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Mathematics and Physics divorced in recent times. The subjects are now devel-

oping parallel. Mathematics creates models and Physics may apply what models it

finds fittest. But in ancient times the subjects were married.

Claytablets and numbersystems

At first there was observation. The oldest surviving mathematical texts from
Assyria were written a couple of thousands of years B.C. In contemporary cultures
in Egypt and China burnable material were used, while Assyrians pressed small
cuneiforms in wet clay. Although a tablet might be reused many times, it occa-
sionaly happened that a house burned down immortalizing the tablets. This was
the luck for the archeologists though annoying for the Assyrians.

The climate in Assyria is pretty dry, remember Hammurapis’ (1792–50) famous
laws about use and abuse of watercanals. The advantage is that one can almost
always see the stars and watch their movements. The Assyrians discovered their
periods – short and long. And while most stars move rather parallel, there are
seven exceptions, the sun, the moon and the five “tramps” – planets. They move
back and forth relative to the other stars. The Assyrians considered these seven as
veritable gods and there exceptional movements as omens. The planets still keeps
their god–names, but now Roman, Venus, Mars, Jove etc.

In ancient time people were not thinking in the pattern “cause–effect” but
rather “omen–event.” Gods decided what shall happen, but might be influenced
by requests.

The periods allowed the learned people to predict certain events like an eclipse
of the moon, most impressive for laymen. After such a successful prediction the
king would of course ask for more earthy predictions, giving the learned people
genouine problems. To refuse was impossible, and in case of wrong predictions a
capital punishment might result. So they soon learned to hide their statements in
a cloud of reservations.

Among the tablets we find calculations with length, area, volume, weight, prize
and salary. Also the multiplication table, but remind you, in the 60–numbersystem
it requires all products from 2 to 59, i.e., 1711 products. Our table from 2 to 9
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contains only 36. And other tables of Pythagorean triples, 3 4 5, 5 12 13, ..., 12709
13500 18541, etc. They must have known these rightangular triangles.

The last one looks like:

It looks almost isosceles. But we found no example with exactly equal cathesi!
The Assyrians used numbers to denote the positions of stars and planets, they

invented the positional system using the base 60. They divided the perimeter in
360 grades and gave the positions with two sexagesimal fractions, so a grade was
divided in 60 minutes (small units) and each of them in 60 seconds (the second
kind of small units). When these tables came to the knowledge of the Greek
astronomers, they preserved the division into the smaller parts, but not using a
positional system for signifying numbers, they wrote the numbers of minutes and
seconds in the Greek number system. So, each position of a star was given with
three whole numbers, the grades, the minutes and the seconds, the latter two as
numbers between 0 and 59. Not having a symbol for zero, Ptolemaios (2. century)
did chose the meaningless number 70 for the case of no minutes. As the Greeks
used the alphabet for the numbers too, α=1, β=2, etc., the symbol for 70 was
accidentally omikron, o.

Astronomy

The Greek astronomers were not so satisfied with the idea of the gods’ wills.
They created a virtual mathematical model of the tramping of the planets. They
imagined the earth as a ball, the stars as lights on a sphere far out, and the
planets as objects moving on epicycles, i.e., circular orbits with the center moving
on another circle with the earth in its center. Aristarchos (3. century), nicknamed
“mathematichos” – the knowing all – had the sun in the center of the circles of
the planets.

Sun Planet

Earth
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Geometry

Pythagoras (6. century B.C.) was as fund of numbers as was the Assyrians.
He noticed that the hypothenus in a rightangular isosceles triangle could not be
measured by the other sides with rational numbers. Or, the diagonal in a square
with side 1 is

√
2, an irrational number. But it was easy to construct with compass

and ruler.

11

√
2

These facts led the Greeks to avoid numbers and develop a geometry as a
description of the space in its own fashion, dealing with the figures directly, being
of dimensions 1, 2 or 3.

They managed to define concepts of equality and inequality corresponding to
the meaning of lengths, areas and volumes without computing the relevant num-
bers as measures. In this context they even managed to prove that the moon of
Hippokrates (5. century B.C.) is equal to a certain rightangular isosceles triangle.

