
Real algebraic K-theory

Lars Hesselholt · Ib Madsen

Introduction

This account of our work on real algebraic K-theory is in a preliminary form, but
we have chosen to make the manuscript available, since the definitions and results
herein have already been used. At present, the manuscript contains a complete proof
of Theorem A, while our proofs of Theorems B and C only exist as hand-written
documents.

The central construction in the work presented here is a variant of the definition
of algebraic K-theory given in Waldhausen’s seminal paper [25]. To briefly recall
Waldhausen’s construction, let ∆ be the simplicial index category, and let

∆ i // Cat

be the fully faithful functor that to a non-empty finite ordinal [n] assigns the category
i([n]) with object set [n] and with a unique morphism from i to j if and only if i ⩽ j.
Now, to every exact category with weak equivalences C , Waldhausen’s construction
associates a simplicial exact category with weak equivalences S1,1C [−] defined as
follows. Writing [−,−] to for the category with objects the functors and morphisms
the natural transformations, the category S1,1C [n] is the full subcategory

S1,1C [n]⊂ [[i([1]), i([n])],C ]

whose objects are the functors A : [i([1]), i([n])]→ C such that
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(i) for every functor µ : i([0])→ i([n]),

A(s0µ) = 0,

a chosen null-object in C ;
(ii) and for every functor σ : i([2])→ i([n]), the sequence

A(d2σ) // A(d1σ) // A(d0σ)

in C is exact.

Here s0µ = µ ◦ i(s0) and dvσ = σ ◦ i(dv); and the morphisms in (ii) are induced by
the unique natural transformations dv⇒ dv−1. A sequence A′→ A→ A′′ in S1,1C [n]
is defined to be exact if for every functor θ : i([1])→ i([n]), the induced sequence
A′(θ)→ A(θ)→ A′′(θ) in C is exact; and a morphism A→ A′ in S1,1C [n] is de-
fined to be a weak equivalence if for every functor θ : i([1])→ i([n]), the induced
morphism A(θ)→ A′(θ) in C is a weak equivalence. The Waldhausen construction
may be iterated, and we write Sr,rC [−] for the r-simplicial exact category with weak
equivalences obtained by applying the construction r times. The classifying space of
the r-simplicial subcategory of weak equivalences,

K(C )r = B(wSr,rC [−]),

is a pointed space with a left action by the symmetric group Σr on r letters induced
from permutation of the r simplicial directions. This family of pointed left Σr-spaces
together with the pointed maps

K(C )r ∧S1
σr,1

// K(C )r+1

induced from the inclusion of the 1-skeleton in the last simplicial direction forms a
symmetric spectrum K(C ); this is Waldhausen’s algebraic K-theory spectrum.

We pause to introduce some terminology to be used throughout. We write

G = Gal(C/R)

and say that a pointed space with a continuous left G-action is a pointed real space.
We define the real circles S1,0 = SR and S1,1 = SiR to be the pointed real spaces given
by the one-point compactifications of the 1-dimensional trivial representation and
sign representation, respectively. More generally, for integers p ⩾ q ⩾ 0, we set

Sp,q = (S1,0)∧(p−q)∧ (S1,1)∧q,

following the indexing in motivic homotopy theory. It is a p-dimensional sphere and
its subspace of points fixed by the G-action is a (p−q)-dimensional sphere.

Suppose now that (D,η) is a duality structure on the exact category with weak
equivalences C , that is, D : C op→ C is an exact functor and η : idC ⇒ D◦Dop is a
natural weak equivalence such that the composite natural transformation

D
η◦D +3 D◦Dop ◦D

D◦ηop
+3 D
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is equal to the identity natural transfomation of D. The duality structure (D,η) gives
rise to an action of the group G = Gal(C/R) on the pointed left Σr-spaces K(C )r. Let
us here write K(C ,D,η)r for this pointed real left Σr-space. Moreover, the spectrum
structure maps in the algebraic K-theory spectrum K(C ) define real pointed maps

K(C ,D,η)r ∧S1,1
σr,1

// K(C ,D,η)r+1.

Hence, we obtain a symmetric spectrum K(C ,D,η) in the category of real pointed
spaces with respect to the sphere S1,1. From the point of view of stable equivariant
homotopy theory, this is not a very reasonable object. For instance, the family of
subspaces of points fixed by the G-action form a symmetric spectrum in the category
of pointed spaces with respect to the sphere S0 rather than the sphere S1.

To address this, we introduce the following variant of Waldhausen’s construction,
which we call the real Waldhausen construction. First, to an exact category with weak
equivalences C , the real Waldhausen assigns the simplicial exact category with weak
equivalences S2,1C [−], where S2,1C [n] is the full subcategory

S2,1C [n]⊂ [[i([2]), i([n])],C ]

whose objects are the functors A : [i([2]), i([n])]→ C such that

(i) for every functor µ : i([1])→ i([n]),

A(s0µ) = A(s1µ) = 0,

a chosen null-object in C ;
(ii) for every functor σ : i([3])→ i([n]), the sequence

A(d3σ) // A(d2σ) // A(d1σ) // A(d0σ)

in C is exact.

Here again svµ = µ ◦ i(sv); dvσ = σ ◦ i(dv); the morphisms in (ii) are induced by
the unique natural transformations dv ⇒ dv−1; and the exactness of the sequence
in (ii) means that the left-hand morphism is an admissible monomorphism, that the
right-hand morphism is an admissible epimorphism, and that the middle morphism
induces an isomorphism of the cokernel of the left-hand morphism onto the kernel of
the right-hand morphism. A sequence A′→ A→ A′′ in S2,1C [n] is defined to be exact
if for every functor θ : i([2])→ i([n]), the induced sequence A′(θ)→ A(θ)→ A′′(θ)
in C is exact; and a morphism A→ A′ in S2,1C [n] is defined to be a weak equivalence
if for every functor θ : i([2])→ i([n]), the induced morphism A(θ)→ A′(θ) in C is
a weak equivalence. The real Waldhausen construction may be iterated, and we write
S2r,rC [−] for the r-simplicial exact category with weak equivalences obtained by
applying the construction a total of r times. The classifying space of the r-simplicial
subcategory of weak equivalences,

KR(C )r = B(wS2r,rC [−]),
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is a pointed space with a left action by the symmetric group Σr on r letters induced
from permutation of the r simplicial directions. This family of pointed left Σr-spaces
together with the pointed maps

KR(C )r ∧S2
σr,1

// KR(C )r+1

induced from the inclusion of the 2-skeleton in the last simplicial direction constitute
a symmetric spectrum KR(C ) with respect to the 2-sphere.

Suppose now that (C ,D,η) is an exact category with weak equivalences and
duality. The duality structure (D,η) gives rise to a left G-action on the pointed
left Σr-space KR(C )r, and we denote the resulting pointed real left Σr-space by
KR(C ,D,η)r. With respect to this real structure, the spectrum structure maps in the
symmetric spectrum KR(C ) are real pointed maps

KR(C ,D,η)r ∧S2,1
σr,1

// KR(C ,D,η)r+1.

Hence, this defines a symmetric spectrum KR(C ,D,η) in the symmetric monoidal
category of pointed real spaces under smash product with respect to the sphere S2,1.
We call a symmetric spectrum of this form a real symmetric spectrum, and we call
the real symmetric spectrum KR(C ,D,η) the real algebraic K-theory of the exact
category with weak equivalences and duality (C ,D,η). A real symmetric spectrum
is precisely a G-equivariant symmetric spectrum in the sense of Mandell [12]. We
recall that the category SpΣ (RealTop∗,S2,1) of real symmetric spectra with the model
structure defined in op. cit. is a model for the G-equivariant stable homotopy category,
and we call the equivariant homotopy groups

KRp,q(C ,D,η) = Ho(SpΣ (RealTop∗,S
2,1))(Sp,q,KR(C ,D,η))

the real algebraic K-groups of (C ,D,η). Here, by abuse of notation, we write Sp,q

for a choice of smash product of q copies of the real suspension spectrum of circle
S iR and p−q copies of the real suspension spectrum of circle SR. We note that (p,q)
is allowed to be any pair of integer.

Our two main theorems on real algebraic K-theory are the real additivity theorem
and the real group completion theorem. To state them, we first discuss Segal’s direct
sum K-theory construction and our real version thereof. To a finite pointed set (X ,x),
we associate a category P(X ,x) defined as follows. The objects are all pointed subsets
of x ∈U ⊂ X ; the set of morphisms from the object U to the object V is the set of
pointed subsets x ∈ F ⊂U ∩V ; the composition of G : V →W and F : U →V is the
subset G◦F =G∩F : U→W ; and the identity morphism of x∈U ⊂ X is x∈U ⊂U .
Hence, the morphism F : U → V is the composition of F : U → F and F : F → V ,
which may be thought of as the map that collapses the complement of F ⊂U to the
basepoint and the inclusion of F into V , respectively. In addition, to a pointed map
f : (X0,x0)→ (X1,x1), we assign the functor f ∗ : P(X1,x1)→ P(X0,x0) defined on
both objects and morphisms by f ∗(T ) = f−1(T ∖{x1})∪{x0}. The category P(X ,x)
admits a Grothendieck topology J in which a sieve S on the object U is a covering
sieve if and only if, for every u ∈U , the morphisms {x,u} : {x,u}→U is in S. Now,
if C is an additive category, then we define C (X ,x) to be the category of pointed
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C -valued sheaves on P(X ,x) with respect to the topology J, where a C -valued sheaf
A is said to be pointed if its value at the object x ∈ {x} ⊂ X is a chosen null-object 0.
Moreover, to a pointed map f : (X0,x0)→ (X1,x1), we assign the direct image functor
f∗ : C (X0,x0)→ C (X1,x1) defined by f∗(A)(V ) = A( f ∗(V )). The functor

C (X ,x) i∗ // C (X ,x)

that to a sheaf A associates the family of stalks (A({x,u})u∈X is an equivalence of
categories onto the category of pointed functors from the discrete pointed category
(X ,x) to the pointed category (C ,0). However, while the target category depends
contravariantly on (X ,x), the domain category depends covariantly on (X ,x). The
latter functor C (−) is a variant of Segal’s construction of a Γ -category associated
with an additive category C .

Now, given an additive category with weak equivalences C , its direct sum K-
theory is the symmetric spectrum K⊕(C ) defined as follows. We define the Segal
construction of an additive category with weak equivalences C to be the simplicial
additive category with weak equivalences S1,1

⊕ C [−] obtained by applying C (−) to
the simplicial circle S1,1[−] = ∆ [1][−]/∂∆ [1][−] and declaring a morphism A→ A′

in S1,1
⊕ C [n] be a weak equivalence if for every object U of P(S1,1[n]), the morphism

A(U)→ A′(U) is a weak equivalence in C . We apply the Segal construction r times
to get the r-simplicial additive category with weak equivalences Sr,r

⊕ C [−]; define

K⊕(C )r = B(wSr,r
⊕ C [−])

to be the pointed left Σr-space given by the classifying space of the r-simplicial sub-
category of weak equivalences; and define

K⊕(C )r ∧S1
σr,1

// K⊕(C )r+1.

to be the pointed map induced by the inclusion of the 1-skeleton in the last simplicial
direction. This defines Segal’s the direct sum K-theory symmetric K⊕(C ).

Similarly, we define the real Segal construction of C to be the simplicial addi-
tive category with weak equivalences S2,1

⊕ C [−] obtained by applying C (−) to the
simplicial 2-sphere S2,1[−] = ∆ [2][−]/∂∆ [2][−] and declaring a morphism A→ A′

in S2,1
⊕ C [n] is a weak equivalence if for every object U of P(S2,1[n]), the morphism

A(U)→ A′(U) is a weak equivalence in C . We write S2r,r
⊕ C [−] for the r-fold iterate

of the real Segal construction; define

KR⊕(C )r = B(wS2r,r
⊕ C [−])

to be the pointed left Σr-space given by the classifying space of the r-simplicial sub-
category of weak equivalences; and define

KR⊕(C )r ∧S2
σr,1

// KR⊕(C )r+1

to be the pointed map induced by the inclusion of the 2-skeleton in the last simplicial
direction. This defines a symmetric spectrum KR⊕(C ) in the category of pointed
spaces with respect to the 2-sphere.
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Suppose now that (C ,D,η) is an additive category with weak equivalences and
duality. The duality structure (D,η) gives rise to a left G-action on the pointed
left Σr-space KR⊕(C )r, and we denote the resulting pointed real left Σr-space by
KR⊕(C ,D,η)r. With respect to this real structure, the spectrum structure maps in the
symmetric spectrum KR⊕(C ) are real pointed maps

KR⊕(C ,D,η)r ∧S2,1
σr,1

// KR⊕(C ,D,η)r+1.

This defines a real symmetric spectrum KR⊕(C ,D,η) that we call the real direct sum
K-theory spectrum of (C ,D,η).

We next consider an exact category with weak equivalences C and the real Segal
construction S2,1

⊕ C [−] of its underlying additive category with weak equivalences. It
inherits a structure of simplicial exact category with weak equivalences by declaring
a sequence A′→ A→ A′′ in S2,1

⊕ C [n] to be exact if for every object U of P(S2,1[n]),
A′(U)→ A(U)→ A′′(U) is exact in C . There is an exact forgetful functor

S2,1
⊕ C [n]

ϕ∗
// S2,1C [n]

defined to be the restriction along the functor

[i([2]), i([n])]
ϕ

// P(S2,1[n],∞[n])

that to an object i(θ) : i([2])→ i([n]) associates the object

ϕ(i(θ)) = {ρ : [n]→ [2] | θ ◦ρ = id[2]}∪{∞[n]}

and that to a morphism i(θ0)⇒ i(θ1), which is unique if it exists, associates the
morphism ϕ(i(θ0))∩ϕ(i(θ1)) : ϕ(i(θ0))⇒ ϕ(i(θ1)). The functor ϕ ∗ induces a map
of symmetric spectra ϕ ∗ : KR⊕(C )→ KR(C ), and if (C ,D,η) is an exact category
with weak equivalences and dualty, then this map is one of real symmetric spectra,

KR⊕(C ,D,η)
ϕ∗

// KR(C ,D,η).

Our first main result is the following comparison theorem, which we prove by a rather
elaborate real version of Quillen’s proof in [18] of the corresponding comparison
theorem for direct sum K-theory and algebraic K-theory.

