Y amax
1 > t)

≥
P(
∏p
i=1 Y

ai
i > vt,maxj=1,...,p Y

amax
j ≤ st)

P(Y amax
1 > t)

+
∑

j:aj=amax

P(
∏p
i=1 Y

ai
i > vt, Y amax

j > st)

P(Y amax
1 > t)

−
P(
∏p
i=1 Y

ai
i > vt, Y amax

j1
> st, Y amax

j2
> st for some j1 6= j2)

P(Y amax
1 > t)

, s > 0.

The last summand on the right-hand side converges to 0 as t → ∞ by independence of the Y ′j s.
Moreover, the left-hand term and the second term on the right-hand side become equal by first
t → ∞ and then s → 0, in view of (B.8). Therefore the first right-hand term vanishes by first
t→∞ and then s→ 0. This proves the statement. �

Proposition B.3. Let Y1, . . . , Yp ≥ 0 be iid regularly varying with index α and (aij) ∈ [0,∞)n×p, n, p ≥
1, be such that max1≤i≤n aik = amax := maxi,j aij > 0 for any 1 ≤ k ≤ p.

(i) Assume that (B.7) holds. Then the random vector

(B.10) Y :=
( p∏
j=1

Y
aij
j

)
1≤i≤n

is regularly varying with index α/amax. Furthermore, up to a constant the limit measure µ
of Y is given by

∑p
j=1 µj , where for any Borel set B ∈ [0,∞]n bounded away from 0 and

να(dz) = αz−α−1dz,

µj(B) =

∫ ∞
0

P
((

1(aij = amax)zamax

∏
k 6=j

Y aikk

)
1≤i≤n

∈ B
)
να(dz).(B.11)

(ii) Assume that E[Y α1 ] =∞. Set

peff := max
i
|{1 ≤ j ≤ p : aij = amax}| ,

Peff := {A ⊂ {1, . . . , p} : |A| = peff ∧ ∃ i : ∀ j ∈ A : aij = amax} .
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Then the random vector Y in (B.10) is regularly varying with index α/amax. Furthermore,
up to a constant the limit measure µ of Y is equal to

∑
A∈Peff

µA, where for any Borel set

B ∈ [0,∞]n bounded away from 0,

µA(B) =

∫ ∞
0

P
((

1(aij = amax ∀ j ∈ A)zamax

∏
k/∈A

Y aikk

)
1≤i≤n

∈ B
)
να(dz) .(B.12)

Proof. (i) Let B ∈ [0,∞]n be a Borel set bounded away from 0. For s > 0 we have

P(Y ∈ tB)

P(Y amax
1 > t)

=
P(Y ∈ tB,maxj=1,...,p Y

amax
j ≤ st)

P(Y amax
1 > t)

+

p∑
j=1

P(Y ∈ tB, Y amax
j > st)

P(Y amax
1 > t)

−
P(Y ∈ tB, Y amax

j1
> st, Y amax

j2
> st, for some j1 6= j2)

P(Y amax
1 > t)

.(B.13)

Since B is bounded away from 0, there exists v > 0 and 1 ≤ i ≤ n such that B ⊂ {(x1, . . . , xn) ∈
[0,∞]n : xi > v}. From Lemma B.2, (B.9) the first summand in (B.13) therefore tends to 0 by
first t → ∞ and then s → 0. Furthermore, the third summand converges to zero as t → ∞ by
independence of the Y ′j s. We are thus left to show

lim
s↘0

lim
t→∞

P(Y ∈ tB, Y amax
j > st)

P(Y amax
1 > t)

= µj(B), 1 ≤ j ≤ p,

with µj as in (B.11). For s > 0 write

lim
t→∞

P(Y ∈ tB, Y amax
j > st)

P(Y amax
1 > t)

= s−α/amax lim
t→∞

P(Y ∈ tB | Y amax
j > st)

= s−α/amax lim
t→∞

P

(Y amax
j

st

) aij
amax

s
aij
amax t

aij
amax

−1
∏
k 6=j

Y aikk


1≤i≤n

∈ B
∣∣∣∣ Y amax

j > st


= s−α/amax

∫ ∞
1

P

1(aij = amax)sy
∏
k 6=j

Y aikk


1≤i≤n

∈ B

 να/amax
(dy).

