The numbers a, i, j and r are given.
Prove that

$$
\sum_{m=0}^{a} \frac{(-1)^{m}}{\binom{a}{m}}\left[\sum_{s=0}^{a}\binom{a-i}{s}\binom{i}{m-s}\binom{a-j}{a+r-i-j-s}\binom{j}{i+j+s-r-m}\right]
$$

with the obvious rearrangement

$$
\sum_{s=0}^{a}\binom{a-i}{s}\binom{a-j}{a+r-i-j-s}\left[\sum_{m=0}^{a} \frac{(-1)^{m}}{\binom{a}{m}}\binom{i}{m-s}\binom{j}{i+j+s-r-m}\right]
$$

is equal to 0 if $i+j \neq a$, and if $i+j=a$, then this expression is

$$
(-1)^{i+r} \frac{\binom{a}{r}}{\binom{a}{i}}=(-1)^{i+r} \frac{i!j!}{r!(a-r)!} .
$$

(For motivation, this expression is roughly the coefficient of x^{r} in some series in the $i j$ th entry of an $a \times a$ matrix.)