Theorem A. Let (C ,D,η) be an exact category with weak equivalences duality such
that the exact sequences in C are the split-exact sequences and such that the weak
equivalences in C are the isomorphisms. In this situation, the forgetful map

KR⊕(C ,D,η)
ϕ∗

// KR(C ,D,η)

is a level weak equivalence of real symmetric spectra.
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The importance of this theorem lies in that the real group-completion theorem
describes the equivariant homology of the underlying equivariant infinite loop space
the real direct sum K-theory spectrum in terms of that of its zeroth space.

To state the second main result, let (C ,D,η) be an exact category with weak
equivalences and strict duality. The duality structure (D,η) on C gives rise to du-
ality structures (D[n],η [n]) on S1,1C [n] and S2,1C [n] defined as follows. The unique
isomorphism of categories vn : i([n])op→ i([n]), given on objects by vn(s) = n−s, de-
fines a strict duality structure on the category i([n]), and this, in turn, induces a strict
duality structure on the functor category [i([m]), i([n])] with the duality functor given
by [vm,vn](−) = vn ◦ (−)op ◦ vop

m . Now, this duality structure and the duality structure
on C gives the functor category [[i([m]), i([n])],C ] a duality structure with the duality
functor [[vm,vn],D](−) = D◦ (−)op ◦ [vm,vn]

op and with the morphism to the double
dual induced from that on C . For m = 1 and m = 2, this duality structure restrict to
the desired duality structures (D[n],η [n]) on S1,1C [n] and S2,1C [n], respectively.

A left G-action on a finite pointed set (X ,x) gives rise to a strict duality structure
on the category P(X ,x). The duality functor v(X ,x) takes the object U to the object
τ ·U , where τ ∈G is complex conjugation, and takes the morphism F : U →V to the
morphism τ ·F : τ ·V → τ ·U . This duality structure and the given duality structure
on C , in turn, gives rise to a duality structure (D(X ,x),η(X ,x)) on C (X ,x) with the
duality functor D(X ,x)(−) =D◦(−)op◦v(X ,x) and with η(X ,x) =η ◦(−)◦ idP(X ,x)op .
Taking (X ,x) to be S1,1[n] and S2,1[n], respectively, with complex conjugation τ ∈ G
acting by (τ ·θ)(s) = n−θ(1−s) and (τ ·θ)(s) = n−θ(2−s), this defines structures
on S1,1

⊕ C [n] and S2,1
⊕ C [n], both of which we also write (D[n],η [n]). Moreover, the

functor ϕ ∗ is a duality-preserving exact functor

(S2,1
⊕ C [n],D[n],η [n])

ϕ∗
// (S2,1C [n],D[n],η [n]),

and so is the analogously defined forgetful functor

(S1,1
⊕ C [n],D[n],η [n])

ϕ∗
// (S1,1C [n],D[n],η [n]).

Our second main result is the following real version of the additivity theorem, which
we prove by an adaption of McCarthy’s proof in [14] of the additivity theorem to
the real setting. That this statement is the appropriate real version of the additivity
theorem was first recognized by Schlichting, who proved the corresponding statement
for his higher Grothendieck-Witt theory [21, Theorem 4].

Theorem B. Let (C ,D,η) be an exact category with weak equivalences and duality.
For every positive integer r, the map of pointed real spaces

KR(S1,1
⊕ C [3],D[3],η [3])r

ϕ∗
// KR(S1,1C [3],D[3],η [3])r

induced by the forgetful functor is a weak equivalence.

The proof of the real additivity theorem presented here works in great generality,
including the case of the real version of topological Hochschild homology that we
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define below. We remark that, by contrast, the real additivity theorem fails for real
direct sum K-theory, which, accordingly, should be considered mainly a calculational
devise. The domain of the map in the statement of the real additivitiy theorem may be
understood as follows. First, for every finite real pointed set (X ,x), the stalks functor
induces a level weak equivalence of real symmetric spectra

KR(C (X ,x),D(X ,x),η(X ,x)) i∗ // KR(C (X ,x),D(X ,x),η(X ,x)),

since, in general, real algebraic K-theory takes equivalences of categories with weak
equivalences and duality to homotopy equivalences of real symmetric spectra. Next,
the canonical map

KR(C (X ,x),D(X ,x),η(X ,x)) // KR(C ,D,η)(X ,x)

from the real algebraic K-theory of the power of category with weak equivalences and
duality by a finite pointed real set to the power of the real algebraic K-theory of the
given category with weak equivalences and duality by the same finite real pointed set
is a level weak equivalence of real symmetric spectra. In the situation of Theorem B,
the finite real pointed set (X ,x) = S1,1[3] has three elements 0001, 0011, and 0111 in
addition to the basepoint ∞ = {0000,1111}, and the action by G permutes 0001 and
0111 and fixes 0011. Hence, the pointed real set S1,1[3] consists of one free G-orbit
and one fixed G-orbit, which is the reason that Theorem B is the appropriate real
version of the additivity theorem.

Based on the real additivity theorem, we show that, more generally, for every
non-negative integer n and positive integer r, the map of pointed real spaces

KR(S1,1
⊕ C [n],D[n],η [n])r

ϕ∗
// KR(S1,1C [n],D[n],η [n])r

is a weak equivalence. Similarly, for every non-negative integer n and positive integer
r, the forgetful functor induces a weak equivalence

KR(S2,1
⊕ C [n],D[n],η [n])r

ϕ∗
// KR(S2,1C [n],D[n],η [n])r

of real pointed spaces. Together with the real group completion theorem, this implies
the following result.

Theorem C. Let (C ,D,η) be an exact category with weak equivalences and duality.
For every positive integer r, the adjoint structure map

KR(C ,D,η)r
σ̃r,1

// Ω 2,1(KR(C ,D,η)r+1)

is a weak equivalence of pointed real spaces.

By Theorem C, the real symmetric spectrum KR(C ,D,η) is positively fibrant. It
follows that, for p ⩾ q ⩾ 0, there is a canonical isomorphism

Ho(RealTop∗)(Sp,q,Ω 2,1(KR(C ,D,η)1)) // KRp,q(C ,D,η))
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onto the real algebraic K-groups from the equivariant homotopy groups of the real
pointed space Ω 2,1(KR(C ,D,η)1). Concerning this real pointed space, we further
use the real additivity theorem together with a new group-completion theorem of
Moi [16, Theorem 5.14] and a key observation of Schlichting [21, Proposition 3] to
prove the following rather surprising result.

Theorem D. There is a canonical chain of natural weak equivalences between the
two functors Ω 1,1(K(C ,D,η)1) and Ω 2,1(KR(C ,D,η)1) from the category of exact
categories with weak equivalences and duality to the category of pointed real spaces.

This result, in particular, identifies the underlying non-equivariant homotopy type
of real algebraic K-theory canonically with that of algebraic K-theory, as one would
expect. However, the weak equivalence between the subspaces of points fixed by the
respective G-actions, implies that Schlichting’s higher Grothendieck-Witt groups [21],
which, using the terminology introduced above, may be defined by

GWp(C ,D,η) = πp((Ω 1,1(K(C ,D,η)1))
G),

are canonically naturally isomorphic to the groups KRp,0(C ,D,η), for all p ⩾ 0. This
is surprising, since the real circle S1,1 is not a co-group object in the homotopy cate-
gory of pointed real spaces, and, indeed, Moi has showed that Theorem D fails, if the
pointed real spaces K(C ,D,η)1 and KR(C ,D,η)1 are replaced by their respective
direct sum counterparts.

There is a cofibration sequence of pointed real spaces

S0,0∧G+
f

// S0,0 i // S1,1 h // S1,0∧G+

in which the map i is the unique inclusion of the sub-pointed real space of points fixed
by the G-action. It induces a cofibration sequence of real suspension spectra, which,
in turn, gives rise to, for every integer q, a long exact sequences

· · ·
Fq

// Kp(C )
Hq

// KRp,q(C ,D,η)
Iq

// KRp−1,q−1(C ,D,η)
Fq

// · · · .

The map Fq is called the forgetful map; Hq is called the hyperbolic map; and Iq may
be identified with multiplication by the Hopf map η : S1,1→ S0,0. Here we have used
the identification of the equivariant homotopy group

Ho(SpΣ (RealTop∗,S
2,1))(Sp,q∧G+,KR(C ,D,η))

with Kp(C ). This, in turn, uses the isomorphism of S1,0 ∧G+ onto S1,1 ∧G+ that to
the class of (z,g) assigns the class of (iz ·g,g), where i ∈ C is a choice of square root
of−1. The action by G on itself by right multiplication gives to a left G-action on the
equivariant homotopy group above, and hence, to a left G-action on Kp(C ). The exact
sequences define an exact couple with E1

s,t = Kt(C ) and D1
s,t = KRt,−s(C ,D,η), the

associated spectral sequence of which is the Tate spectral sequence

E2
s,t = Ĥ−s(G,Kt(C ))⇒ Ĥ−s−t(G,KR(C ,D,η)).

The d1-differential d1 = F2−s ◦H1−s : E1
s,t → E1

s−1,t is equal to id+(−1)1−sτ , where
we write τ : Kt(C )→ Kt(C ) for the action by complex conjugation τ ∈ G.
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1 The classifying space of a category with strict duality

A category with strict duality structure has a real classifying space. To analyze the
equivariant homotopy type of this real space, we first define the following diagram of
closed symmetric monoidal categories and strong symmetric monoidal functors and
show that it commutes, up to the indicated monoidal natural isomorphism.

CatDual RealTop

Cat Top

B //

Sym

��

(−)GR

��
B //

α
4<ppppppppp

ppppppppp

We then prove a number of results based on this diagram. Here GR = Gal(C/R). We
write σ ∈ GR for complex conjugation.

Definition 1.1. The closed symmetric monoidal structure on the category Set0 of
all (κ-small) sets and all maps between these is defined as follows. The monoidal
product of the sets X1 and X2 is the set of ordered pairs

X1×X2 = {(x1,x2) | x1 ∈ X1,x2 ∈ X2}.

The set X1×X2 together with the two projection maps pri : X1×X2 → Xi defined
by pri(x1,x2) = xi is an explicit choice of product of the objects X and Y in Set0.
The monoidal product of the maps f1 and f2 is the map f1× f2 = ( f1 ◦pr1, f2 ◦pr2).
The unit for the monoidal product is the set {1}; it is a terminal object in Set0. The
associativity natural isomorphism

aX1,X2,X3 : (X1×X2)×X3→ X1× (X2×X3)

is the unique natural isomorphism determined by the domain and target both being
products of the same three objects in Set0, and the identity and symmetry natural
isomorphisms are defined similarly. The internal Hom-object is the set Set0(X1,X2)
of all maps from X1 to X2, and the unit and counit maps

X1
ηX1 // Set0(X2,X1×X2), Set0(X2,X3)×X2

εX3 // X3

are defined by ηX1(x1)(x2) = (x1,x2) and εX3( f )(x2) = f (x2).

Definition 1.2. The closed symmetric monoidal structure on the category Cat0 of
all (κ-small) categories and all functors between these is defined as follows. The
monoidal product of C1 and C2 is the category C1×C2 defined by

ob(C1×C2) = ob(C1)×ob(C2)

(C1×C)((c1,c2),(c′1,c
′
2)) = C1(c1,c′1)×C2(c2,c′2)

with identity morphisms and compositions defined componentwise. The category
C1×C2 together with the functors pri : C1×C2 → Ci defined on objects and mor-
phisms by the canonical projections is an explicit choice of product of the objects

10



C1 and C2 in Cat0. If F1 and F2 are morphisms in Cat0, we define F1 × F2 to be
the morphism (F1 ◦ pr1,F2 ◦ pr2). The unit for the monoidal product is defined to be
the discrete category 1 with ob(1) = {1}; it is a terminal object in Cat0. The asso-
ciativity, identity, and symmetry natural isomorphisms are defined to be the unique
isomorphisms between different choices of products of the same objects in Cat0. The
internal Hom-object is defined to be the category Cat(C1,C2), where the objects are
all functors F : C1 → C2, where the morphisms are all natural transformations be-
tween such functors, where the identity morphisms are the identity natural transfor-
mations, and where the composition of morphisms is given by vertical composition
of natural transformations. Finally, the unit and counit natural transformations

C1
ηC1 // Cat(C2,C1×C2), Cat(C2,C3)×C2

εC3 // C3

are defined, on objects, by ηC1(c1)(c2) = (c1,c2) and εC3(F,c2) = F(c2) and, on
morphisms, by ηC1( f )c2 = ( f ,1c2) and εC3(ϕ : F ⇒ F ′, f : c2→ c′2) = F( f )◦ϕc2 .

Definition 1.3. Let ∆ be the full subcategory of Cat0 whose set of objects consists
of the categories [n] generated by the oriented graphs 0← 1← ··· ← n with n a
non-negative integer. The category of (κ-small) simplicial sets is the category

SimplSet0 = Cat(∆ op,Set0)

which is given the following closed symmetric monoidal structure. The monoidal
product (X1×X2)[−] of the objects X1[−] and X2[−] is the composition

∆ op ∆ // ∆ op×∆ op X1[−]×X2[−] // Set0×Set0
×

// Set0

where ∆ is the diagonal functor and × is the monoidal product functor defined in
Definition 1.1. The monoidal product ( f1× f2)[−] of the morphisms f1[−] and f2[−]
is the horizontal composite ×◦ ( f1[−]× f2[−])◦∆ . The object (X1×X2)[−] together
with the morphisms pri : (X1×X2)[−]→ Xi[−] defined by the horizontal composi-
tions pri ◦(X1[−]×X2[−]) ◦∆ is an explicit choice of product of the objects X1[−]
and X2[−] in SimplSet0. The unit for the monoidal product is the constant simplicial
set {1}[−] with value {1}; it is a terminal object in SimplSet0. The associativity,
identity, and symmetry isomorphisms are defined to be the unique isomorphisms be-
tween different choices of products of the same objects of SimplSet0. The internal
Hom-object is defined to be the simplicial set

SimplSet(X1,X2)[−] = SimplSet0((∆ [−]×X1)[−],X2[−]),

where ∆ [n][−] = Cat0([−], [n]) is the simplicial standard n-simplex. The unit map

X1[−]
ηX1 [−] // SimplSet(X2,X1×X2)[−],

is defined by ηX1 [n](x1)(θ ,x2) = (θ ∗(x1),x2), and the counit map

(SimplSet(X2,X3)×X2)[−]
εX3 [−] // X3[−]

is defined by εX3 [n]( f ,x2) = f (id[n],x2).

