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ABSTRACT
In risk management an appropriate assessment
of the dependence structure of multivariate data
plays a crucial role for the trustworthiness of the
obtained results. The case of heavy-tailed compo-
nents is of particular interest.
We consider asymptotic properties of sample co-
variance matrices for such time series, where both
the dimension and the sample size tend to infinity
simultaneously.

SETUP & OBJECTIVE
Data matrix: a p× n matrix X consisting of n ob-
servations of a p-dimensional time series, i.e.

X = (Xit)i=1,...,p;t=1,...,n.

We are interested in the non-normalized p×p sam-
ple covariance matrix XX ′ and its ordered eigenval-
ues

λ(1) ≥ λ(2) ≥ · · · ≥ λ(p).

EXAMPLE

Figure 1: The density of the continuous part of Y de-
fined in (2) with α = 1.5.

Assume that α ∈ (0, 2) and

Xit = Zit + Zi,t−1 − 2(Zi−1,t − Zi−1,t−1). (1)

The matrix M has rank 2 and the non-negative
eigenvalues v1 = 8 and v2 = 2. The limit point
process in (4) is
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By (5) we get

a−2
npλ(2)
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2 .

Since Γ1/Γ2 has a standard uniform distribution,
we can easily compute

P(2Γ
−2/α
1 > 8Γ

−2/α
2 ) = 2−α ∈ (1/4, 1).

The self-normalized spectral gap
λ(1) − λ(2)

λ(1)

converges in distribution to a random variable

which has the same distribution as

Y := 3/4I{U<2−α} +
(
1− U2/α

)
I{U>2−α}, (2)

where U is standard uniformly distributed. Y has
an atom at 3/4 with point mass 2−α. The ratio of
the two largest eigenvalues is of special interest.
In the case of independent rows it was shown that
λ(2)/λ(1) → Uα/2 in distribution. In our model,
however, the rows are dependent and the limit
takes the form

cα/2I{U<c} + Uα/2I{U>c}

for a non-negative constant c. To confirm this limit
structure we simulate the ratio (λ(2)/λ(1))

2/α from
the model (1) for α = 1.5. The theoretical limit
variable is

(1− Y )2/α = 0.35I{U<0.35} + U{U>0.35}. (3)
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Figure 2: The histogram of
(
λ(2)/λ(1)

)2/α based on
1000 replications from the model (1) with noise given
by a t-distribution with α = 1.5 degrees of freedom,
n = 1000 and p = 200.

A histogram based on realizations of the true limit
variable (3) would look very similar.

OUR MODEL
Suppose X = (Xit)i=1,...,p;t=1,...,n with

Xit =
∞∑
l=0

∞∑
k=0

hklZi−k,t−l

and regularly varying iid noise (Zit) with index
α ∈ (0, 4) (infinite fourth moment), i.e. there ex-
ists a normalizing sequence (an) such that

nP(|Z| > anx)→ x−α, as n→∞ for x > 0,

and a tail balance condition holds. If Z is regu-
larly varying with index α, then moments above
the αth do not exist.
Moreover we impose a summability condition on
the double array of real numbers (hkl) and rather
technical growth conditions on p = pn →∞.

POINT PROCESS CONVERGENCE
Let (Ei) be iid standard exponential random vari-
ables and Γi = E1 + . . . + Ei. Then we have the
point process convergence
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An application of (4) then yields for every fixed
integer k ≥ 1,

a−2
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)
,

where d(1) ≥ · · · ≥ d(k) are the k largest ordered
values of the set {Γ−2/α

i vj : i, j ≥ 1}. In particular
we find

d(1) = v1Γ
−2/α
1 and d(2) = v2Γ

−2/α
1 ∨ v1Γ

−2/α
2 .

(5)
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• Centering in the case α ∈ (2, 4).
• Determinants and matrix decompositions.
• Other non-linear structures of Xit.
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KNOWN RESULTS
If the rows of X are independent and identically
distributed strictly stationary ergodic time series,
then for fixed p we have 1

nXX ′
a.s.−→ Ip.

In particular, if X has iid standard normal entries
Johnstone (2001) showed that for p, n → ∞ with
p/n→ γ > 0,
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d−→ TW,

a Tracy-Widom distribution.
Let us now assume that the entries of X are still
iid but with infinite fourth moment (heavy tails).
Since lim supλ(1)/n =∞ a.s. a much stronger nor-
malization of XX ′ is required.

MAIN RESULT
The order statistics D(i) of the iid sequence
Ds =

∑n
t=1 Z

2
st and the ordered eigenvalues v(j)

of the matrix M given by Mij =
∑∞
`=0 hi`hj`

play a key role in determining the asymptotic
properties of the ordered eigenvalues λ(i). Let
k2 = o(p) be an integer sequence.

Theorem. If α ∈ (0, 2), then

a−2
np max

i=1,...,p
|λ(i) − δ(i)|

P→ 0, n→∞,

where δ(1) ≥ · · · ≥ δ(p) are the ordered values of
the set {D(i)v(j) : i ≤ k; j ≥ 1}.


