THE MONTHLY PROBLEM 11164

Mogens Esrom Larsen
October 12, 2005

Institut for Matematiske Fag
Københavns Universitet

Solution to the problem 11164 from José Luis Díaz-Barrero in Amer. Math. Monthly 112,6 p. 568.

Proof of the formula

$$
\sum_{k=1}^{n}(-1)^{k+1}\binom{n}{k} \sum_{1 \leq i \leq j \leq k} \frac{1}{i j}=\frac{1}{n^{2}}
$$

Introducing harmonic numbers as

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

I shall prefer to write the formula as

$$
\sum_{k=1}^{n}(-1)^{k+1}\binom{n}{k} \sum_{j=1}^{k} \frac{1}{j} H_{j}=\frac{1}{n^{2}}
$$

Now, summation by parts yields this sum to equal

$$
1-\sum_{k=1}^{n}(-1)^{k+1}\binom{n-1}{k} \frac{1}{k+1} H_{k+1}=1-\frac{1}{n} \sum_{k=2}^{n+1}(-1)^{k}\binom{n}{k} H_{k}
$$

As we may write the terms as a difference of the function

$$
g(n, k)=(-1)^{k-1}\left(\binom{n-1}{k-1} H_{k}-\frac{1}{n}\binom{n-1}{k}\right)
$$

that is

$$
(-1)^{k}\binom{n}{k} H_{k}=g(n, k+1)-g(n, k)
$$

the sum becomes telescoping to yield only the last term for $k=2$:

$$
1+\frac{1}{n} g(n, 2)=1-\frac{1}{n}\left(\binom{n-1}{1} H_{2}-\frac{1}{n}\binom{n-1}{2}\right)=\frac{1}{n^{2}}
$$