11



We note that the definition of the monoidal product on SimplSet is independent
of the choice of the product categories ∆ op×∆ op and Set0×Set0.

Definition 1.4. The closed symmetric monoidal structure on the category Top0 of all
(κ-small) compactly generated topological spaces and all continuous maps is defined
as follows. The monoidal product of X1 and X2 is the set X1×X2 with the compactly
generated topology associated with the product topology. The space X1×X2 together
with the two projections pri : X1×X2 → Xi is an explicit choice of product of the
objects X1 and X2 in Top0. The unit for the monoidal product is defined to be the
discrete space {1}; it is a terminal object in Top0. The associativity, identity, and
symmetry isomorphisms are defined to be the associativity, identity, and symmetry
isomorphisms of the underlying sets. The internal Hom-object Top(X1,X2) is defined
to be the set Top0(X1,X2) equipped with the compactly generated topology associated
with the topology for which a subbasis is given by the subsets

N(h,U) = { f : X1→ X2 | f (h(K))⊂U} ⊂ Top0(X1,X2),

where h ranges over all continuous maps h : K→X1 from a compact Hausdorff space,
and where U ranges over all open subsets U ⊂ X2. The unit and counit maps

X1
ηX1 // Top(X2,X1×X2), Top(X2,X3)×X2

εX3 // X3

are defined by ηX1(x1)(x2) = (x1,x2) and εX3( f ,x2) = f (x2).

A detailed proof that Definition 1.4 indeed defines a closed symmetric monoidal
structure on Top0 is given in the appendix of the thesis of Gaunce Lewis [10].

Definition 1.5. The nerve is the strong symmetric monoidal functor

N = (N,ϕ ,ψ) : Cat→ SimplSet,

where N : Cat0→ SimplSet0 is the nerve functor defined by

N(C )[−] = obCat([−],C ),

and where ϕ : (N(C1)×N(C2))[−]→N(C1×C2)[−] and ψ : {1}[−]→N(1)[−] are
the inverses of the canonical isomorphisms.

We define ∆ [−] : ∆ → Top0 to be the functor that to the object [n] associates the
convex hull ∆ [n] of the set ob([n]) in the real vector space that it spans and that to the
morphism θ : [m]→ [n] associates the affine map θ∗ : ∆ [m]→ ∆ [n] induced by the
set map θ : ob([m])→ ob([n]). The geometric realization |X [−]| of the simplicial set
X [−], we recall, is defined by the following coequalizer diagram in Top0.

∏

X [n]×∆([m], [n])×∆ [m]
f

//

g
//

∏

X [p]×∆ [p] // |X [−]|

Here the middle and left-hand coproducts are indexed by the sets of objects and or-
dered pairs of objects in ∆ , respectively, and the maps f and g are defined by

f ◦ in([m],[n]) = in[m] ◦( fm,n× id)

g◦ in([m],[n]) = in[n] ◦(id×gm,n)

12



where the maps fm,n and gm,n are the composite maps

X [n]×∆([m], [n])
id×X

// X [n]×Set(X [n],X [m])
ε◦ t // X [m]

∆([m], [n])×∆ [m]
∆×id

// Top(∆ [m],∆ [n])×∆ [m]
ε // ∆ [n].

We also recall that the canonical map

(|pr1 |, |pr2 |) : |(X1×X2)[−]| → |X1[−]|× |X2[−]|

is a homeomorphism; see [4] for an elegant proof.

Definition 1.6. The geometric realization functor is the strong symmetric monoidal
functor

|− |= (|− |,ϕ ,ψ) : SimplSet→ Top,

where | − | : SimplSet0 → Top0 is the geometric realization functor defined above,
and where ϕ : |X1[−]| × |X2[−]| → |(X1 × X2)[−]| and ψ : {1} → |{1}[−]| are the
inverses of the canonical homeomorphisms.

Let (F,ϕF ,ψF) : U → V and (G,ϕG,ψG) : V → W be composable symmetric
monoidal functors between symmetric monoidal categories. The composition is the
symmetric monoidal functor defined by

(G◦F,G(ϕF)◦ϕG,G(ψF)◦ψG) : U →W .

If both F and G are strong monoidal, then also G◦F is strong monoidal.

Definition 1.7. The classifying space functor is the strong symmetric monoidal func-
tor

B = (B,ϕ ,ψ) : Cat→ Top

given by the composition of the nerve and geometric realization symmetric monoidal
functors.

Construction 1.8. A closed symmetric monoidal category

V = (V0,⊗, I,a, l, t, [−,−],η ,ε)

has an associated V -category, also denoted by V , that is defined as follows. The set
of objects is ob(V )= ob(V0), the morphism object V (x,y) is the internal Hom-object
[x,y], the composition morphism

◦ : V (y,z)⊗V (x,y)→ V (x,z)

is the adjoint of the composition

(V (y,z)⊗V (x,y))⊗ x a // V (y,z)⊗ (V (x,y)⊗ x)
id⊗ε

// V (y,z)⊗ z ε // z,

and the identity morphism 1x : I→ V (x,x) is the adjoint of the identity morphism of
the object x in V0.
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Construction 1.9. Let (F,ϕ ,ψ) : V → V ′ be a symmetric monoidal functor between
symmetric monoidal categories, and let C be a V -category. In this situation, we de-
fine the V ′-category CF as follows. The set of objects is ob(CF) = ob(C ), the mor-
phism object CF(c1,c2) is F(C (c1,c2)), the composition morphism

◦F : CF(c2,c3)⊗′CF(c1,c2)→ CF(c1,c3)

is the composite morphism

F(C (c2,c3))⊗′ F(C (c1,c2))
ϕ

// F(C (c2,c3)⊗C (c1,c2))
F(◦)

// F(C (c1,c3))

and the identity morphism 1x,F : I′→ CF(x,x) is the composite morphism

I′
ψ

// F(I)
F(1x)

// F(C (x,x)).

In the case where V and V ′ are closed symmetric monoidal categories, the symmetric
monoidal functor (F,ϕ ,ψ) : V → V ′ gives rise to a V ′-functor F : VF → V ′ that is
given, on objects, by the map F : obV → obV ′ and, on morphism objects, by the
morphism

F : F(V (x,y)) // V ′(F(x),F(y))

that is adjoint to the composite morphism

F(V (x,y))⊗′ F(x)
ϕ

// F(V (x,y)⊗F(x))
F(ε)

// F(y)

Remark 1.10. Since the classifying space functor in Definition 1.7 is symmetric
monoidal, we obtain by Constructions 1.8 and 1.9 a map of spaces

BCat(C1,C2)
B // Top(BC1,BC2)

as part of the Top-functor B : CatB→ Top. Hence, for every n-tuple

F0 ks f1 F1 ks f2 · · · ks
fn Fn

of composable natural transformations between functors Fi : C1 → C2, we obtain a
continuous map ∆ [n]→ Top(BC1,BC2) from the topological standard n-simplex to
the space of maps from BC1 to BC2. In particular, a functor F : C1→ C2 determines
a point in the mapping space; a natural transformation f1 : F1 ⇒ F0 determines a
path in the mapping space between the points determined by F0 and F1; and two
composable natural transformations f1 : F1 ⇒ F2 and f2 : F2 ⇒ F1 determine a map
from a 2-simplex to the mapping space as indicated by the figure below.

oo

��������

����
��
��
��

77
77

77
77��

77
77

77
77

F0 F1

F2

f1

f2f1· f2

( f1, f2)

• •

•

This is the extent to which the classifying space functor preserves composition.
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We have now defined the lower row in the diagram at the beginning of the section
and proceed to define the rest of the diagram. We recall that GR = Gal(C/R) and that
σ ∈ GR is the generator.

Definition 1.11. The category RealSet0 of all (κ-small) left GR-sets and all equivari-
ant maps has a closed symmetric monoidal structure defined as follows. The monoidal
product of X1 and X2 is the set X1×X2 with the diagonal GR-action, the unit for the
monoidal product is the set {1} with the trivial GR-action, and the associativity, iden-
tity, and symmetry natural isomorphisms are the corresponding isomorphisms of the
underlying sets. The internal Hom-object is the real set RealSet(X1,X2) given by the
set Set(X1,X2) with the left GR-action defined by (σ f )(x1) = σ f (σ−1x1), and the
unit and counit maps are defined to be the unit and counit maps of the underlying
sets.

We remark that the set RealSet0(X1,X2) is equal to the subset of GR-fixed points
in the real set RealSet(X1,X2).

Definition 1.12. A real category is a category enriched in RealSet; a real functor be-
tween real categories is a RealSet-functor; and a real natural transformation between
real functors is a RealSet-natural transformation.

We recall that a category with strict duality is a pair (C ,D) of a category C and a
functor D : C op→ C such that D◦Dop and Dop ◦D are equal to the respective iden-
tity functors, and that a duality preserving functor F : (C1,D1)→ (C2,D2) between
categories with strict duality is a functor F : C1→ C2 such that F ◦D1 = D2 ◦Fop.

Definition 1.13. The category CatDual0 of all (κ-small) categories with strict du-
ality and duality preserving functors has the following closed symmetric monoidal
structure. The monoidal product of the objects (C1,D1) and (C2,D2) is the pair

(C1,D1)× (C2,D2) = (C1×C2,D1×D2),

where C1×C2 and D1×D2 are the monoidal products in Cat, and the monoidal prod-
uct of the morphisms F1 and F2 is the monoidal product F1×F2 in Cat. The unit for
the monoidal product is (1, id), and the associativity, identity, and symmetry isomor-
phisms are corresponding isomorphisms of the underlying categories. The internal
Hom-object is the pair

CatDual((C1,D1),(C2,D2)) = (Cat(C1,C2),(D1,D2)),

where (D1,D2) : Cat(C1,C2)
op→ Cat(C1,C2) is the functor that to

C1 C2
&&

88
��

f

F

G

assigns the horizontal composition

C op
1 C op

2

&&

88

KS
f op

Fop

Gop

C1 C2,// //
Dop

1 D2
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and the unit and counit functors are defined to be the unit and counit functors that are
part of the closed symmetric monoidal structure on Cat.

Example 1.14. The set of objects in a category with strict duality is naturally a real
set. More precisely, there is a strong symmetric monoidal functor

obR = (obR, id, id) : CatDual→ RealSet,

where obR : CatDual0 → RealSet0 is the functor that to (C ,D) associates the real
set obR(C ) defined to be the set ob(C ) with the left GR-action where the generator
σ ∈GR acts by the map D : ob(C ) = ob(C op)→ ob(C ). In particular, a category en-
riched in CatDual gives rise to an underlying real category upon applying the functor
obR(−) to the Hom-objects. For example, the category [n] has a unique strict du-
ality structure given by the functor D : [n]op → [n] defined by D(i) = n− i and the
real index category ∆R may be identified with the underlying real category of the full
sub-CatDual-category of CatDual whose objects are the categories with strict duality
([n],D) with n a non-negative integer.

We remark that the set CatDual0((C1,D1),(C2,D2)) is equal to the subset of GR-
fixed set points in the real set obR CatDual((C1,D1),(C2,D2)).

Definition 1.15. The category RealSimplSet0 of all (κ-small) real simplicial sets and
real simplicial maps has a closed symmetric monoidal structure defined as follows.
The monoidal product (X1×X2)[−] of the real simplicial sets X1[−] and X2[−] is
given by the monoidal product of the underlying simplicial sets with the diagonal
left GR-action on (X1×X2)[n] = X1[n]×X2[n]; the unit for the monoidal product is
the constant real simplicial set {1}[−] with value {1}; and the internal Hom-object
RealSimplSet(X1,X2)[−] is given by the simplicial mapping space of the underlying
simplicial sets with the conjugation left GR-action on Simpl0((∆ [n]×X1)[−],X2[−]).
The associativity, identity, and symmetry isomorphisms and the unit and counit maps
are the corresponding maps of the underlying simplicial sets.

We note that the set RealSimplSet0(X1[−],X2[−]) is canonically isomorphic to
the subset of GR-fixed point in the real set RealSimplSet(X1,X2)[0].

Definition 1.16. The real nerve is the strong symmetric monoidal functor

N = (N,ϕ ,ψ) : CatDual→ RealSimplSet,

where N : CatDual0→ RealSimplSet0 is the functor defined by

N(C ,D)[−] = obR CatDual(([−],D),(C ,D)),

and where the maps ϕ : (N(C1,D1)×N(C2,D2))[−]→ N(C1×C2,D1×D2)[−] and
ψ : {1}[−]→ N(1, id)[−] are the inverses of the canonical isomorphisms.

Definition 1.17. The category RealTop0 of all (κ-small) compactly generated left
GR-spaces and all continuous GR-equivariant maps has the following closed sym-
metric monoidal structure. The monoidal product of X1 and X2 is the product space
X1×X2 with the diagonal left GR-action, the unit is the discrete space {1} with the
trivial GR-action, and the associativity, identity, and symmetry natural isomorphisms
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are the corresponding isomorphisms of the underlying spaces. The internal Hom-
objects is the mapping space Top(X1,X2) equipped with the conjugation left GR-
action given by (σ f )(x1) = σ f (σ−1x1), and the unit and counit maps are the unit
and counit maps of the underlying spaces.

We note that the set RealTop0(X ,Y ) is equal to the underlying set of the subspace
of GR-fixed points in the mapping space RealTop(X ,Y ).

Let ∆R[n] be the real space defined by the space ∆ [n] with the left GR-action
where the generator σ ∈ GR acts through the affine map σ : ∆R[n]→ ∆R[n] that
maps the vertex i to then vertex n− i. There is a real functor

∆R[−] : ∆R→ RealTop

that takes [n] to ∆R[n] and that on morphism real sets is given by the real map

∆R([m], [n]) RealTop(∆R[m],∆R[n])
∆R[−]

//

that to the functor θ : [m]→ [n] associates the affine map θ∗ : ∆R[m]→∆R[n] induced
by obθ : ob[m]→ ob[n]. Here we view RealTop as a real category by forgetting the
topology on the mapping spaces.

