
THE ETERNAL TRIANGLE – A

HISTORY OF A COUNTING PROBLEM

Mogens Esrom Larsen

At least six times during the last 30 years the following problem was raised
independently:

How many triangles can be counted in Figure 1, and what is the general formula
for their number?

Figur 1

At first we think of counting all triangles, right–way–up, △, upside–down, ▽,
and of any size including the very frame of the pattern. But it is natural to ask
for serarate countings of the right–way–up triangles of sides of length 1,2,...,n and
of the upside–down triangles of sides of length 1,2,...,[n

2
], where n is the number of

subintervals on the side of the big triangle and [x] means the biggest integer less
than or equal to x. Note that the side of the largest upside–down triangle cannot
exceed n

2 .

As an introduction to a course in combinatorics or discrete mathematics, this
problem offers an excellent challenge to the students. None of the ways of counting
is completely trivial, and several ideas lead to a solution, as we shall see. Actually,
the answer has been published at least ten times with a variety of seven or eight
proofs, so different from each other that they literally give a survey of combinatorics!
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The Formula.

The solution has been given in several forms of which the simplest [12] is

[

n(n + 2)(2n + 1)

8

]

(1)

where n is the number of subintervals of the side of the big triangle Tn, e.g. 6 in
Figure 1. As a matter of fact, for n even the numerator is divisible by 8, but for n

odd we get a remainder of 1. Using the formula we can check our counting of the
triangles in Figure 1. The correct number is 6·8·13

8
= 78.

The Story.

The first appearence of the problem was in a note by J. Halsall in 1962 [7].
The formula was suggested without a rigorous proof. This paper went almost
unnoticed except by N. J. A. Sloane [14], probably because of its misleading title.
The problem made a second appearance in a note by J. E. Brider [1] in 1966. He
suggests the formula based on the difference tables, but gives no proof. The third
appearence was a note by Hamberg and Green [8] in 1967, which was appreciated
by many readers. F. Gerrish [6] posed and solved the problem in 1970 in a rather
complicated way, which gave rise to a couple of simplifications by Mastrantione
[11], Martin [10] and by C. Wells [15] in 1971. A further improvement came from
Moon and Pullman [12] in 1973. The problem was posed independently in 1974 by
Edwards in Mathematics Magazine [4]. This time it immediately gave rise to three
different solutions. In [13] Prielipp and Kuenzi gave the formula together with the
references [6], [10], [11], and [12] while many other respondents gave the reference
[8] and the formula. In [2] Carlitz and Scoville gave a new and elegant proof. Later,
in 1976 Cormier and Eggleton [3] gave a different answer to [4]. Finally, in 1986,
Garstang [5] gave a proof without any reference except to his wife. Eventually, in
1989 all the proofs gathered in this note [9]. In all the problem was posed at least
six times: in 1962 in [7], in 1966 in [1], in 1967 in [8], in 1970 in [6], in 1974 in [4]
and in 1986 in [5].

The Proofs.

Together the proofs cover most of the methods found in a textbook on combi-
natorics. They use the ideas of computing differences, branching and counting, the
principle of correspondence, the solution of a difference equation using generating
functions, induction or recursion, and finally, the adequate reference. I hope to
present the proofs in enough detail for the reader to grasp them while reading. But
even with this many solutions at hand the teacher presenting the problem in class
may very well encounter a student with a completely new line of attack.

The Difference Method.

The difference method is found in [1], [7], [8], [10], and [13]. We count the
triangles in Tn of sizes 1,2,3,... carefully. Then we find the differences ∆1, their
differences ∆2 and so on hoping to reach a row of zeros. We obtain the following
table:

n 1 2 3 4 5 6 7
# 1 5 13 27 48 78 118
∆1 4 8 14 21 30 40 52
∆2 4 6 7 9 10 12
∆3 2 1 2 1 2 1
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It didn’t quite work. But if we consider the sequences of odd sizes alone and of
even sizes alone, each of them will exhibit the desired behavior.

