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Dear Peter.

Computing your strange double sum:
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The second form may be written as
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We may change the variable in the inner sum to m = k + s and get
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The inner sum is of type II(3,3,1) so it is proportional to its canonical form (5.8)
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The factor may be taken as the fractions of the 0–terms by (5.9), i.e.,
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using (2.1). Fortunately, this factor is independent of s.
Hence the sum becomes
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The inner sum is still of type II(3,3,1), so we may apply the transformation
(9.7) to write in stead
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Changing the order of summation we get the inner sum
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this is the well known Chu–Vandermonde (8.9) so it equals
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As [i− k]a−j = 0 for i− k < a− j or i + j − a < k, we have the zero for i + j < a.
If not, let p = i + j − a ≥ 0. Then we get zero for k > p. So, we may write the

whole sum as
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(2.8) and (2.2). So we may write it as
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This sum is a Pfaff–Saalschütz sum as we have

a + 1 + r + p − r − 1 − 1 − a − p + 1 = 0

So the sum becomes from (9.1)
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which result is zero for p > 0. Hence the only nonzero result is the expression for
p = 0 (i.e., i + j = a). It becomes using (2.1) to get [−1 − j]i = [i + j]i(−1)i:
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QED.
The references are of course to Summa Summarum.
I guess the proof is beautiful enough!
Best Regards, Mogens.