Moon

Triangle

If the triangle has cathesi both equal to 1 and then in our terms hypothenus
equal to

√
2 and area equal to 1

2
, then the moon drawn by two circular arcs of radii

1 and
√

2

2
and centers in the rightangular corner and the center of the hypothenus

respectively has the area 1

2
too.

The proof of this identity is surprisingly simple. Look at the figure:
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Discs of different radii relates as the corresponing squares on the radii. Hence
the Pythagorean theorem applies also to the half-discs on the sides of a rightangular
triangle. So referring to the figure, the big half-disc is equal so the sum of the two
equal small half-discs. This means that the triangel is equal to the big half-disc
minus the grey area, and this equals the sum of the two small half-discs minus the
grey area. So the half of the triangle is equal to the moon.

The Greek geometry compared figures with figures and avoided numbers. The
Greeks demanded certain requirements – in Greek “axioma” – which should reflect
the geometrical praxis of drawing figures with compass and ruler. E.g., given two
distinct points, then there exists exactly one line containing both, and exactly one
circle with the first point as the center and containg the second.

From these prerequisites they derived all the logical consequences they had
phantasy to imagine and created in this way the first example of a genuine math-
ematical model of a physical phenomenon, the space we inhabit.

Insertion

When we talk about construction with compass and ruler, it is an exaggeration
or disengenousness. We mean using the axioms of Euclid (3. century B.C.). From
his axioms we may only construct points which in moderne language have such
rational or irrational coordinates, which can be derived by taking a number of
square roots. Because we shall solve a second degree equation emerging from the
equation describing the circle(s).

Two famous problems considered in the ancient times was the doubling af a
cube and the division of an arbitrary angle into three equal parts. Both require
the solution of a third degree equation, not to be obtained by the axioms of Euclid.

But allready in the 5. century B.C. they managed to solve the problem by
physical means. If we consider the ruler as a piece of wood with a straight line,
we might mark two points on it with a given distance. Then we may, given two
crossing lines and a point anywhere, manage to draw a line through this point and
such that the two points on the ruler lie on each one of the given lines.
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Point

Linesegment

Linesegment

Ruler

Point

Line segment

This means that we have added the axiom, that given two line and a point and a
line segment, then there exist a line through the given point and such that the two
lines cuts a line segment of the given length of the new line. With this addition to
the Euclidean axioms we are able to construct third roots and in particular trisect
an angle and double a cube.

To show how, we shall at first look at the trisection of the angle.

m

ℓ

kA

ψ
O 1B

We want to trisect the angle ψ between the lines ℓ and k. We draw the circle
with center in O and radius 1 – a point on ℓ. It cuts the line k in the point A.
Then we construct AB rightangular on ℓ. Eventually we draw the line m through
A parallel to ℓ.
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We now apply the new axiom to insert the line n through O such that the lines
AB and m cuts a linesegment of n, CD of length 2:

n

m

ℓ

kA

C
φ

O 1B

D

E

E is constructed as the midpoint of the linesegment CD. As the triangle △ACD
is rightangular with ∠A as the right angle, we note that a circle with center E
and radius 1 must go through A, C and D. Therefore AE = CE = DE = 1 and
hence the triangle △AED is isosceles, such that ∠DAE = ∠ADE = ∠COB = φ.
As the triangle △OAE also is isosceles, we conclude that ∠AOC = ∠AEC =
∠EAD + ∠ADE = 2φ.

We have trisected the angle ∠AOB = ψ in three equal parts.

Doubling a dice

As we have easely constructed a line segment of length
√

2, i.e., the side of
a square of double size, it is tempting to ask for the doubling af a dice, i.e., to
construct a line segment of size 3

√
2.