The triangles of odd size give:

m 0 1 2 3 4 5
2m + 1 1 3 5 7 9 11

# 1 13 48 118 235 411
∆1 12 35 70 117 176
∆2 23 35 47 59
∆3 12 12 12

And the triangles of even size give:

m 1 2 3 4 5 6
2m 2 4 6 8 10 12
# 5 27 78 170 315 525
∆1 22 51 92 145 210
∆2 29 41 53 65
∆3 12 12 12

Each of these patterns allows us to guess a formula. Of course, we have no
guarantee that the third differences ∆3 will remain constant forever, so we have
really proved nothing.

When the third differences are constant, then the second differences grow linearly,
and the first differences grow quadratically, while eventually the very function might
grow cubically. So, f(2m + 1) in particular must take the form

f(2m + 1) = am3 + bm2 + cm + d (2)

and the values 1,13,48,118 for m = 0, 1, 2, 3.

Thus we are led to solve the equations

d = 1

a + b + c + d = 13

8a + 4b + 2c + d = 48

27a + 9b + 3c + d = 118.

It is routine to see that the solution is (a, b, c, d) = (2, 11
2 , 9

2 , 1). A reasonable
suggestion for a formula for n odd, therefore, is:

f(2m + 1) =
1

2
(4m3 + 11m2 + 9m + 2). (3)

This is the form in [1] and [7].

Another way of finding the polynomial (2) or its analogue is by an interpolation



4 MOGENS ESROM LARSEN

formula. Using Lagrange’s formula we get:

f(2m) = 5
(m − 2)(m − 3)(m − 4)

(1 − 2)(1 − 3)(1 − 4)

+ 27
(m − 1)(m− 3)(m − 4)

(2 − 1)(2 − 3)(2 − 4)

+ 78
(m − 1)(m− 2)(m − 4)

(3 − 1)(3 − 2)(3 − 4)

+ 170
(m − 1)(m − 2)(m − 3)

(4 − 1)(4 − 2)(4 − 3)

=
1

2
(4m3 + 5m2 + m). (4)

This also is the form found in [1] and [7].

If we want to unify formulas (3) and (4), we might substitute n = 2m + 1 in (3)
and n = 2m in (4). Then we get the forms [1] and [7]:

f(n) =
2n3 + 5n2 + 2n − 1

8
for n odd, (5)

f(n) =
2n3 + 5n2 + 2n

8
for n even. (6)

Only the numerator of (6) has a first–degree factorization.

But if we define δ(n) by

δ(n) =

{

0 for n even

1 for n odd
(7)

then we can join (5) and (6):

f(n) =
n(n + 2)(2n + 1) − δ(n)

8
, (8)

which of course is equivalent to (1).

Branching and Counting.

The idea of branching into right-way-up triangles and upside-down triangles and
counting them separately has been widely used. Let us denote these two numbers
by △ (n) and ▽(n) respectively. Then we have

f(n) =△ (n) + ▽(n). (9)

An even further branching is seen in [5], [6], [8] and [13]. While [6] and [8] branch
so much that the final summation becomes complicated, [5] and [13] are satisfied
with the natural branching by size.
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i − 1

n − i + 1

Figur 2

The top of a △-triangle of size n − i + 1 must lie in the shaded region of Figure
2. Hence the number of △-triangles of size n − i + 1 equals the number of possible

tops, i.e. 1 + 2 + ... + i = i(i+1)
2

. So,

△ (n) =

n
∑

i=1

i(i + 1)

2
=

1

2

(

n(n + 1)(2n + 1)

6
+

n(n + 1)

2

)

=
n(n + 1)(n + 2)

6
=

(

n + 2

3

)

. (10)

i

i

i i
Figur 3

Similarly the bottom vertex of a ▽-triangle of size i must lie in the shaded region
of Figure 3. Hence the number of ▽-triangles of size i equals the number of possible
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bottoms, i.e. 1 + 2 + ... + (n + 1 − 2i) = (n+1−2i)(n+2−2i)
2 . Hence the total number

of ▽-triangles must be

▽(n) =

[n

2
]