We now define the geometric realization of the real simplicial set X [−] to be the
real space |X [−]|R given by the following coequalizer diagram in RealTop0.

∏
X [n]×∆R([m], [n])×∆R[m]

f
//

g
//

∏
X [p]×∆R[p] // |X [−]|R

The middle and left-hand coproducts range over the sets of objects and ordered pairs
of objects in ∆R, respectively, and the real maps f and g are defined by

f ◦ in([m],[n]) = in[m] ◦( fm,n× id)

g◦ in([m],[n]) = in[n] ◦(id×gm,n)

where fm,n and gm,n are the composite real maps

X [n]×∆R([m], [n])
id×∆R

// X [n]×RealSet(X [n],X [m])
ε◦ t // X [m]

∆R([m], [n])×∆R[m]
id×X

// RealTop(∆R[m],∆R[n])×∆R[m]
ε // ∆R[n].

Here the real sets X [m], X [n], ∆R([m], [n]), and RealSet(X [n],X [m]) are considered
as real spaces with the discrete topology.

Definition 1.18. The geometric realization is the strong symmetric monoidal functor

|− |R = (|− |R,ϕ ,ψ) : RealSimplSet→ RealTop,

where | − |R : RealSimplSet0 → RealTop0 is the geometric realization functor de-
fined above, and where the real maps ϕ : |X1[−]|R×|X2[−]|R→ |(X1×X2)[−]|R and
{1}→ |{1}[−]|R are the inverses of the canonical isomorphisms.
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Definition 1.19. The real classifying space functor is the strong symmetric monoidal
functor

B = (B,ϕ ,ψ) : CatDual→ RealTop

defined by the composition of the real nerve and the real geometric realization sym-
metric monoidal functors.

We next recall Segal’s subdivision [22]. We view the simplicial index category ∆
as a real category with trivial GR-action on the morphism sets ∆([m], [n]) and define

∆ sd // ∆R

to be the real functor that takes the object [n] to the object [2n + 1] and that, on
morphism real sets, is given by the real maps

∆([m], [n]) sd // ∆R(sd[m],sd[n])

defined by

sd(θ)(i) =

{
n−θ(m− i) (0 ⩽ i ⩽ m)

n+1+θ(i− (m+1)) (m+1 ⩽ i ⩽ 2m+1).

The induced symmetric monoidal functor

sd = (sd∗,ϕ ,ψ) : RealSimplSet→ SimplRealSet

is the Segal subdivision. Here, the target is the category of simplicial objects in
RealSet0 with the closed symmetric monoidal structure defined as in Definition 1.3,
and the maps ϕ and ψ are the inverses of the canonical isomorphisms. Moreover, the
composition of the maps

∏X [2p+1]×∆ [p] // ∏X [2p+1]×∆R[2p+1] // ∏X [p]×∆R[p],

where the coproducts range over non-negative integers p, where the left-hand map
is induced by the affine maps dp : ∆ [p]→ ∆R[2p+ 1] that take the vertex i to the
barycenter of the 1-simplex that connects the vertices p− i and p+1+ i, and where
the right-hand map is the canonical inclusion induces a natural transformation

|sdX [−]| d // |X [−]|R.

It follows immediately from the definitions that d is a monoidal natural transforma-
tion, which means that the following diagrams commute.

|sdX1[−]|× |sdX2[−]|
d×d

//

ϕ
��

|X1[−]|R×|X2[−]|R

ϕ
��

|sd(X1×X2)[−]|
d // |(X1×X2)[−]|R
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|sd{1}[−]| d // |{1}[−]|R

The following result is proved in [22, Proposition A.1], but see also [19].

Lemma 1.20. The monoidal natural transformation

|sdX [−]| d // |X [−]|R

is a real homeomorphism.

The lemma has the following corollary which provides a simplicial model for the
subspace of GR-fixed points in the real space |X [−]|GR .

Corollary 1.21. The composition

|(sdX [−])GR |
γ

// |X [−]|GR
R

of the canonical map |(sdX [−])GR | → |sdX [−]|GR and the map dGR of GR-fixed sets
induced by d is a monoidal natural homeomorphism.

Proof. The canonical map |Y [−]GR | → |Y [−]|GR is a monoidal natural transforma-
tion of symmetric monoidal functors from RealSimplSet to Top, and it is a homeo-
morphism, since geometric realization preserves finite limits [4]. The map dGR is a
monoidal natural homeomorphism by Lemma 1.20, and finally, the composition of
monoidal natural homeomorphisms is a monoidal natural homeomorphism.

Example 1.22. The following figure indicates the non-degenerate simplices in the
subdivision sd∆R[2][−] of the real simplicial set ∆R[2][−].

oo //

���������

����
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??���������
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012222
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The generator σ ∈ GR acts by reflection in the line through the 0-simplices 11 and
02.
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A symmetric space in the category with strict duality (C ,D) is defined to be a
pair (c, f ) of an object c and a morphism f : c→ Dcop in C such that f = D f op. A
map of symmetric spaces g : (c1, f1)→ (c2, f2) is a morphism g : c1→ c2 in C such
that the following diagram commutes.

c1
g

//

f1
��

c2

f2
��

Dcop
1 Dcop

2
Dgop
oo

We view the morphism f : c→ Dcop with f = D f op as a symmetric form on the
object c with respect to the strict duality structure D : C op→ C . The symmetric form
is said to be non-singular if, in addition, the morphism f is an isomorphism.

Definition 1.23. The symmetric space functor is the strong symmetric monoidal
functor

Sym = (Sym,ϕ ,ψ) : CatDual→ Cat,

where Sym: CatDual0 → Cat0 is the functor defined above, and where the natu-
ral transformations ϕ : Sym(C1,D1)×Sym(C2,D2)→ Sym(C1×C2,D1×D2) and
ψ : 1→ Sym(1, id) are defined to be the inverses of the canonical isomorphisms.

We now prove the following result promised at the beginning of the section.

Proposition 1.24. There is a canonical monoidal natural homeomorphism α that
makes the following diagram of symmetric monoidal functors commute.

CatDual RealTop

Cat Top

B //

Sym

��

(−)GR

��
B //

α
4<ppppppppp

ppppppppp

Proof. There is a natural isomorphism of simplicial sets

β : N Sym(C ,D)[−]→ (sdN(C ,D)[−])GR

that to the n-simplex (c0, f0) oo
g1 · · · oo

gn
(cn, fn) assigns the n-simplex

Dcop
n oo

Dgop
n · · · oo

Dgop
1 Dcop

0
oo

f0 c0 oo
g1 · · · oo

gn cn.

It follows immediately from the definitions that β is monoidal, and the desired monoidal
natural homeomorphism α now is the composition

|N Sym(C ,D)[−]|
|β |

// |(sdN(C ,D)[−])GR |
γ

// |N(C ,D)[−]|GR

of the monoidal natural homeomorphisms |β | and γ .
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Remark 1.25. We explain how Proposition 1.24 is used to produce equivariant maps
and equivariant homotopies between the real classifying spaces of categories with
strict duality. From Constructions 1.8 and 1.9, we have the Top-functor

CatDualB(−)GR
B(−)GR

// Top

which we precompose with the Top-functor

CatDualBSym
Fα // CatDualB(−)GR

that, on objects, is the identity and, on morphism spaces, is the homeomorphism

BSymCatDual((C1,D1),(C2,D2))
Fα // BCatDual((C1,D1),(C2,D2))

GR

given by the monoidal natural homeomorphism α from Proposition 1.24. Let

CatDualBSym
H // Top

be the composite Top-functor; it gives a map of spaces

BSymCatDual((C1,D1),(C2,D2))
H // RealTop(B(C1,D1),B(C2,D2))

GR .

Hence, every n-tuple of morphisms of symmetric spaces

(F0, f0) ks
g0

(F1, f1) ks
g1 · · · ks

gn
(Fn, fn)

in CatDual((C1,D1),(C2,D2)) determines a continuous map

∆ [n]→ RealTop(B(C1,D1),B(C2,D2))
GR

from the topological standard n-simplex ∆ [n] to the space of real maps from B(C1,D1)
to B(C2,D2). In particular, every symmetric space (F, f ) determines a real map

H(F, f ) : B(C1,D1)→ B(C2,D2),

and every map of symmetric spaces g1 : (F1, f1)⇒ (F0, f0) determines a real homo-
topy H(g1) from the real map H(F0, f0) to the real map H(F1, f1).

Corollary 1.26. If the category with strict duality (C ,D) has an initial object 0, then
the real classifying space B(C ,D) is equivariantly contractible.

Proof. The image of the map

BSymCatDual((C ,D),(C ,D))
H // RealTop(B(C ,D),B(C ,D))GR ,

which is part of the Top-functor H : CatDualBSym→ Top, contains both the identity
map and the constant map B0. Hence, it will suffice to show that the domain, and
hence also the image, of this map is a contractible space. The object 1 = D(0op) is a
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terminal object of C and 0 = D(1op). Now, the constant functors 0,1: C → C with
values 0 and 1 are an initial object and a terminal object, respectively, of the functor
category Cat(C ,C ). Let u : 0⇒ 1 be the unique morphism. We claim that (0,u) is
an initial object of SymCatDual((C ,D),(C ,D)). Indeed, the pair (0,u) is an object
of said category, since u and Duop both are morphisms from 0 to 1 and therefore
necessarily equal. Similarly, if (F, f ) is another object, then the unique morphism
g : 0⇒ F necessarily makes the following diagram commute.

0
g +3

u
��

F

f
��

D0op DFopDgop
ks

This shows that g is a morphism of symmetric spaces g : (0,u)→ (F, f ), and since
this morphism is unique, we conclude that (0,u) is an initial object as claimed. It
follows that the domain of the map H is contractible as desired.

Definition 1.27. An adjunction from the category with strict duality (C1,D1) to
the category with strict duality (C2,D2) is a sextuple (F,G,η ,ε, f ,g) in which the
quadruple (F,G,η ,ε) is an adjunction from the category C1 to the category C2 and
in which f : F ⇒ (D1,D2)Fop and g : G⇒ (D2,D2)Gop are natural transformations
such that f = (D1,D2) f op and g = (D2,D1)gop and such that the diagrams

idC1 G◦F

F ◦G idC2

(D1,D1) idop
C1

(D1,D1)(G◦F)op

(D2,D2)(F ◦G)op (D2,D2) idop
C2

η +3

ε +3

1
��

g◦ f

��

f◦g

��
1
��

(D1,D1)ηop
ks

(D2,D2)εop
ks

commute.

Corollary 1.28. If (F,G,η ,ε, f ,g) is an adjunction from the category with strict
duality (C1,D1) to the category with strict duality (C2,D2), then the real maps

B(C1,D1) B(C2,D2)
//

oo

H(F, f )

H(G,g)

are inverse equivariant homotopy equivalences.

Proof. Since H : CatDualBSym→ Top is a Top-functor, we have

H(G,g)◦H(F, f ) = H(G◦F,g◦ f )

H(F, f )◦H(G, f ) = H(F ◦G, f ◦g).
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Moreover, the unit and counit of the adjunction define maps of symmetric spaces

η : (idC1 ,1)→ (G◦F,g◦ f )

ε : (F ◦G, f ◦ f )→ (idC2 ,1).

It follows that H(η) is an equivariant homotopy from H(G,g)◦H(F, f ) to the identity
map of B(C1,D1) and that H(ε) is a equivariant homotopy from the identity map of
B(C2,D2) to H(F, f )◦H(G,g).

We finally discuss pointed analogues of the above. In general, if C is a category
and if 1 ∈ obC is a terminal object, then the associated category of pointed objects
is defined to be the under-category 1/C . If also 1′ ∈ obC is a terminal object, then
the categories 1/C and 1′/C are canonically isomorphic. We will often suppress the
choice of terminal object and write C∗ for the category 1/C and (X ,x) for the pointed
object x : 1→ X . If C has finite coproducts, then the forgetful functor 1/C → C that
to (X ,x) assigns X admits the left adjoint functor (−)+ : C → 1/C that to X asso-
ciates a choice of coproduct X+ = (1⊔X , in1). The unit and counit maps are defined
to be ηX = in2 : X → 1⊔X and ε(X ,x) = x+ idX : (1⊔X , in1)→ (X ,x), respectively.

Now, if V = (V0,⊗, I,a, l, t, [−,−],η ,ε) is a closed symmetric monoidal cate-
gory that admits finite limits and colimits, then the category V0∗ = 1/V0 of pointed
objects in V0 inherits a closed symmetric monoidal structure defined as follows. The
monoidal product (X ,x)∧ (Y,y) is defined to be a choice of push-out

(X⊗1)⊔ (1⊗Y )
id⊗y+x⊗id

//

��

X⊗Y

p

��

1 // (X ,x)∧ (Y,y)

with the basepoint given by the lower horizontal morphism and is called the smash
product. The unit object for the smash product is I+, and the left identity isomorphism
l(X ,x) : I+ ∧ (X ,x)→ (X ,x) is defined to be the unique map determined by the given
map x : 1→ X and by the composition

(1⊔ I)⊗X (1⊗X)⊔ (I⊗X)
∼oo // 1⊔ (I⊗X)

x+lX // X

of the inverse of the canonical map, the map induced by the unique map 1⊗X → 1,
and the sum of the maps x : 1→X and lX : I⊗X→X . The associativity and symmetry
isomorphisms in V∗ are induced by those in V using that the functor−⊗X preserves
colimits. Dually, since the functor [X ,−] preserves limits, the object [X ,1] is terminal,
and we define the internal Hom-object [(X ,x),(Y,y)]∗ to be a choice of pull-back

[X ,Y ]∗
i //

��

[X ,Y ]

[x,id]
��

[1,1]
[1,y]

// [1,Y ]
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with the basepoint 1→ [X ,Y ]∗ defined to be the map determined by the unique map
1→ [1,1] and by the composite map

1 // [X ,1]
[id,y]

// [X ,Y ].

The unit and counit maps

(X ,x)
η(X ,x)

// [(Y,y),(X ,x)∧ (Y,y)]∗, [(Y,y),(Z,z)]∗∧ (Y,y)
ε(Z,z)

// (Z,z)

are induced by the following composite maps, respectively.