This is impossible in the Euclidean geometry for the same reason as the impos-
sibility of the trisecting of an angle, but with physical instruments it is easy. We
need the following construction, generalizing the number 2 to any real number –
already constructed – r:
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1

r

y

x

B
C

A

P

Q

Given a rightangular triangel, △ABC with cathesi 1 and r, we need to find
P and Q on the prolongation af the cathesi in a way, such that the two angles
are right: ∠APQ = ∠PQB = π

2
. Then the three new triangles are similar,

△ACP ∼ △PCQ ∼ △QCB. Hence we have

1

x
=
x

y
=
y

r

From this we compute

x2 = y ∧ y2 = rx ⇒ x4 = y2 = rx

showing that the linesegment x solves the problem.

To draw the figure we may apply a couple af carpenter’s squares to fit the two
right angles on the appropriate lines.

General cubic roots

These two constuctions actually allow us to construct the cubic root of an
arbitrary complex number, represented as a vector in the plane. If this vector has
the representation

reiφ

then we may construct the two necessary magnitudes, 3
√
r and and φ

3
. To add the

angles 2π
3

and 4π
3

is easy:
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z = reiφ

3
√
z = 3

√
rei

φ

3

3
√
z = 3

√
rei

φ+2π

3

3
√
z = 3

√
rei

φ+4π

3

R

iR

Cubic equations

We may even solve any cubic equation constructively as seen by Francis Vieta
(1540–1603). Suppose we have a cubic equation (i.e., A 6= 0)

Ax3 +Bx2 + Cx+D = 0

Then we may divide by A and write

x3 + bx2 + cx+ d = 0

We may also change the variable to y = x− b
3

to get rid of the square term

y3 +

(

c− b2

3

)

y + d+
2b3

27
− bc

3
= 0

or simply
y3 + ey + f = 0

Now we try to write y = p+ q, p and q to be chosen. We get

p3 + q3 + 3pq(p+ q) + e(p+ q) + f = 0

It is seen, that if we choose p and q satisfying the equations

3pg + e = 0

p3 + q3 + f = 0

then we have a solution y = p+ q. But we may consider p3 and q3 as satisfying

p3g3 = − e
3

27

p3 + q3 = −f
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hence they are the solutions to a quadratic equation, i.e., they are

−f ±
√

f2 + 4 e3

27

2

all of which are constructable magnitudes, possibly as complex vectors.
All we now need is to constuct their cubic roots with the methods above. Re-

member to construct all three complex roots, also of a real value. And with the 9
possible sums of p+ q, it is necessary to verify the true values eventually!

Euclides Danicus

The ambiguity of the use of the ruler may be completely avoided. The “Danish
Euclid,” Georg Mohr (1640–97), proved in 1672 that all points, which can be
constructed with compass and ruler in the Euclidean sense can be constructed
with the compass alone. We do only need a ruler to construct cubic roots!

Thinking physically this is not so surpricing. Imagine a double compass, one
compass is drawing a circle with a certain speed, a second compass has its needle
following the pencil of the first, while the pencil of the second is drawing a curve
moving with the same speed in the opposite direction. The two circles have the
same radius.

Moving
center

Moving
pencil

R

iR

Proof: In complex notation the parametriced curve must be

eit + e−it = 2 cos t ∈ R

The theory of magnitudes

The most important tool in their reasoning was the so called theory of magni-
tudes – Euclid’s 5. book – which defines the meaning of the relation between four
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magnitudes of the same kind (i.e. dimension), A, B, C og D, that A relates to B
as C to D, written

A : B = C : D

The moon and the triangle above relates as any other pair of equal magnitudes.
About

√
2 we might say, that the diagonal in a square relates to the side as the

same two in any other square.

For one–dimensional magnitudes, you might multiply across and say, that the
two relations agree, if the two recktangles obtained are equal (in size). But the
Greeks were not willing to define a four– or higher–dimensional volume, so the
equality of relations between two– or three–dimensional magnitudes was not rela-
ted to the cross product.

Archimedes

Archimedes (†212 B.C.) finds two ways to go from Euclid’s theory of magnitu-
des. One stroke of genious is to generalize the objects to compare from straight
lines to curves and from plane figures to surfaces of spatial figures. He just requires
that they surround something convex. E.g., a polygon of cordes to a circle is then
assumed to have a shorter circomference than the very circle. Euclid would only
compare the areas.