∑

i=1

(n + 1 − 2i)(n + 2 − 2i)

2

=
(n + 1)(n + 2)

2

[n

2

]

− (n + 1 + n + 2)

[n

2
]

∑

i=1

i + 2

[n

2
]

∑

i=1

i2

=
(n + 1)(n + 2)

2

[n

2

]

−
2n + 3

2

[n

2

] ([n

2

]

+ 1
)

+
1

3

[n

2

] ([n

2

]

+ 1
)(

2
[n

2

]

+ 1
)

.

This expression can be simplified by the use of δ(n) defined by (7), using
[

n
2

]

=
n−δ(n)

2 . Hence we can continue:

▽(n) =
n − δ(n)

2
·

(

n2 + 3n + 2

2
+

n + 2 − δ(n)

2

(

n + 1 − δ(n)

3
−

2n + 3

2

))

=
2n3 + 3n2 − 2n − 3δ(n)

24

=
n(n + 2)(2n − 1)

24
−

δ(n)

8
, (11)

using the simple fact δ(n)2 = δ(n). The formula (8) follows by adding (10) and
(11), according to (9).

Correspondence.

This principle is used in [3] in the following way. Each triangle is determined by
a triple of integers i, j, k with 0 ≤ i, j, k ≤ n where i, j, k are the “heights” of its
three sides (number of rows from the sides of the large triangle, Tn). See Figure 4.
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i
j

k

Figur 4

Each triple defines a triangle, except if it defines a point. The latter is the case
if i + j + k = n. But the triangle will be inside Tn only if

i + j ≤ n, (12)

i + k ≤ n, (13)

j + k ≤ n; (14)

hence the set of triangles corresponds to the set of triples

A = {(i, j, k) | i + j ≤ n and j + k ≤ n and k + i ≤ n and i + j + k 6= n}

A triple from A corresponds to a triangle that is right way up exactly if i+j+k < n.
So in order to find △ (n) we have to count

B = {(i, j, k) ∈ A | i + j + k < n} ,

and to find ▽(n) we have to count

C = {(i, j, k) ∈ A | i + j + k > n} . (15)

Before counting B we note that (12), (13) and (14) are superfluous - they follow
from i + j + k < n. The trick now is to define the mapping on B

(i, j, k) −→ (i + 1, i + j + 2, i + j + k + 3).

This mapping is a one-to-one correspondence from B onto the set

D = {(a, b, c) | 1 ≤ a < b < c ≤ n + 2} .
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But each triple of D corresponds to a subset of size 3 taken from the numbers
1, ..., n + 2, and thus D has the familiar binomial coefficient (10) as its cardinality

△ (n) =

(

n + 2

3

)

.

To count C is not so easy. We define a mapping on C

(i, j, k) −→ (i + j + k − n, i + 1, i + j + 2). (16)

This triple satisfies the following conditions

0 < i + j + k − n

by the defining inequality of C, (15),

i + j + k − n < i + 1

by (14),
i + 1 < i + j + 2

because 0 ≤ j,
i + j + 2 ≤ n + 2

by (12). Finally from (13) we get the additional condition

(i + j + k − n) + (i + 1) < (i + j + 2),

which actually is equivalent to (13). Hence the mapping (16) is a one-to-one corre-
spondence from C onto the set

E = {(a, b, c) | 1 ≤ a < b < c ≤ n + 2 and a + b < c}

To count E we proceed as follows. For each choice of a + b = d, d = 3, 4, ..., n + 1,

we can choose a, 1 ≤ a ≤
[

d−1
2

]

, and c, d < c ≤ n + 2, while b must be b = d − a.
Hence the number of triples in E is

▽(n) =

n+1
∑

d=3

(n + 2 − d)

[

d − 1

2

]

.