X
ηX // [Y,X⊗Y ]

[id,p]
// [Y,(X ,x)∧ (Y,y)]

[(Y,y),(Z,z)]∗⊗Y
i⊗id

// [Y,Z]⊗Y
εZ // Z

This defines the induced closed symmetric monoidal structure on V∗. We obtain the
following pointed version of Proposition 1.24.

Addendum 1.29. There is a canonical monoidal natural pointed homeomorphism α
that makes the following diagram of symmetric monoidal functors commute.

CatDual∗ RealTop∗

Cat∗ Top∗

B //

Sym

��

(−)GR

��
B //

α
4<pppppppp

pppppppp

Proof. The natural homeomorphism α defined in the proof of Proposition 1.24 is
basepoint preserving.

Remark 1.30. We call an object (C ,c) of the category Cat0∗ = 1/Cat0 a (κ-small)
pointed category. Here the functor c : 1→ C determines and is determined by the
object c(1)∈ ob(C ). We stress that c(1)∈ ob(C ) can be any object and is not required
to be a nullobject. The functor F : (C1,c1)→ (C2,c2) is pointed if Fc1 = c2, and the
natural transformation f : F1⇒ F2 between pointed functors is pointed if fc1 = idc2 .
Similarly, the object (C ,D,c) of CatDual0∗=(1, id)/CatDual0 is said to be a pointed
category with strict duality. The morphism c : (1, id) → (C ,D) determines and is
determined by the object c(1) ∈ ob(C ) with D(c(1)) = c(1).

Remark 1.31. We use Addendum 1.29 to produce pointed equivariant maps and
pointed equivariant homotopies between the pointed real classifying spaces of pointed
categories with strict duality as follows. We define the Top∗-functor

CatDual∗,BSym
H∗ // Top∗
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to be the composition of the Top∗-functor

CatDual∗,BSym
Fα // CatDual∗,B(−)GR

that, on objects, is the identity and, on morphism pointed spaces, is given by the
pointed homeomorphism

BSymCatDual∗((C1,D1,c1),(C2,D2,c2))

//
Fα BCatDual∗((C1,D1,c1),(C2,D2,c2))

GR

induced from the pointed monoidal natural homeomorphism α from Addendum 1.29
and the Top∗-functor B(−)GR : CatDual∗,B(−)GR → Top∗ given by Constructions 1.8
and 1.9. It gives a map of pointed spaces

BSymCatDual∗((C1,D1,c1),(C2,D2,c2))

//
H∗ RealTop∗((B(C1,D1),Bc1),(B(C2,D2),Bc2))

GR .
(1.32)

In particular, every symmetric space (F, f ) in the pointed functor category on the
left-hand side determines a pointed real map

H∗(F, f ) : (B(C1,D1),Bc1)→ (B(C2,D2),Bc2),

and every map of symmetric spaces g : (F1, f1)→ (F0, f0) determines a pointed real
homotopy H∗(g) from H∗(F0, f0) to H∗(F1, f1).

Corollary 1.33. If (C ,D,c) is a pointed category with strict duality such that c(1)
is a nullobject of C , then the pointed real classifying space (B(C ,D),Bc) is pointed
equivariantly contractible.

Proof. The image of the map (1.32) contains both the identity map and the constant
map Bc(1). Therefore, it will suffice to show that the domain, and hence also the
image, is pointed contractible. But this follows from (c(1), id) being a nullobject of
the category of symmetric spaces in CatDual∗((C ,D,c),(C ,D,c)).

We say that the adjunction (F,G,η ,ε, f ,g) from the pointed adjunction from the
pointed category with strict duality (C1,D1,c1) to the pointed category with strict
duality (C2,D2,c2) is pointed if the functors F and G and the natural transformations
η , ε , f , and g all are pointed.

Corollary 1.34. If (F,G,η ,ε, f ,g) is a pointed adjunction from the pointed category
with strict duality (C1,D1,c1) to the pointed category with strict duality (C2,D2,c2),
then the two composites of the pointed real maps

(B(C1,D1),Bc1) (B(C2,D2),Bc2)
//

oo

H∗(F, f )

H∗(G,g)

are pointed equivariantly homotopic to the respective identity maps.
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Proof. Since H∗ : CatDual∗,BSym→ Top∗ is a Top∗-functor,

H∗(G,g)◦H∗(F, f ) = H∗(G◦F,g◦ f )

H∗(F, f )◦H∗(G, f ) = H∗(F ◦G, f ◦g).

Moreover, the commutative diagrams in Definition 1.27 express that the unit and
counit of the adjunction define maps of symmetric spaces

η : (idC1 ,1)→ (G◦F,g◦ f )

ε : (F ◦G, f ◦ f )→ (idC2 ,1).

It follows that H∗(η) is a pointed equivariant homotopy from H∗(G,g) ◦H∗(F, f ) to
the identity map of B(C1,D1) and that H∗(ε) is a pointed equivariant homotopy from
the identity map of B(C2,D2) to H∗(F, f )◦H∗(G,g).
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2 The real Waldhausen construction

In this section, we introduce a variant of Waldhausen’s S-construction that we call
the real Waldhausen construction. It associates to a pointed exact category with weak
equivalences and strict duality (C ,wC ,D,0) a real simplicial pointed exact category
with weak equivalences and strict duality (S2,1C [−],wS2,1C [−],D[−],0[−]). We first
recall the definition of a pointed exact category with weak equivalences and strict
duality.

Let C be an additive category. The diagram

A
i // B
q

oo
p

// C
j

oo

in C is a biproduct diagram if qi = idA, p j = idC, and iq+ p j = idA. In this case, it
follows that p is a cokernel of i, that i is a kernel of p, that q is a cokernel of j, and
that j is a kernel of q. We say the underlying sequence

A i // B
p

// C

is a split-exact sequence in C .
We recall from [17, §2] that an exact category is a pair (C ,E ) of an additive

category C and a set E of sequences

A i // B
p

// C

in C called the exact sequences for which the axioms (1)–(5) below are satisfied. A
morphism in C that appears as the left-hand morphism i in a sequence in E is called
an admissible monomorphisms, and a morphism in C that appears as the right-hand
morphism p in a sequence in E is called an admissible epimorphism.

(1) For every sequence

A i // B
p

// C

in E , p is a cokernel of i and i is a kernel of p.
(2) Every sequence isomorphic to a sequence in E is itself in E .
(3) The composition of two admissible monomorphisms is an admissible monomor-

phism; the composition of two admissible epimorphisms is an admissible epi-
morphism.

(4) The cobase-change of an admissible monomorphism along any morphism exists
and is an admissible monomorphism; the base-change of an admissible epimor-
phism along any morphism exists and is an admissible epimorphism.

(5) Every split-exact sequence in C is in E .

It was proved by Keller [9, Appendix A] that the additional axiom c) in [17, §2] is a
consequence of the axioms above. We will often abuse notation and write C for the
exact category (C ,E ). If (C ,E ) is an exact category, then so is (C op,E op). We also
abuse notation and simply write C op for the exact category (C op,E op).
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Example 2.1. Let E0 be the set of split-exact sequences in the additive category C .
Then (C ,E0) is an exact category.

We define the subcategory wC of the exact category C to be a subcategory of
weak equivalences, if it contains all isomorphisms, if for all diagrams

B

∼
��

Aooioo //

∼
��

C

∼
��

Y
p

// //

∼
��

X

∼
��

Zoo

∼
��

B′ A′ooi′oo // C′ Y ′
p′

// // X ′ Z′oo

with i and i′ admissible monomorphisms, with p and p′ admissible epimorpisms, with
and the vertical maps in wC , the induced maps

B ∏

AC // B ∏

A′C′ Y ×X Z // Y ′×X ′ Z′

of pushouts and pullbacks, respectively, again are in wC . We define an exact cat-
egory with weak equivalences to be a pair (C ,wC ) of an exact category C and a
subcategory of weak equivalences wC ⊂ C , and define an exact functor

F : (C1,wC1)→ (C2,wC2)

between exact categories with weak equivalences to be a functor F : C1 → C2 that
takes exact sequences in C1 to exact sequences in C2 and weak equivalences in C1 to
weak equivalences in C2. We remark that if (C ,wC ) is an exact category with weak
equivalences, then so is (C op,wC op).
Example 2.2. Let C be an exact category, and let iC be the subcategory of isomor-
phisms. Then (C , iC ) is an exact category with weak equivalences.

Finally, we define an exact category with weak equivalences and strict duality to
be a triple (C ,wC ,D), where (C ,wC ) is an exact category with weak equivalences,
and where D : (C op,wC op)→ (C ,wC ) is an exact functor such that D◦Dop = idC

and Dop ◦D = idC op . A duality preserving exact functor

F : (C1,wC1,D1)→ (C2,wC2,D2)

between exact categories with weak equivalences and strict duality is an exact functor
F : (C1,wC1)→ (C2,wC2) such that F ◦D1 = D2 ◦ Fop. The set of all (κ-small)
exact categories with weak equivalences and strict duality is the set of objects in
the real category wExCatDual whose real set of morphisms from (C1,wC1,D1) to
(C2,wC2,D2) is defined to be the sub-real set

wExCatDual((C1,wC1,D1),(C2,wC2,D2))⊂ obR CatDual((C1,D1),(C2,D2))

that consists of all exact (but not necessarily duality preserving) functors.
Let (1,1, id) be the unique exact category with weak equivalences and strict du-

ality whose underlying category is 1; it is a terminal object in the category of all
(κ-small) exact categories with weak equivalences and strict duality and duality pre-
serving exact functors. A duality preserving exact functor

0 : (1,1, id)→ (C ,wC ,D)
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determines and is determined by the null-object 0(1) ∈ ob(C ) with D(0(1)) = 0(1).
We define wExCatDual∗ to be the real category of pointed exact categories with
weak equivalences and strict duality.

We define the sequence

A
f

// B
g

// C h // D

in the exact category C to be 4-term exact if f is an admissible monomorphism, if
h is an admissible epimorphism, and if g factors as the composition of a cokernel
p : B→ E of f and a kernel i : E →C of h. We remind the reader that the definition
of the internal Hom-object in the category (κ-small) categories with strict duality is
given in Definition 1.13 and that the categories with strict duality ([n],D) are defined
in Example 1.14.

Definition 2.3. The real Waldhausen construction of the pointed exact category with
weak equivalences and strict duality (C ,wC ,D,0) is the real simplicial pointed exact
category with weak equivalences and strict duality

(S2,1C [−],wS2,1C [−],D[−],0[−]),

where

(S2,1C [n],D[n])⊂ CatDual(CatDual(([2],D),([n],D)),(C ,D))

is the full subcategory with strict duality of all functors

A : Cat([2], [n]) // C

such that

(i) for all functors µ : [1]→ [n],

A(s0µ) = A(s1µ) = 0(1),

(ii) for all functors σ : [3]→ [n], the sequence

A(d0σ) // A(d1σ) // A(d2σ) // A(d3σ)

is 4-term exact;

where the sequence A→ B→C in S2,1C [n] is exact if, for all functors θ : [2]→ [n],
the sequence A(θ)→ B(θ)→C(θ) in C is exact; where the morphism A→ B is in
wS2,1C [n] if, for all functors θ : [2]→ [n], the morphism A(θ)→ B(θ) is in wC , and
where the basepoint 0[n] is the constant diagram 0[n](1)(θ) = 0(1).

We postpone discussion of the functoriality of the real Waldhausen construction
to Proposition 3.6 below.
Example 2.4. For n = 0 and n = 1, the category S2,1C [n] is equal to the discrete
category with the single object 0[n](1), and for n = 2, the forgetful functor

(S2,1C [2],wS2,1C [2],D[2],0[2])→ (C ,wC ,D,0)

that to A associates A(id[2]) is an isomorphism of pointed exact categories with weak
equivalences and strict duality.
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If A is an object of S2,1C [n], then for every functor σ : [3]→ [n], the sequence

A(d0σ) // A(d1σ) // A(d2σ) // A(d3σ)

is 4-term exact, and hence, the middle map induces an isomorphism of a cokernel of
the left-hand map onto a kernel of the right-hand map. It is sometimes convenient to
have an explicit choice of kernel and cokernel be part of the structure. The purpose
of the following definition is to include this choice.

Definition 2.5. The extended real Waldhausen construction of the pointed exact cat-
egory with weak equivalence and strict duality (C ,wC ,D,0) is the real simplicial
pointed exact category with weak equivalences and strict duality

(S̃2,1C [−],wS̃2,1C [−], D̃[−], 0̃[−]),

where

(S̃2,1C [n], D̃[n])⊂ CatDual(CatDual(([3],D),([n],D)),(C ,D))

is the full subcategory with strict duality of all functors

A : Cat([3], [n]) // C

such that

(i) for every functor θ : [2]→ [n],

A(s0θ) = A(s2θ) = 0(1),

(ii) for every functor τ : [4]→ [n], the sequences

A(d0τ) // A(d1τ) // A(d2τ)

A(d2τ) // A(d3τ) // A(d4τ)

are exact;

where the sequence A→ B→C in S̃2,1C [n] is exact if, for all functors σ : [3]→ [n],
the sequence A(σ)→ B(σ)→C(σ) in C is exact; where the morphism A→ B is in
wS̃2,1C [n] if, for all functors σ : [3]→ [n], the morphism A(σ)→ B(σ) is in wC , and
where the base point 0̃[n] is the constant diagram 0̃[n](1)(σ) = 0(1).

Example 2.6. For n = 0 and n = 1, the category S̃2,1C [n] is equal to the discrete
category on the single object 0̃[n](1); and for n = 2, the forgetful functor

(S̃2,1C [2],wS̃2,1C [2], D̃[2], 0̃[2])→ (C ,wC ,D,0)

that to A associates A(s1) is an isomorphism of pointed exact categories with weak
equivalences and strict duality.

We will say that a pointed adjunction (F,G,η ,ε, f ,g) from the pointed exact
category with weak equivalences and strict duality (C1,wC1,D1,01) to the pointed
exact category with weak equivalences and strict duality (C2,wC2,D2,02) is exact if
the pointed functors F and G are exact.
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Lemma 2.7. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality. For every integer n ⩾ 0, there exists a pointed exact adjunction

(s∗1,h,η ,ε,1,g)

from (S̃2,1C [n],wS̃2,1C [n], D̃[n], 0̃[n]) to (S2,1C [n],wS2,1C [n],D[n],0[n]). Moreover,
the natural transformations η , ε , and g all are isomorphisms.

