THE MONTHLY PROBLEM 11406, JANUARY 2009.

Mogens Esrom Larsen

April 3, 2009

Department for Mathematical Sciences
 University of Copenhagen

Proposed by A. A. Dzhumadil'daeva, Almaty, Republics Physics and Mathematics School, Almaty, Kazakstan.

Let n !! denote the product of all positive integers not greater than n and congruent to $n \bmod 2$, and let $0!!=(-1)!!=1$. Thus $7!!=105$ and $8!!=384$. For positive integer, n, find in closed form:

$$
\sum_{i=0}^{n}\binom{n}{i}(2 i-1)!!(2(n-i)-1)!!
$$

Solution: $2^{n} n$!.
Proof:
We supply the producs of odd numbers with the missing even numbers to write the sum

$$
\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i} \frac{(2 i)!}{i!} \frac{(2(n-i)!}{(n-i)!}
$$

Introducing the notation of a descending factorial:

$$
[x]_{n}:=x(x-1) \cdots(x-n+1)
$$

(Of course, $[x]_{0}=0$) we may scip the common factors from the fractions and write

$$
\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}[2 i]_{i}[2(n-i)]_{n-i}
$$

Now we apply the well known identity

$$
[2 i]_{i}=(-4)^{i}\left[-\frac{1}{2}\right]_{i}
$$

to rewrite the sum as

$$
(-2)^{n} \sum_{i=0}^{n}\binom{n}{i}\left[-\frac{1}{2}\right]_{i}\left[-\frac{1}{2}\right]_{n-i}
$$

This sum may be recognized as the well known Chu-Vandermonde sum, so it equals

$$
(-2)^{n}\left[-\frac{1}{2}-\frac{1}{2}\right]_{n}=2^{n} n!
$$

In my recent textbook, Summa Summarum, A K Peters 2007, we find the ChuVandermonde formula as no. 8.2 and the transformation as formula 5.12.