One way to proceed is to consider the difference,

▽(n) − ▽(n − 1) =
n+1
∑

d=3

(n + 2 − d)

[

d − 1

2

]

−
n

∑

d=3

(n + 1 − d)

[

d − 1

2

]

=
[n

2

]

+
n

∑

d=3

[

d − 1

2

]

=
[n

2

]

+
n

∑

d=3

d − 1 − δ(d − 1)

2

=
[n

2

]

+
1

2

(

n(n − 1)

2
− 1

)

−
1

2

[

n − 2

2

]

=
n2

4
−

δ(n)

4
=

[

n2

4

]

.
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Then we obtain

▽(n) =

n
∑

ν=1

[

ν2

4

]

=

n
∑

ν=1

ν2

4
−

n
∑

ν=1

δ(ν)

4

=
1

4
·
n(n + 1)(2n + 1)

6
−

1

4

[

n + 1

2

]

=
n(n + 1)(2n + 1)

24
−

1

4
·
n + 1 − δ(n + 1)

2

=
n(n + 2)(2n − 1)

24
−

δ(n)

8
,

(17)

which is (11).

The Difference Equation.

Figur 5

The triangle Tn of size n contains exactly three triangles T i
n−1 i = 1, 2, 3 of size

n − 1. The intersection of two triangles, T i
n−1 ∩ T

j
n−1 of size n − 1 is a triangle,

T
ij
n−2 of size n − 2, so the three pairs form three such triangles. Fortunately, the

intersection of all three - or all six - is one triangle of size n − 3, Tn−3. Their
relations are illustrated in the following Diagram 1:
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Tn

T 1
n−1 T 2

n−1 T 3
n−1

T 12
n−2 T 13

n−2 T 23
n−2

Tn−3

Diagram 1

First we will count the number of triangles inside Tn that are also inside at least
one of the triangles T i

n−1. Recall that f(n − 1) is the number of triangles in each
of the three triangles of size n − 1. However 3f(n − 1) counts each triangle in the

three triangles T
ij
n−2 twice, and each triangle in Tn−3 three times. Hence we must

subtract the number of triangles f(n−2) in T
ij
n−2 three times. But now the number

of triangles in Tn−3, f(n − 3), has been added three times and subtracted three
times. Therefore we must add in the number of triangles in Tn−3, f(n − 3).

So, the number of triangles in Tn inherited from the smaller triangles Tn−1 must
be

3f(n − 1) − 3f(n − 2) + f(n − 3)

To obtain the total number of triangles in Tn we must add one or two of its own:
The very triangle Tn is always there, and for n even, the upside-down triangle of
size n

2 (the dottet triangle in Figure 5) is not contained in any smaller ones. Hence
the difference equation for f(n) is

f(n) = 3f(n − 1) − 3f(n − 2) + f(n − 3) + 2 − δ(n). (18)

This is the formula found in [11].
This equation can be solved in several ways. As we shall see in a later section,

Moon and Pullman in [11] use the elegant method of an exponential generating
function, but one could as well use an ordinary generating function as in the next
section. Here, we will proceed in analogy to the solution of higher order differential
equations.

We first reformulate the equation as

f(n) − 3f(n − 1) + 3f(n − 2) − f(n − 3) = 2 − δ(n). (19)

To solve this difference equation of higher degree we decompose it into a system of
difference equations of degree 1. This is always possible. The system of difference
equations is obtained by the definitions:

g(n) = f(n) − f(n − 1) and h(n) = g(n)− g(n − 1).

In fact, then we find by direct calculation

h(n) − h(n − 1) = f(n) − 3f(n − 1) + 3f(n − 2) − f(n − 3) = 2 − δ(n).
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Therefore equation (19) can be replaced by the system

h(n) − h(n − 1) = 2 − δ(n),

g(n) − g(n − 1) = h(n),

f(n) − f(n − 1) = g(n).