Proof. We first show that s1 : [3]→ [2] induces a pointed exact duality preserving
functor s∗1 : S̃2,1C [n]→ S2,1C [n]. To this end, we verify that if A ∈ ob S̃2,1C [n] then
s∗1(A) ∈ obS2,1C [n]. Given µ : [1]→ [n],

s∗1(A)(s0µ) = A(s1s0µ) = A(s0s0µ) = 0
s∗1(A)(s1µ) = A(s1s1µ) = A(s2s1µ) = 0

which shows that s∗1(A) satisfies (i) of Definition 2.3, and given σ : [3]→ [n], we have

s∗1(A)(d0σ) // s∗1(A)(d1σ) // s∗1(A)(d2σ) // s∗1(A)(d3σ)

A(s1d0σ) // A(s1d1σ) // A(s1d2σ) // A(s1d3σ)

A(d0s2σ) // A(d2s2σ) //

��

A(d3s1σ) // A(d4s1σ)

A(d2s2σ) A(d2s1σ)

OO

which shows that s∗1(A) satisfies (ii) of Definition 2.3. Finally, s∗1 ◦ 0̃[n] = 0[n], so the
functor s∗1 is pointed; it is clear that it is duality preserving and exact.

We next define the pointed exact functor

h : S2,1C [n]→ S̃2,1C [n].

Given A ∈ obS2,1C [n], we define the functor h(A) : Cat([3], [n])→ C as follows. For
every functor σ : [3]→ [n], we have the 4-term exact sequence

A(d0σ)
a // A(d1σ)

b // A(d2σ)
c // A(d3σ).

If b is the zero morphism, then we define h(A)(σ) to be the given null-object 0(1),
and otherwise, we choose any factorization of b as the composition

A(d1σ)
p

// // h(A)(σ) // i // A(d2σ)

of a cokernel p of the admissible monomorphism a and a kernel i of the admissible
epimorphism c. This defines h(A) on objects, and the universal property of kernels
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and cokernels determines the value of h(A) on morphisms. We proceed to show that
h(A) satisfies (i) and (ii) of Definition 2.5.

We first show that h(A) satisfies (i). Given θ : [2]→ [n], the 4-term exact sequence

A(d0s0θ) A(d1s0θ) b // A(d2s0θ) A(d3s0θ)

shows that h(A)(s0θ) = 0(1), and the 4-term exact sequence

A(d0s2θ) A(d1s2θ) b // A(d2s2θ) A(d3s2θ),

shows that h(A)(s2θ) = 0(1). This proves that h(A) satisfies (i). We next show that
h(A) satisfies (ii). Given τ : [4]→ [n], we consider the following diagram.

A(d0d0τ) // // A(d1d0τ)
p

// //
��

��

h(A)(d0τ)

��

A(d0d1τ) // // A(d1d1τ)
p

// //

p
����

h(A)(d1τ)

��

h(A)(d2τ) h(A)(d2τ)

The upper right-hand square is a push-out. Therefore, the upper right-hand vertical
map is an admissible monomorphism, and the composition of a cokernel of this map
and the middle right-hand horizontal map is a cokernel of the upper middle vertical
map. Now, since d1d1τ = d1d2τ and d1d0τ = d0d2τ , the lower middle vertical map
is such a cokernel. This proves that the right-hand column is an exact sequence in C .
Similarly, in the diagram

h(A)(d2τ)

��

h(A)(d2τ)
��

i
��

h(A)(d3τ) // i //

��

A(d2d3τ) // //

����

A(d3d3τ)

h(A)(d4τ) // i // A(d2d4τ) // // A(d3d4τ),

the lower left-hand square is a pull-back. Therefore, the lower left-hand vertical map
is an admissible epimorphism, and the composition of a kernel of this map and the
middle left-hand horizontal map is a kernel of the lower middle vertical map. Now,
since d2d3τ = d2d2τ and d2d4τ = d3d2τ , the upper middle vertical map is such a
kernel. This shows that the left-hand column is an exact sequence in C . We have
proved that h(A) satisfies (ii), and hence, that h(A) ∈ ob S̃2,1C [n]. It is clear that the
functor h : S2,1C [n]→ S̃2,1C [n] is pointed; we proceed to show that it is exact.

Let A→ B→C be an exact sequence in S2,1C [n]. We wish to show that for every
functor σ : [3]→ [n], the sequence h(A)(σ)→ h(B)(σ)→ h(C)(σ) in C is exact. By
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the definition of this sequence, we have the following commutative diagram in which
the columns and the top two rows all are exact sequences in C .

A(d0σ) // //

��

��

B(d0σ) // //

��

��

C(d0σ)
��

��

A(d1σ) // //

����

B(d1σ) // //

����

C(d1σ)

����

h(A)(σ)
i // h(B)(σ)

p
// h(C)(σ)

We use the redundant axiom c) of [17, §2] as follows to show that the bottow row is
exact. The lower right-hand vertical map and the middle right-hand horizontal map
are both admissible epimorphisms. Therefore, also their composition is an admissible
epimorphism. In this situation, to show that the bottom row is exact, it suffices by said
axiom to show that p has a kernel. But a diagram chase based on the diagram

h(A)(σ)
i //

��

��

h(B)(σ)
p

//

��

��

h(C)(σ)
��

��

A(d2σ) // //

����

B(d2σ) // //

����

C(d2σ)

����

A(d3σ) // // B(d3σ) // // C(d3σ),

where the columns and the bottom two rows are exact, readily shows that i is a kernel
of p. Finally, if A→ B is in wS2,1C [n], then h(A)→ h(B) is in wS̃2,1C [n]. Hence, the
functor h is exact as stated.

We next define the pointed natural isomorphisms η and ε . If A∈ ob S̃2,1C [n], then
h(s∗1(A))(σ) is defined to be a choice of cokernel of the admissible monomorphism
a : A(s1d0σ)↣ A(s1d1σ). But s1d0σ = d0s2σ , s1d1σ = d1s2σ , and d2s2σ = σ , so
also A(σ) is a choice of cokernel of a. It follows that the unique isomorphism of
cokernels from A(σ) to h(s∗1(A))(σ) form a natural isomorphism η : id⇒ h ◦ s∗1.
Similarly, if A ∈ obS2,1C [n], then s∗1(h(A))(θ) is a choice of cokernel of the admissi-
ble monomorphism a : A(d0s1θ)↣ A(d1s1θ). But d0s1θ = s0d0θ and d1s1θ = θ , so
also A(θ) is a choice of cokernel of f . Hence, the unique isomorphism of cokernels
from s∗1(h(A))(θ) to A(θ) form a natural isomorphism ε : s∗1 ◦h⇒ id. Again, by the
uniqueness of the isomorphisms of different choices of cokernels, we conclude that
the two composite natural transformations

s∗1
η◦s∗1 +3 s∗1 ◦h◦ s∗1

ε◦s∗1 +3 s∗1 h
h◦η +3 h◦ s∗1 ◦h ε◦h +3 h

are equal to the identity natural transformations. This shows that (s∗1,h,η ,ε) forms a
pointed exact adjoint equivalence from S̃2,1C [n] to S2,1C [n].
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Since s∗1 is duality preserving, we have s∗1 = (D̃[n],D[n])(s∗1)
op. Moreover, by the

uniqueness of cokernels up to unique isomorphism, there is a natural isomorphism
g : h⇒ (D[n], D̃[n])hop. It necessarily satisfies g = (D[n], D̃[n])gop, and it is pointed
by our definition of h. Finally, the two diagrams in Definition 1.27 commute, since
each morphism in the two diagrams is the unique isomorphism between two choices
of cokernels of the same morphism.

Corollary 2.8. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality and n a non-negative integer. The pointed real map

|N(wS̃2,1C [−], D̃[−], 0̃[−])[−]|R
s∗1 // |N(wS2,1C [−],D[−],0[−])[−]|R.

induced by s∗1 : [3]→ [2] is a weak equivalence of pointed real spaces.

Proof. It follows from Lemma 2.7 and Corollary 1.34 that for every n ⩾ 0, the two
composites of the pointed real maps

|N(wS̃2,1C [n], D̃[n])[−]|R |N(wS2,1C [n],D[n])[−]|R
//

oo

H∗(s∗1)

H∗(h,g)

are pointed real homotopic to the respective identity maps. Moreover, as n varies, the
maps H∗(s∗1) (but not the maps H∗(h,g)) form a map of real simplicial pointed real
spaces. Therefore, by the real realization lemma, the induced map of realizations

|N(wS̃2,1C [−], D̃[−])[−]|R
s∗1 // |N(wS2,1C [−],D[−])[−]|R

is a weak equivalence of pointed real spaces as stated.

We end this section by introducing a category S̄2,1C [n] which is equivalent to the
category S2,1C [n] but is more manageable. The categories S̄2,1C [n], however, do not
form a simplicial category as n varies.

Definition 2.9. Let C be an exact category. The commutative diagram

A12
g1 //

h2
��

A13

h3
��

A22
g2 // A23

in C is an admissible square if it can be completed to a commutative diagram

A11 //
f1 //

��

h1
��

A12
g1 // //

��

h2
��

A13
��

h3
��

A21 //
f2 //

k1
����

A22
g2 // //

k2
����

A23
��

k3
��

A31
f3 // // A32

g3 // // A33
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in which the rows and columns all are exact. In this case, the latter diagram is said to
be a completion of the admissible square.

Remark 2.10. The completion of an admissible square is unique up to canonical
isomorphism. Moreover, the square diagram in Definition 2.9 is admissible if and
only if the following conditions (i)–(iii) are satisfied.

(i) The morphisms g1 and g2 are admissible epimorphisms.
(ii) The morphisms h2 and h3 are admissible monomorphisms.

(iii) If f1 : A11→ A12 and f2 : A21→ A22 are kernels of g1 and g2, respectively, then
h1 : A11→ A21 induced by h2 and h3 is an admissible monomorphism.

Here, the condition (iii) is equivalent to the following condition (iv).

(iv) If k2 : A22 → A32 and k3 : A23 → A33 are cokernels of h2 and h3, respectively,
then g3 : A32→ A33 induced by g1 and g2 is an admissible epimorphism.

Here, the equivalence of the conditions (iii) and (iv) uses [17, §2 c)].

Definition 2.11. Let n be a non-negative integer, and let (C ,wC ,D,0) be a pointed
exact category with weak equivalences and strict duality. The degree n restricted real
Waldhausen construction of (C ,wC ,D,0) is the pointed exact category with weak
equivalences and strict duality

(S̄2,1C [n],wS̄2,1C [n], D̄[n], 0̄[n]),

where

(S̄2,1C [n],D[n])⊂ CatDual(CatDual(([1],D),([n],D)),(C ,D))

is the full subcategory with strict duality of all functors

A : Cat([1], [n]) // C

such that

(i) for every functor µ : [1]→ [n] with µ(0) = 0 or µ(1) = n,

A(µ) = 0(1),

(ii) for every functor σ : [3]→ [n], the diagram

A(d0d2σ) //

��

A(d1d2σ)

��

A(d0d3σ) // A(d1d3σ)

is an admissible square in C ;

where the sequence A→ B̄→ C̄ in S̄2,1C [n] is exact if, for all functors µ : [1]→ [n],
the sequence A(µ)→ B̄(µ)→ C̄(µ) in C is exact; where the morphism A→ B̄ is in
wS̄2,1C [n] if, for all functors µ : [1]→ [n], the morphism A(µ)→ B̄(µ) is in wC ; and
where the basepoint 0̄[n] is the constant diagram 0̄[n](1)(µ) = 0(1).
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The restricted real Waldhausen construction does not define a real simplicial
pointed exact category with weak equivalences and strict duality. For instance,

Cat(Cat([1], [n]),C )
dn // Cat(Cat([1], [n−1]),C )

does not map S̄2,1C [n] to S̄2,1C [n−1].

Lemma 2.12. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality. For every integer n ⩾ 0, there exists a pointed exact adjunction

( j∗,e,η ,ε,1,g)

from (S̃2,1C [n],wS̃2,1C [n], D̃[n], 0̃[n]) to (S̄2,1C [n],wS̄2,1C [n], D̄[n], 0̄[n]). Moreover,
the natural transformations η , ε , and g all are isomorphisms.

Proof. For all non-negative integers m and n, we define

Cat([m], [n])
j

// Cat([m+2], [n])

to be the functor given by

j(θ)(i) =


0 if i = 0
θ(i−1) if 1 ⩽ i ⩽ m+1
n if i = m+2.

We note that j(diθ) = di+1 j(θ) for every functor θ : [m− 1]→ [n] and for every
integer 0 ⩽ i ⩽ m−1. Now, we claim that for m = 1, the functor j induces a pointed
exact duality preserving functor

S̃2,1C [n]
j∗

// S̄2,1C [n].

To see this, we let A ∈ ob S̃2,1C [n] and show that j∗(A) = A ◦ p satisfies (i)–(ii) of
Definition 2.11. To prove (i), let µ : [1]→ [n] be a functor. If µ(0) = 0, then we have
j(µ) = s0d0 j(µ), which implies that A( j(µ)) = 0(1). Similarly, if µ(1) = n, then
j(µ) = s2d3 j(µ), so A( j(µ)) = 0(1). This shows that j∗(A) satisfies (i). To prove (ii),
let σ : [3]→ [n] be a functor. In this situation, the diagram

A( j(d0d2σ)) //

��

A( j(d1d2σ))

��

A( j(d0d3σ)) // A( j(d1d3σ))
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can be completed to the diagram

A(d0d3 j(σ)) // //

��

��

A(d1d3 j(σ)) // //

��

��

A(d2d3 j(σ))
��

��

A(d0d4 j(σ)) // //

����

A(d1d4 j(σ)) // //

����

A(d2d4 j(σ))

����

A(d0d5 j(σ)) // // A(d1d5 j(σ)) // // A(d2d5 j(σ))

which shows that j∗(A) satisfies (ii). This shows that the functor j∗ is well-defined;
it is clear that it is pointed, duality preserving, and exact. For later use, we note that
the lower left-hand term is equal to A(σ).