⇒ <

The other is to compare pairs of one dimension to pairs of another. Given two
line segments, a and b, and two plane figurs, A and B, such that a relates to b as
does A to B, then we might multiply across and say that the two spatial figures
a×B and b×A have the same volume. But Archimedes has a more physical idea.
He imagines a balance weight with arms of length a and b and the two figures
hanging in the end of one arm each, B in a and A in b and defines the equality
of the relations by the equilibrium of the weight. And this idea may be used for
spatial figures too, where the cross product would require a 4–dimensional volume.
He uses this way of reasoning to establish the area of a segment of a parabola too.
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b a

A

B

Balance means that
A : B = a : b

In this way he may claim that the circumference of the circle relates to the
diameter as the disc to the square on the radius. This means, that we only need
one π! He also proves that the area of a sphere is equal to the area of the disc
having the diameter of the sphere as radius. To this discovery he claims the famous
quotation: “It has always been so, but I am the first one to know!”

: :=

Analysis

The introduction of axioms as foundation of mathematics is not the only Greek
contribution to the development of thinking. A method of solving problems cal-
led “analysis” has proved most important both inside and outside mathematics.
Given a problem, you imagine to have found a solution. Then you deduct what re-
strictions it must satisfy. If these deduced properties are in conflict, you conclude,
that no solution exists. This is what is also called an indirect proof or “deductio
ad absurdum.” Are you more lucky, you establish so many restrictions that a
possible solution is uniquely determined. This is the typical behavior solving one
or several equations. You assume there is a solution, call it x and derives as many
consequences as possible hopefully finding its uniqueness. But this does not solve
the problem as it might be an incomplete proof of its impossibility. You must
verify the validity of the suggested result!



12 MOGENS ESROM LARSEN March 21, 2008

The point of Fermat

A beautiful example of mixing physics and mathematics is the solution to Pierre
de Fermat’s (1601–65) problem: Given a triangle. Find the point, from which the
sum of the distances to the three corners is minimal. Now we analyze the problem
with the help of a physical mental experiment. Assume the triangle is on a plate
and drill a hole in each corner. From the point we draw three cords joint in the
point and going through the three holes. In the end of each cord we place a weight,
the three weights having the same size. This system finds an equilibrium where
the point of gravity is lowest which is the same as minimizing the sum of the
distances to the corners. And as the point rests, and the powers drawing in the
three directions are of equal sizes, the three angles between the cords must be
equal, i.e., 120◦. (Of course, it requires that the angles of the original triangle are
all smaller than 120◦.)

Such a point exists and may be constructed by drawing the arcs of the circumfe-
rential angle over two of the sides og the triangle. They have the centers O and P
and accidential arc length equal to 120o. The arcs cut one another in the Fermat
point.

Fermat

A

B

C

O

P

A mathematical proof referring to the theorem, that the shortest curve between
two points is the straight line, is equally beautiful.

Analysis. Assume we have the point F . It is connected to the three corners
of the triangle. Now we turn the vectors AB and AF the angle 60o around A to
the vectors AD and AG. Then |DG| = |BF | and |GF | = |AF |, so the sum of the
distances from F to the corners is equal to the length of the broken line DGFC.
It is shortest if it happens to be the straight line from D to C. Choosing that we
get the Fermat-point as above.

F

A

B

C

G

D
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Non–Euclidean geometry

The divorce of mathematics from physics started around 1800. Until then
the Euclidean geometry was considered as the perfect mathematical model of the
physical space. The philosopher Immanuel Kant (1724–1804) is the exponent for
this opinion, because he considers the Euclidean geometry as the only theory which
is both “a priori” – given in advance – and “analytic – independent of experience.
But the next generation of mathematicians came to doubt this opinion. The
problem is whether the parallel postulate is a genouin axiom or a theorem not yet
proved (as Kant might have thought). It claims that given a line and a point not
on the line, then there exists exactly one line through this point parallel to the
given line (or not cutting it). (This is the global axiom – about the space as a
whole. The other axioms are local. )From this axiom you conclude that the sum
of the angles in a triangle is 180◦ (Euclid: “Two right angles.”) There has been
an uncountable numbers of trials to prove this as a theorem.