The solutions are found successively:

h(n) = α +

n
∑

ν=1

(2 − δ(ν)) = α +
3n − δ(n)

2
,

g(n) = β +

n
∑

ν=1

(

α +
3ν − δ(ν)

2

)

= β + α · n +
3n2 + 2n − δ(n)

4
,

f(n) =
n

∑

ν=1

(

β + α · ν +
3ν2 + 2ν − δ(ν)

4

)

=
3

4
·
n(n + 1)(2n + 1)

6
+

1

2
·
n(n + 1)

2
−

1

4
·
n + δ(n)

2
+

+ β · n + α ·
n(n + 1)

2

=
n(n + 2)(2n + 1) − δ(n)

8
+ β · n + α ·

n(n + 1)

2
.

(20)

From f(1) = 1 and f(2) = 5 we obtain α = β = 0. Hence (20) is easily recognized
as (8).

The Generating Function.

We define a formal power series F (x) with n-th coefficient equal to f(n), where
f(n) is supposed to solve (19).

F (x) =
∞
∑

n=1

f(n)xn. (21)

By successive multiplication of (21) with x we obtain

xF (x) =

∞
∑

n=2

f(n − 1)xn

x2F (x) =

∞
∑

n=3

f(n − 2)xn

x3F (x) =
∞
∑

n=4

f(n − 3)xn.

The difference equation (19) gives

F (x) − 3xF (x) + 3x2F (x) − x3F (x) =
∞
∑

n=1

(2 − δ(n))xn

= 2

∞
∑

n=1

xn −

∞
∑

n=1

δ(n)xn = 2x

∞
∑

n=0

xn − x

∞
∑

n=0

x2n

=
2x

1 − x
−

x

1 − x2
=

x + 2x2

1 − x2
. (22)
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We obtain from (22)

F (x) =
2x + x2

(1 − x)3(1 − x2)

=
3
2

(1 − x)4
−

7
4

(1 − x)3
+

1
8

(1 − x)2
+

1
16

1 − x
+

1
16

1 + x
. (23)

Each of these partial fractions has a well-known power series expansion, obtained
by successive differentiation of the geometric series:

1

1 + x
=

∞
∑

n=0

(−x)n

1

1 − x
=

∞
∑

n=0

xn

1

(1 − x)2
=

∞
∑

n=0

(n + 1)xn

1

(1 − x)3
=

∞
∑

n=0

(n + 1)(n + 2)

2
xn

1

(1 − x)4
=

∞
∑

n=0

(n + 1)(n + 2)(n + 3)

6
xn.

(24)

Substituting the expressions in (24) into (23) and comparing coefficients with (21)
gives

f(n) =
3

2

(n + 1)(n + 2)(n + 3)

6
−

7

4

(n + 1)(n + 2)

2

+
1

8
(n + 1) +

1

16
+

1

16
(−1)n =

2n3 + 5n2 + 2n − δ(n)

8
,

easily recognized as (8).

The Exponential Generating Function.

In [11] Moon and Pullman solve equation (18) with the sophisticated technique
of exponential generating functions. We replace n with n + 3 in (19) to get

f(n + 3) − 3f(n + 2) + 3f(n + 1) − f(n) = 1 + δ(n). (25)

We define a formal power series F (x) with n-th coefficient equal to f(n)
n!

, where
f(n) is supposed to solve (25);

F (x) =
∞
∑

n=1

f(n)

n!
xn. (26)

By successive differentiation of (26) we obtain

F ′(x) =
∞
∑

n=0

f(n + 1)

n!
xn,

F ′′(x) =
∞
∑

n=0

f(n + 2)

n!
xn,

F ′′′(x) =

∞
∑

n=0

f(n + 3)

n!
xn.
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The difference equation (25) gives the differential equation

F ′′′(x) − 3F ′′(x) + 3F ′(x) − F (x) =

∞
∑

n=0

1 + δ(n)

n!
xn

= ex + sinh(x) =
3

2
ex −

1

2
e−x. (27)

It is easy enough to solve (27) using standard techniques; we obtain the function
F (x) in the form

F (x) =
1

4
x3ex + αx2ex + βxex + γex +

1

16
e−x

with α, β and γ to be chosen. When we substitute the series for ex and e−x we get

F (x) =
∞
∑

n=0

(

1

4
n(n − 1)(n − 2) + αn(n − 1) + βn + γ +

(−1)n

16

)

xn

n!
.

