YOUR STRANGE DOUBLE SUM

Mogens Esrom Larsen
October 24, 2007
Department of Mathematical Sciences
University of Copenhagen

Dear Peter.
Computing your strange double sum:

$$
\sum_{m=0}^{a} \frac{(-1)^{m}}{\binom{a}{m}}\left[\sum_{s=0}^{a}\binom{a-i}{s}\binom{i}{m-s}\binom{a-j}{a+r-i-j-s}\binom{j}{i+j+s-r-m}\right]
$$

or, equivalently

$$
\sum_{s=0}^{a}\binom{a-i}{s}\binom{a-j}{a+r-i-j-s}\left[\sum_{m=0}^{a} \frac{(-1)^{m}}{\binom{a}{m}}\binom{i}{m-s}\binom{j}{i+j+s-r-m}\right]
$$

The second form may be written as

$$
\frac{1}{a!} \sum_{s}\binom{a-j}{s+i-r} \frac{(a-i)!}{s!(a-i-s)!} \sum_{m}\binom{i}{m-s}\binom{j}{m-s+r-i} m!(a-m)!(-1)^{m}
$$

We may change the variable in the inner sum to $m=k+s$ and get
$\frac{(a-i)!}{a!} \sum_{s}\binom{a-j}{s+i-r} \frac{(-1)^{s}}{s!(a-i-s)!} \sum_{k}\binom{i}{k}\binom{j}{k+r-i}(s+k)!(a-s-k)!(-1)^{k}$
Now, $\frac{(s+k)!}{s!}=[s+k]_{k}$ and $\frac{(a-s-k)!}{(a-i-s)!}=[a-s-k]_{i-k}$ so we may distribute $\binom{i}{k}=$ $\frac{i!}{k!(i-k)!}$ to write

$$
\frac{1}{\binom{a}{i}} \sum_{s}\binom{a-j}{s+i-r}(-1)^{s} \sum_{k}\binom{j}{k+r-i}\binom{s+k}{k}\binom{a-s-k}{i-k}(-1)^{k}
$$

The inner sum is of type $\mathrm{II}(3,3,1)$ so it is proportional to its canonical form (5.8)

$$
\sum_{k}\binom{i}{k}[-1-s]_{k}[i+j-r]_{k}[i-a+s-1]_{i-k}[r]_{i-k}(-1)^{k}
$$

The factor may be taken as the fractions of the 0 -terms by (5.9), i.e.,

$$
\frac{\binom{j}{r-i}\binom{a-s}{i}}{[i-a+s-1]_{i}[r]_{i}}=\frac{[j]_{r-i}[a-s]_{i}}{[a-s]_{i}(-1)^{i}[r]_{i}(r-i)!i!}=\frac{[j]_{r-i}(-1)^{i}}{i!r!}
$$

using (2.1). Fortunately, this factor is independent of s.
Hence the sum becomes

$$
\frac{[j]_{r-i}(-1)^{i}}{i!r!\binom{a}{i}} \sum_{s}\binom{a-j}{s+i-r}(-1)^{s} \sum_{k}\binom{i}{k}[-1-s]_{k}[i+j-r]_{k}[i-a+s-1]_{i-k}[r]_{i-k}(-1)^{k}
$$

The inner sum is still of type $\operatorname{II}(3,3,1)$, so we may apply the transformation (9.7) to write in stead

$$
\frac{[j]_{r-i}(-1)^{i}}{i!r!\binom{a}{i}} \sum_{s}\binom{a-j}{s+i-r}(-1)^{s} \sum_{k}\binom{i}{k}[a+1]_{k}[r]_{k}[-1-s]_{i-k}[-1-j]_{i-k}(-1)^{k}
$$

Changing the order of summation we get the inner sum

$$
\sum_{s}\binom{a-j}{s+i-r}[-1-s]_{i-k}(-1)^{s}
$$

this is the well known Chu-Vandermonde (8.9) so it equals

$$
(-1)^{r+i}[i+j-a-r-1]_{i+j-a-k}[i-k]_{a-j}
$$

As $[i-k]_{a-j}=0$ for $i-k<a-j$ or $i+j-a<k$, we have the zero for $i+j<a$.
If not, let $p=i+j-a \geq 0$. Then we get zero for $k>p$. So, we may write the whole sum as

$$
\frac{[j]_{r-i}(-1)^{r}}{i!r!\binom{a}{i}} \sum_{k}\binom{i}{k}[a+1]_{k}[r]_{k}[-1-j]_{i-k}[i+j-a-r-1]_{i+j-a-k}[i-k]_{a-j}(-1)^{k}
$$

Now, $\binom{i}{k}[i-k]_{a-j}=[i]_{i-p}\binom{p}{k}$ and $[-1-j]_{i-k}=[-1-j]_{i-p}[-1-j-i+p]_{p-k}$ by (2.8) and (2.2). So we may write it as

$$
\frac{[j]_{r-i}(-1)^{r}[i]_{i-p}[-1-j]_{i-p}}{i!r!\binom{a}{i}} \sum_{k}\binom{p}{k}[a+1]_{k}[r]_{k}[p-r-1]_{p-k}[-1-a]_{p-k}(-1)^{k}
$$

This sum is a Pfaff-Saalschütz sum as we have

$$
a+1+r+p-r-1-1-a-p+1=0
$$

So the sum becomes from (9.1)

$$
[0]_{p}[a+p-r]_{p}
$$

which result is zero for $p>0$. Hence the only nonzero result is the expression for $p=0$ (i.e., $i+j=a$). It becomes using (2.1) to get $[-1-j]_{i}=[i+j]_{i}(-1)^{i}$:

$$
\frac{[j]_{r-i}(-1)^{r}[i]_{i}[-1-j]_{i-p}}{i!r!\binom{a}{i}}=\frac{(-1)^{r+i}[i+j]_{i}[j]_{r-i}}{r!\binom{a}{i}}=(-1)^{r+i} \frac{[a]_{r}}{r!\binom{a}{i}}=(-1)^{r+i} \frac{\binom{a}{r}}{\binom{a}{i}}
$$

QED.
The references are of course to Summa Summarum.
I guess the proof is beautiful enough!
Best Regards, Mogens.