Carl Friedrich Gauß (1777–1855) must have had his doubt – or rather believed
in the independence of the other axioms. He then asked the question, what is
the best model of the physical world? He measured a large triangle between the
German mountains, Brocken, Hohenhagen and Inselberg, to see whether the sum
of the angles in physics was 180◦. He found this to be true within the accuracy of
measure.

But others, Nicolai Ivanovitsch Lobatschevskij (1793–1856) and Johann Bolyai
(1802–60) developed non–Euclidean geometries with the parallel postulate exchan-
ged with either the axiom that any two lines do cut (“elliptic geometry”), or the
axiom, that given a line and a point outside, there exist possibly several lines not
cutting the given line (“hyperbolic geometry”).

In this way the mathematicians came to study mathematics without reference
to possible applications in physics. Simultaniously they considered spaces of any
number of dimensions.

That these phantasy–models could be relevant to physics was imagined by so-
mebody. E.g., William Kingdon Clifford (1845–79) wrote an abstract to a dis-
sertation, “On the Space Theory of Matter” in 1876, a predecesssor for Albert
Einstein’s (1879–1955) theory of relativity. The event that physicist suddenly find
an old piece of mathematics useful has happened before. The most striking exam-
ple is Johannes Kepler’s (1571–1630) elliptic model of the orbit of Mars. He uses
the theory of conic sections known from Euclid and later Apollonios (2. cent. BC).

Set theory

At the same time the mathematicians have left the physical content and turned
to a kind of semantic build on Georg Cantor’s (1845–1918) “set theory,” which
one is difficult to deal with. The axioms lead immidiatly to paradoxes or contra-
dictions. The set of subsets of a set is always greater than the set itself, which
means that no greatest set can exist, e.g., the set of all sets. This is the so-called
Russell paradox, after Bertrand Russell (1872–1970).
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Proof of Russell’s paradox

A finite set of n elements has 2n subsets, and n < 2n holds for all n.
The general proof may proceed: Let A be a set and D the set of its subsets.

If they have the same size, we may find a function, f : A → D, such that every
subset, d ∈ D, is the image of one of the elements, a ∈ A. Let f : A → D be any
function. We shall prove that there must exist a subset of A not the image of any
element of A by the function f . Consider the subset

b = {x ∈ A|x /∈ f(x)}

Assume, that b = f(y). If y ∈ b, we conclude from the definition, that y /∈ b = f(y).
And if y /∈ b = f(y), then we conclude from the definition, that y ∈ b. Hence,
b 6= f(y) for any y ∈ A, i.e., there are more subsets than elements in every set.

The Banach–Tarski paradox

The counter-intuitivity of set theory is beautifully stressed be the famous Banach–
Tarski paradox, due to Felix Hausdorff (1868–1942), but named after Stefan Ba-
nach (1892–1945) and Alfred Tarski (1901–83), who wrote about it in 1924, with
reference to Hausdorff’s book, Grundzüge der Mengenlehre from 1914.

In all simplicity it says that we may divide any sphere (without center) in 3
congruent disjoint subsets in such a way, that 2 of them may be joint to fill the
whole spere! This phenomenon contradicts our physical intuition.

From a mathematical point of view we have just proved, that we may not
define a measure (not identically zero) such that all subsets have one. So, we must
introduce the concept of “measurable” among subsets.

We are thrown back to Pythagoras, the numbers do not suffice to describe the
relations between the objects under consideration!

A logial paradox

Not only the set theory contradicts our physical intuition. Also pure logic might
do.

In a closet we have two drawers. On the first one is a text saying: “The ring
is in the other drawer.” On the second the text says: “only one of the statements
on the drawers is true.”

Now, the statements may be true or false. If the second statement is false, we
conclude that both statements are false. This means that the ring is en the first
drawer. And if the second statement is true, then the first statement is false and
the ring is in the first drawer!

But in a physical world nothing prevents a logical ignorant from placing the
ring in the second drawer!