As we know the first few values of f(n) we can easily deduce the values of the
constants. We find that when

n = 0, γ +
1

16
= f(0) = 0;

when n = 1, β + γ −
1

16
= f(1) = 1;

and when n = 2, 2α + 2β + γ +
1

16
= f(2) = 5.

Hence

γ = −
1

16
, β =

9

8
, α =

11

8
;

so finally

f(n) =
2n(n − 1)(n − 2) + 11n(n − 1) + 9n

8
−

1 − (−1)n

16

=
n(2n2 + 5n + 2)

8
−

δ(n)

8
,

easily recognized as (8).
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Induction or Recursion.

Tn−1

Figur 6

In this section we use a first order difference equation to find f(n). Compared
to (19), the gain in simplification on the left of the equality may be offset by
complications on the right side:

f(n) − f(n − 1) = F (n)

where F (n) is some possibly complicated function. This approach is considered in
[2].

This time we consider only one triangle Tn−1 of size n − 1 inside Tn (Figure 6),
and then we try to compute the number of newcomers F (n) that are in Tn but not
in Tn−1.

It is easier to do this if we branch into right-way-up triangles and upside-down
triangles, so we shall solve the two problems:

△ (n)− △ (n − 1) = G(n),

▽(n) − ▽(n − 1) = H(n),

where we look for G and H.



THE ETERNAL TRIANGLE – A HISTORY OF A COUNTING PROBLEM 15

Figur 7

There is one right-way-up newcomer in Tn for each dot in Tn−1 (see Figure 7),
giving a total of

G(n) =
n

∑

i=1

i =
n(n + 1)

2
=

(

n + 1

2

)

.

From this follows immediately

△ (n) =
n

∑

ν=1

G(ν) =
n

∑

ν=1

(

ν + 1

2

)

=

(

n + 2

3

)

. (28)

The sum (28) was verified directly in (10), but it can also be proved with induction
using the formula

(

n

i

)

+

(

n

i − 1

)

=

(

n + 1

i

)

with i = 3. Actually, the induction step is:

n
∑

ν=1

(

ν + 1

2

)

=

n−1
∑

ν=1

(

ν + 1

2

)

+

(

n + 1

2

)

=

(

n + 1

3

)

+

(

n + 1

2

)

=

(

n + 2

3

)

.
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i
Figur 8

As we are used to by now, the function H(n) is more tricky to find. All newcomers
have their bottom vertex on the bottom side of the triangle Tn (Figure 8). For each
dot i, i = 1, ...,

[

n
2

]

, there is room for i new triangles inside Tn. Hence we have by
symmetry

H(n) = 2

[n

2
]

∑

i=1

i − (1 − δ(n))
n

2

where we were careful not to count i = n
2

twice when n is even. We compute that

H(n) =
[n

2

] ([n

2

]

+ 1
)

− (1 − δ(n))
n

2

=
n − δ(n)

2

(

n − δ(n)

2
+ 1

)

−
n

2
+

n

2
δ(n)

=
n2

4
+ δ(n)

(

n

2
−

n

4
−

n

4
+

1

4
−

1

2

)

=
n2

4
−

δ(n)

4
.

We proceed as in (17) and get

▽(n) =
n(n + 2)(2n − 1)

24
−

δ(n)

8
,

and so eventually, (11).

The Good Reference.

One way to reach a solution is to ask the public. When the question “How many
triangles?” was asked in [4], approximately 60 persons replied with the formula,
most of them referring to [8]. In [2] and [13] the problem was called “well-known,”
in [13] based on the references [6], [10], [11], and [12]. (We may now think of
changing the attribute to “well-solved.”)
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Conclusion.

This is a story about the power of mathematics. Each of the well-established
methods of counting proves its worth in the hunt for the tricky triangles by allowing
the escape of not even one triangle.
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