We next define the functor e : S̄2,1C [n]→ S̃2,1C [n]. Let B : Cat([1], [n])→ C be
an object of S̄2,1C [n]. To define the value of the functor e(B) : Cat([3], [n])→ C on
the object σ : [3]→ [n] to be the lower left-hand term in a choice of completion of
the following admissible square.

B(d0d2σ) // //

��

��

B(d1d2σ)
��

��

B(d0d3σ) // // B(d1d3σ)

If both horizontal morphisms or both vertical morphisms in the admissible square
are identity morphisms, then we require that e(B)(σ) = 0(1); and if σ = j(µ) with
µ : [1]→ [n], then we required that e(B)( j(µ)) = B(µ). But in all other cases, the
choice of completion of the admissible square is unrestricted. To define the func-
tor e(B) on morphisms, we note that the morphism σ1 ⇒ σ2 induces a morphism
of the admissible squares used to define e(B)(σ1) and e(B)(σ2). This morphism, in
turn, extends uniquely to a morphism of the completions of the admissible squares in
question, and we define e(B)(σ1⇒ σ2) to be the morphism e(B)(σ1)→ e(B)(σ2) of
lower left-hand terms in the completed diagrams. We claim that e(B) satisfies (i)–(ii)
of Definition 2.5, and hence, is an object of S̃2,1C [n]. To verify (i), we let θ : [2]→ [n]
be a functor and consider the following admissible squares.

B(d0d2s0θ) //

��

B(d1d2s0θ)

��

B(d0d2s2θ) //

��

B(d1d2s2θ)

��

B(d0d3s0θ) // B(d1d3s0θ) B(d0d3s2θ) // B(d1d3s2θ)

The horizontal morphisms in the left-hand square and the vertical morphisms in
the right-hand square are all identity morphisms, and therefore, both e(B)(s0θ) and
e(B)(s2θ) are equal to 0(1). This shows that e(B) satisfies (i). To verify (ii), we let
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τ : [4]→ [n] be a functor and consider the following sequences.

e(B)(d0τ) // e(B)(d1τ) // e(B)(d2τ)

e(B)(d2τ) // e(B)(d3τ) // e(B)(d4τ)

We will show that the top sequence is exact; the proof for the bottom sequence is
similar. To this end, we consider the following diagram.

B(d0d2d0τ)

B(d1d2d0τ)

B(d0d3d0τ)

B(d1d3d0τ)

$$ $$J
JJJ

J��

��

$$ $$J
JJJ

J

��

��

B(d0d2d1τ)

B(d1d2d1τ)

B(d0d3d1τ)

B(d1d3d1τ)

$$ $$J
JJJ

J��

��

$$ $$J
JJJ

J

��

��

B(d0d2d2τ)

B(d1d2d2τ)

B(d0d3d2τ)

B(d1d3d2τ)

$$ $$J
JJJ

J��

��

$$ $$J
JJJ

J

��

��

// //

// //

// //

// //

The left-hand vertical square, the middle vertical square, and the right-hand vertical
squares are all admissible, and the objects e(B)(d0τ), e(B)(d1τ), and e(B)(d2τ) are
the lower left-hand terms in their respective completions. The front left-hand vertical
square and the back right-hand vertical square also are admissible. It follows that, by
choosing kernels of the admissible epimorphisms from the back rectangular diagram
to the front rectangular diagram, we obtain a diagram of the form

A11 B11 C11

A21 B21 C21.

// // // //

// // // //

��

��

��

��

��

��

Finally, the sequence in question is the induced sequence of a choice of cokernels
of the vertical admissible monomorphisms in this diagram. Hence, the sequence is
exact. This shows that e(B) satisfies (ii), proving the claim. We leave it to the reader
to verify that the functor e : S̄2,1C [n]→ S̃2,1C [n] is exact. It is pointed by definition.

We define η to be the natural isomorphism whose value at A ∈ ob S̃2,1C [n] is the
natural isomorphism ηA : A⇒ e( j∗(A)) whose value at σ : [3]→ [n], in turn, is the
canonical isomorphism from A(d2d5 j(σ)) = A(σ) to e( j∗(A))(σ). We define ε to be
the identity natural isomorphism. It is clear that both η and ε are pointed. Finally, we
define g : e⇒ (D̄[n], D̃[n])eop to be the natural isomorphism whose value at B is the
natural isomorphism gB : e(B)⇒ ((D̄[n], D̃[n])eop)(B) whose value at σ , in turn, is
the canonical isomorphism of lower left-hand terms in two choices of completion of
the admissible square used to define e(B)(σ). It follows from the definitions that g is
pointed, and the uniqueness of kernels and cokernels, up to canonical isomorphism,
implies that the two diagrams in Definition 1.27 commute.
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Example 2.13. We spell out the adjoint equivalences of categories

S2,1C [n]
h

// S̃2,1C [n]
s∗1oo

j∗
// S̄2,1C [n]

e
oo

in the case n = 3. An object A of S̃2,1C [n] is given by a diagram

A(d0s1) // a // A(d1s1)
b // // A(id[3]) // c // A(d2s1)

d // // A(d3s1)

such that the sequence (a,b) and (c,d) both are exact. The functor s∗1 takes A to the
object s∗1(A) of S2,1C [3] given by the 4-term exact sequence

A(d0s1) // a // A(d1s1)
c◦b // A(d2s1)

d // // A(d3s1),

and the functor j∗ takes A to the object j∗(A) of S̄2,1C [3] given by the diagram

A(d1s1)
b // // A(id[3]) // c // A(d2s1).

The forgetful functors s∗1 and j∗ are equivalences of categories, since A is determined,
up to isomorphism, by the either of s∗1(A) and j∗(A).
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3 The real algebraic K-theory spectrum

By analogy with Atiyah’s K-theory with reality [2], we associate to the pointed exact
category with weak equivalences and strict duality (C ,wC ,D,0) a real symmetric
spectrum KR(C ,wC ,D,0) that we call the real algebraic K-theory spectrum.

The real Waldhausen construction may be iterated. By applying it r times to the
pointed exact category with weak equivalences and strict duality (C ,wC ,D,0), we
obtain an r-real simplicial pointed exact category with weak equivalences and strict
duality whose value at the object

[n] = [n1, . . . ,nr] = [n1]×·· ·× [nr]

of the r-fold product real category ∆R×·· ·×∆R is the pointed exact category with
weak equivalences and strict duality

(S2,1(. . .S2,1C [nr] . . .)[n1],wS2,1(. . .S2,1C [nr] . . .)[n1],D[nr] . . . [n1],0[nr] . . . [n1]).

Here, and below, we suppress the arrangement of parentheses in the r-fold product;
for example, we can choose the arrangement where every pair of parentheses begin
on the left. To define the real symmetric spectrum KR(C ,wC ,D,0), we wish to be
able to permutate the r real simplicial directions. With this purpose in mind, we intro-
duce the following construction, which is naturally isomorphic to the r-fold iterated
Waldhausen construction.

Definition 3.1. For r ⩾ 1, the r-fold real Waldhausen construction of the pointed
exact category with weak equivalences and strict duality (C ,wC ,D,0) is the r-real
simplicial pointed exact category with weak equivalences and strict duality

(S2r,rC [−],wS2r,rC [−],D[−],0[−])

where

(S2r,rC [n],D[n])⊂ CatDual(CatDual(([2],D),([n],D)),(C ,D))

is the full subcategory with strict duality of all functors

A : Cat([2], [n])→ C

such that

(i) for every 1 ⩽ i ⩽ r, for every θ j : [2]→ [n j] with j = 1, . . . , i−1, i+1, . . . ,r, and
for every µ : [1]→ [ni],

A(θ1, . . . ,θi−1,s0µ,θi+1, . . . ,θr) = A(θ1, . . . ,θi−1,s1µ ,θi+1, . . . ,θr) = 0(1),

(ii) for every 1 ⩽ i ⩽ r, for every θ j : [2]→ [n j] with j = 1, . . . , i−1, i+1, . . . ,r, and
for every σ : [3]→ [ni], the sequence

A(θ1, . . . ,θi−1,d0σ ,θi+1, . . . ,θr) A(θ1, . . . ,θi−1,d1σ ,θi+1, . . . ,θr)

A(θ1, . . . ,θi−1,d2σ ,θi+1, . . . ,θr) A(θ1, . . . ,θi−1,d3σ ,θi+1, . . . ,θr)

//

////

is 4-term exaxt;
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where the sequence A → B → C in S2,1C [n] is exact if, for all θ : [2] → [n], the
sequence A(θ)→ B(θ)→ C(θ) in C is exact; where the morphism A→ B is in
wS2,1C [n] if, for all θ : [2]→ [n], the morphism A(θ)→ B(θ) is in wC , and where
the basepoint 0[n] is the constant diagram 0[n](1)(θ) = 0(1). For r = 0, the r-fold
real Waldhausen construction of (C ,wC ,D,0) is equal to (C ,wC ,D,0).

We have the canonical natural isomorphisms

Cat(Cat([2], [n1]× [n2]×·· ·× [nr]),C )

Cat(Cat([2], [n1])×Cat([2], [n2])×·· ·×Cat([2], [nr]),C )

Cat(Cat([2], [n1]),Cat(Cat([2], [n2]), . . . ,Cat(Cat([2], [nr]),C ) . . .)),

oo

//

where the first isomorphism is induced by the canonical isomorphism

Cat([2], [n1]×·· ·× [nr]) // Cat([2], [n1])×·· ·×Cat([2], [nr]),

and where the second isomorphism is determined by the closed symmetric monoidal
structure on the category of categories. Comparing Definitions 2.3 and 3.1, we see
that the composite natural isomorphism restricts to a natural isomorphism

S2r,rC [n1,n2, . . . ,nr]
ur // S2,1(S2,1(. . .S2,1C [nr] . . .)[n2])[n1]

through pointed duality preserving exact functors. As n varies, these functors con-
stitute a natural isomorphism from the r-real simplicial pointed exact category with
weak equivalences and strict duality defined by the r-fold Waldhausen construction of
(C ,wC ,D,0) to the r-real simplicial pointed exact category with weak equivalences
and strict duality defined by the r-fold iterate of the real Waldhausen construction
applied to (C ,wC ,D,0).

Let σ ∈ Σr = Aut({1, . . . ,r}) be a permutation. It gives rise to the real functor

∆R×·· ·×∆R
rσ // ∆R×·· ·×∆R

that takes the object [n1]×·· ·× [nr] to the object [nσ(1)]×·· ·× [nσ(r)] and that acts
similarly on morphism real sets. The symmetric monoidal structure on the category
of categories gives rise to the canonical isomorphism of categories

[n1]×·· ·× [nr] // rσ ([n1]×·· ·× [nr]),

and this isomorphism, in turn, induces a canonical isomorphism of categories

Cat(Cat([2],rσ ([n1]×·· ·× [nr])),C )
lσ // Cat(Cat([2], [n1]×·· ·× [nr]),C ).

It follows immediately from Definition 3.1 that the isomorphism lσ restricts to a
natural isomorphism of categories

S2r,rC [nσ(1), . . . ,nσ(r)]
lσ // S2r,rC [n1, . . . ,nr]
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through a pointed duality preserving exact functor. As n varies, these isomorphisms,
in turn, form a natural isomorphism of r-real simplicial categories

S2r,rC [−]◦ rop
σ

lσ // S2r,rC [−]

through pointed duality preserving exact functors. In addition, from the coherence
theorem for symmetric monoidal categories [11, Chapter XI, Theorem 1], we con-
clude that the following diagram commutes.

S2r,rC [−]◦ rop
τ ◦ rop

σ

lτ◦rop
σ

��

S2r,rC [−]◦ rop
στ

lστ
��

S2r,rC [−]◦ rop
σ

lσ // S2r,rC [−]

Finally, we let ∆ : ∆R→ ∆R×·· ·×∆R be the diagonal real functor and consider the
diagonal real simplicial category S2r,rC [−]◦∆ op.

Lemma 3.2. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality and let r be a positive integer. The symmetric group Σr acts from
the left on the diagonal real simplicial category S2r,rC [−] ◦∆ op with σ ∈ Σr acting
through the pointed duality preserving exact functor lσ .

Proof. Since rσ ◦∆ = ∆ , this follows from the commutativity of the diagram that
precedes the lemma.

Definition 3.3. Let r be a positive integer and let X [−] be an r-real simplicial set.
The geometric realization |X [−]|R is defined to be the real space |X [−]◦∆ op|R given
by the geometric realization of the diagonal real simplicial set.

We define the rth space in the real algebraic K-theory spectrum to be the pointed
real space given by the geometric realization

KR(C ,wC ,T,0) = |N(wS2r,rC [−],D[−],0[−])[−]|R

of the (r + 1)-real simplicial set defined by the real nerve of the r-real simplicial
pointed category with strict duality (wS2r,rC [−],D[−],0[−]). By Lemma 3.2, there
is a left Σr-action on KR(C ,wC ,D,0)r with σ ∈ Σr acting through the pointed real
map induced by the pointed duality preserving exact functor lσ .

To define the structure maps in the real algebraic K-theory spectrum, we need
a different model for the geometric realization of an r-simplicial set which we first
discuss. Spelling out Definition 3.3, the geometric realization |X [−]|R of the r-real
simplicial set X [−] is the following coequalizer in the category of real spaces.

∏

X [n, . . . ,n]×∆R([m], [n])×∆R[m]

∏

X [p, . . . , p]×∆R[p] |X [−]|R
//
//

//
f

g

The middle and left-hand coproducts range over the sets of objects and ordered pairs
of objects in ∆R, respectively; the real maps f and g were defined in the discussion
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that precedes Definition 1.18. We now define |X [−]|′R to be the real space given by
the following coequalizer in the category of real spaces.