Substituting sy by z in the integral finally gives

lim
s↘0

lim
t→∞

P(Y ∈ tB, Y amax
j > st)

P(Y amax
1 > t)

=

∫ ∞
0

P

1(aij = amax)zamax

∏
k 6=j

Y aikk


1≤i≤n

∈ B

 να(dz).

(ii) Note first that under our assumptions for any 1 ≤ n1 < n2 ≤ p,

lim
t→∞

P(
∏n2

j=1 Yj > t)

P(
∏n1

j=1 Yj > t)
= lim

t→∞

∫ ∞
0

P(
∏n1

j=1 Yj > t/y)

P(
∏n1

j=1 Yj > t)
P

∏n2
j=n1+1 Yj (dy)

≥ E

 n2∏
j=n1+1

Y αj

 =∞(B.14)
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by Fatou’s lemma and the regular variation of
∏n1

j=1 Yj . Write now

(B.15) Y =
∑

1≤i≤n
|{j:aij=amax}|=peff

p∏
j=1

Y
aij
j ei +

∑
1≤i≤n

|{j:aij=amax}|<peff

p∏
j=1

Y
aij
j ei,

where ei stands for the i-th unit vector. The first sum can also be written as

(B.16)
∑

A∈Peff

diag((1(aij = amax ∀ j ∈ A)
∏
k/∈A

Y aikk )1≤i≤n)
∏
j∈A

Y amax
j =:

∑
A∈Peff

YA,

where for each summand the random matrix and the random factor are independent and for the
non-zero entries of the matrix we have aik < amax since k /∈ A. Thus, by the multivariate version of
Breiman’s lemma each YA is a multivariate regularly varying vector with limit measure µA (up to
a constant multiplier) as in (B.12) and normalizing function P (

∏peff
i=1 Y

amax
i > x). Furthermore, for

A,A′ ∈ Peff with A 6= A′ and i, i′ such that aij = amax ∀ j ∈ A and ai′j = amax ∀ j ∈ A′ we have

P(YA
i > x,YA′

i′ > x)

P(
∏peff
i=1 Y

amax
i > x)

(B.17)

=
P((
∏
j∈A∩A′ Yj)

amax
∏
j∈(A∩A′)c Y

aij
j > x, (

∏
j∈A∩A′ Yj)

amax
∏
j∈(A∩A′)c Y

ai′j
j > x)

P(
∏peff
i=1 Y

amax
i > x)

.

By Janßen and Drees [30], Theorem 4.2 (in connection with Remark 4.3 (ii) and the minor change
that our random variables are regularly varying with index α instead of 1), the numerator behaves
asymptotically like P((

∏
j∈A∩A′ Yj)

amax > x), since κ0 = a−1
max, κj = 0, j ∈ (A ∩ A′)c is the unique

non-negative optimal solution to

κ0 +
∑

j∈(A∩A′)c
κj → min!

under

κ0amax +
∑

j∈(A∩A′)c
κjaij ≥ 1, κ0amax +

∑
j∈(A∩A′)c

κjai′j ≥ 1.

This is because min(aij , ai′j) < amax and max(aij , ai′j) ≤ amax for all j ∈ (A∩A′)c. Since A 6= A′, we
have |A∩A′| < peff and thus, by (B.14), the expression (B.17) converges to 0 as x→∞. Therefore,

each component of YA is asymptotically independent of each component of YA′ and thus the sum
in (B.16) is multivariate regularly varying with limit measure

∑
A∈Peff

µA and normalizing function

P(
∏peff
i=1 Y

amax
i > x). Since the second sum in (B.15) consists by (B.14) only of random vectors for

which P(‖
∏p
j=1 Y

aij
j ei‖ > x) = P(

∏p
j=1 Y

aij
j > x) = o(P(

∏peff
i=1 Y

amax
i > x)), we have that Y is

regularly varying with index α/amax and limit measure
∑
A∈Peff

µA by Lemma 3.12 in Jessen and

Mikosch [31]. �
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