∏

X [n1, . . . ,nr]×∆R([m1], [n1])×·· ·×∆R([mr], [nr])×∆R[m1]×·· ·×∆R[mr]

∏

X [p1, . . . , pr]×∆R[p1]×·· ·×∆R[pr] |X [−]|′R
//
//

//
f ′

g′

The middle and left-hand coproducts range over the sets of objects and ordered pairs
of objects in the r-fold product real category ∆R×·· ·×∆R, respectively, and the real
maps f ′ and g′ are defined by

f ′ ◦ in([m1,...,mr ],[n1,...,nr ]) = in[m1,...,mr ] ◦( fm1,...,mr ,n1,...,nr × id)

g◦ in([m1,...,nr ],[n1,...,nr ]) = in[n1,...,nr ] ◦(id×gm1,...,mr ,n1,...,nr)

where fm1,...,mr ,n1,...,nr is the composite real map

X [n1, . . . ,nr]×∆R([m1], [n1])×·· ·×∆R([mr], [nr])

X [n1, . . . ,nr]×RealSet(X [n1, . . . ,nr],X [m1, . . . ,mr])

X [m1, . . . ,mr],

//

//

id×X

ε◦ t

and where gm1,...,mr ,n1,...,nr is the composition

∆R([m1], [n1])×·· ·×∆R([mr], [nr])×∆R[m1]×·· ·×∆R[mr]

∆R([m1], [n1])×∆R[m1]×·· ·×∆R([mr], [nr])×∆R[mr]

∆R[n1]×·· ·×∆R[nr]

//

//

of the canonical isomorphism and the map gm1,n1 ×·· ·×gmr ,nr . The following result
may be proved using the method of [4]; see also [19].

Proposition 3.4. Let X [−] be an r-real simplicial set. The natural real map

dr : |X [−]|R→ |X [−]|′R

induced by the diagonal real maps

X [p, . . . , p]×∆R[p]
id×∆

// X [p, . . . , p]×∆R[p]×·· ·×∆R[p]

is a homeomorphism.

We now define the structure maps

KR(C ,wC ,D,0)r ∧S2s,s σr,s
// KR(C ,wC ,D,0)r+s

in the real algebraic K-theory spectrum. We recall that S2s,s is defined to be the s-fold
smash product S2,1∧ ·· ·∧S2,1 of the one-point compactification S2,1 of C with ∞ as
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the basepoint. We let S̄2s,s be the s-fold smash product S̄2,1∧ ·· ·∧ S̄2,1 of the pointed
real space S̄2,1 = ∆R[2]/∂∆R[2] and define the pointed real homeomorphism

S̄2s,s hs // S2s,s

to be the s-fold smash product of the pointed real homeomorphism h1 defined by

h1(t0 ·0+ t1 ·1+ t2 ·2) = t−1
0 e−2πi/3 + t−1

1 + t−1
2 e2πi/3.

Now the map σr,s is defined to be the composition

|N(wS2r,rC [−],D[−],0[−])[−]|R∧S2,1∧·· ·∧S2,1

oo
id∧hs |N(wS2r,rC [−],D[−],0[−])[−]|R∧ S̄2,1∧·· ·∧ S̄2,1

//
dr∧id |N(wS2r,rC [−],D[−],0[−])[−]|′R∧ S̄2,1∧·· ·∧ S̄2,1

//
jr,s |N(wS2(r+s),r+sC [−],D[−],0[−])[−]|′R

oo
dr+s |N(wS2(r+s),r+sC [−],D[−],0[−])[−]|R

where the real map jr,s, which is the only map that is not an isomorphism, is defined
as follows. Let A0 → ··· → Ap be an element of N(wS2r,rC [m],D[m],0[m])[p], let
ui ∈ ∆R[mi] let v j ∈ ∆R[2], and let w ∈ ∆R[p]. Then

jr,s(class of (A0→ ·· · → Ap,u1, . . . ,ur,w,v1, . . . ,vs))

= class of (Ã0→ ·· · → Ãp,u1, . . . ,ur,v1, . . . ,vs,w),

where, if Ai : Cat([2], [m])→ C , then Ãi : Cat([2], [m]× [2, . . . ,2])→ C is defined by

Ãi(θ ,θ ′) =

{
Ai(θ) if θ ′ = ∆
0(1) otherwise

with θ : [2]→ [m] and θ ′ : [2]→ [2, . . . ,2]. It is clear from the definition that σr,s is
Σr×Σs-equivariant when Σr×Σs acts from the left on the target through the group
homomorphism + : Σr×Σs→ Σr+s.

Definition 3.5. The real algebraic K-spectrum of the pointed exact category with
weak equivalences and strict duality (C ,wC ,D,0) is the real symmetric spectrum
KR(C ,wC ,D,0) whose rth space is the pointed real space with left Σr-action

KR(C ,wC ,D,0)r = |N(wS2r,rC [−],D[−],0[−])[−]|R

and whose structure maps are the Σr×Σs-equivariant pointed real maps

KR(C ,wC ,D,0)r ∧S2s,s σr,s
// KR(C ,wC ,D,0)r+s

defined above.

Finally, we prove the following result on the functoriality of the real algebraic
K-theory spectrum. We view the topological standard simplex ∆ [1] as a real space
with trivial GR-action.
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Proposition 3.6. Let (C1,wC1,D1,01) and (C2,wC2,D2,02) be two pointed exact
categories with weak equivalence and strict duality.

(1) A pair (F, f ) of a pointed exact functor F : (C1,wC1,01)→ (C2,wC2,02) and a
pointed natural transformation through weak equivalences f : F⇒ (D1,D2)Fop

such that f = (D1,D2) f op induces a map of real symmetric spectra

KR(C1,wC1,D1,01) KR(C2,wC2,D2,02).
(F, f )∗

//

(2) Let (F1, f1) and (F0, f0) be two pairs as in (1). A pointed natural transformation
through weak equivalences g : F1⇒ F0 such that the diagram

F1 F0

(D1,D2)F
op
1 (D1,D2)F

op
0

g +3

f1

��
f2

��
(D1,D2)gop
ks

commutes induces a map of real symmetric spectra

∆ [1]+∧KR(C1,wC1,D1,01)
g∗

// KR(C2,wC2,D2,02)

such that g∗ ◦ (d0∧ id) = (F0, f0)∗ and g∗ ◦ (d1∧ id) = (F1, f1)∗.

Proof. We use Addendum 1.29 as explained in Remark 1.31. The pair (F, f ) induces
the pair (wS2r,rF [n],wS2r,r f [n]) which is an object of the category

SymCatDual∗((wS2r,rC1[n],D1[n],01[n]),(wS2r,rC2[n],D2[n],02[n])).

The images H∗(wS2r,rF [n],wS2r,r f [n]) by the Top∗-functor H∗ defined in Remark 1.31
give rise to a Σr-equivariant pointed real map that we write

KR(C1,wC1,D1,01)r KR(C2,wC2,D2,02)r.//
(F, f )∗r

It is clear that the maps (F, f )∗r are compatible with the real symmetric spectrum
structure maps, and hence, form a map (F, f )∗ of real symmetric spectra.

Similarly, the natural transformation g : F1⇒ F0 induces a natural transformation
wS2r,rg[n] : wS2r,rF1[n]⇒ wS2r,rF0[n] which is a morphism of the above category of
symmetric spaces. Hence, from Remark 1.31 we obtain a Σr-equivariant real map

∆ [1]+∧KR(C1,wC1,D1,01)r
g∗r

// KR(C2,wC2,D2,02)r

such that g∗r ◦ (d0∧ id) = (F0, f0)∗r and g∗r ◦ (d1∧ id) = (F1, f1)∗r. Finally, it is clear
that the maps g∗r form a map g∗ of real symmetric spectra.

Remark 3.7. If F : (C1,wC1,D1,01)→ (C2,wC2,D2,02) is a pointed exact dual-
ity preserving functor between pointed exact categories with weak equivalences and
strict duality, then the pair (F,1F) satisfies the hypothesis of Proposition 3.6 (1). In
this case, we abbreviate (F,1F)∗ as F∗.
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4 The real Γ -category construction

In this section, we introduce a variant of Segal’s Γ -category that we call the real
Γ -category construction. In essence, it associates to the pointed exact category with
weak equivalences and strict duality (C ,wC ,D,0) the real Γ -pointed exact category
with weak equivalences and strict duality (C (−),wC (−),D(−),0(−) that takes the
pointed finite real set (X ,x) to the pointed exact category with weak equivalences and
strict duality given by the pointed C -valued sheafs on (X ,x).

We recall the closed symmetric monoidal category RealSet∗ of (κ-small) pointed
real sets. The full subcategory FinRealSet∗ of all (κ-small) finite pointed real sets
inherits a closed symmetric monoidal structure. We define a pointed real category
to be a RealSet∗-category, a real pointed functor to be a RealSet∗-functor, and a real
pointed natural transformation to be a RealSet∗-natural transformation. We will abuse
notation and write FinRealSet∗ for the underlying pointed real category of the closed
symmetric monoidal category FinRealSet∗.

Definition 4.1. A real Γ -object in the pointed real category C is a pointed real func-
tor A : FinRealSet∗ → C . A morphism f : A→ A′ between the real Γ -objects is a
pointed real natural transformation.

Remark 4.2. We define a real Γ -space to be a real Γ -object in the pointed real cat-
egory RealTop∗ of (κ-small) pointed real spaces. This is essentially the same as a
ΓG-space in the sense of Shimakawa [23, §1] for the group G = GR = Gal(C/R). We
also define a real Γ -category to be a a real Γ -object in the real category CatDual∗ of
(κ-small) pointed categories with strict duality. This, however, is different from the
ΓG-categories of Shimakawa [23, §2].

To define the real Γ -category construction, we define a pointed real functor

FinRealSetop
∗

P // CatDual∗

by analogy with the power set functor. Let (X ,x) be a (κ-small) finite pointed real
set. The category P(X ,x) has objects all pointed subsets x ∈ U ⊂ X , and the set
P(X ,x)(U,V ) of morphisms from the object U to object V consists of all subsets
x ∈ F ⊂U ∩V . We stress that x ∈U,V ⊂ X and x ∈ F ⊂U ∩V are not required to be
real subsets. The composition of the morphisms F : U→V and G : V →W is defined
to be the morphism G◦F = G∩F : U →W and the identity morphism of x ∈ X ⊂ X
is defined to be x∈X ⊂X . In particular, the morphism F : U→V is equal to the com-
position of the morphisms U ∩V : U →U ∩V and U ∩V : U ∩V →V which may be
thought of as the map that collapses the complement of U ∩V ⊂U to the basepoint
and the canonical inclusion of U ∩V into V , respectively. The duality functor

P(X ,x)op D // P(X ,x)

takes the object x ∈U ⊂ X to the object x ∈ DU = {tu | u ∈U} ⊂ X and takes the
morphism F : U→V to the morphism DF = {t f | f ∈ F} : DV →DU . The basepoint
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x̄ : (1, id)→ (P(X ,x),D) is the duality preserving functor defined by x̄(1) = {x} ⊂ X .
This defines the pointed real functor P on objects. We define

FinRealSet∗((X1,x1),(X2,x2))

//P obR CatDual∗((P(X2,x2),D2, x̄2),(P(X1,x1),D1, x̄1))

to be the pointed real map given by the following variant of the inverse image functor.
If f : (X1,x1)→ (X2,x2) is a pointed (but not necessarily real) map, then

(P(X2,x2),D2, x̄2)
f ∗

// (P(X1,x1),D1, x̄1)

is the pointed (but not necessarily duality preserving) functor defined on objects and
morphisms, respectively, by

f ∗(V ) = f−1(V ∖{x2})∪{x1}
f ∗(F) = f−1(F ∖{x2})∪{x1}).

This defines the pointed real functor P on morphism pointed real sets.
We next define a Grothendieck topology on the category P(X ,x) and begin by

recalling the relevant definitions from [1, Exposé I-II]. A sieve S on the object U is a
full subcategory of the overcategory P(X ,x)/U such that for every F : V →U in obS
and for every morphism G : W → V in P(X ,x), the composite F ◦G : W →U is in
obS. The pullback of the sieve S on U along the morphism F : V →U of P(X ,x) is
the unique sieve F∗S on V such that

obF∗S = {G : W →V | F ◦G : W →U is in obS}.

A Grothendieck topology on P(X ,x) is a function that to every object U associates
a subset J(U) of the set of sieves on U such that the following axioms (1)–(3) hold.
The elements of J(U) are called the covering sieves on U .

(1) If F : V →U is a morphism and if S is a covering sieve on U , then the pullback
sieve F∗S is a covering sieve on V .

(2) If U is an object, if S and T are sieves on U , if S is a covering sieve, and if for
every morphism F : V →U in obS, the pullback sieve F∗T is a covering sieve
on V , then T is a covering sieve on U .

(3) If U is an object of P(X ,x), then P(X ,x)/U is a covering sieve on U .

Finally, a C -valued sheaf on P(X ,x) for the topology J is a functor

A : P(X ,x)op→ C

such that for every object U and for every S ∈ J(U), the family of morphisms

A(F) : A(U)→ A(V ),

indexed by F : V →U in obS, constitute a limit of the Sop-diagram in C that takes
the value A(V ) at the object F : V →U of S and the value A(G) : A(V )→ A(W ) at
the morphism G : W →V in S from F ◦G : W →U to F : V →U .
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Lemma 4.3. Let (X ,x) be a finite pointed set. There is a Grothendieck topology J on
the category P(X ,x) where the sieve S on the object U is a covering sieve if and only
if for every u ∈U, the morphism {x,u} : {x,u}→U is in obS.

Proof. We first verify axiom (1). Let F : V→U be a morphism and let S be a covering
sieve on U . Given v ∈V , the composite morphism F ◦{x,v} : {x,v} →U is equal to
either {x,v} : {x,v}→U or {x} : {x,v}→U . The former is in obS by definition and
the latter is equal to the composition of {x} : {x,v} → {x} and {x} : {x} →U and
hence also is in obS. This proves (1). We next prove (2). Let S and T be two sieves
on U such that S is covering sieve and such that for every F : V →U in obS, F∗T is a
covering sieve on V . We let u∈U and consider the morphism F = {x,u} : {x,u}→U .
By assumption, the pullback sieve {x,u}∗T is a covering sieve on {x,u}. Hence, by
the definition of covering sieves, {x,u} : {x,u}→ {x,u} is in ob({x,u}∗T ). It follows
that {x,u} : {x,u}→U is in obT , which proves (2). Finally, it is clear that P(X ,x)/U
is a covering sieve, so that also (3) holds.

In the following, we will always endow the category P(X ,x) with the Grothendieck
topology J defined in Lemma 4.3.

Proposition 4.4. Let (X ,x) be a finite pointed set, let (C ,0) be a pointed additive
category, and let A : (P(X ,x), x̄)op → (C ,0) be a pointed functor. In this situation,
the following properties (a)–(c) are equivalent.

(a) The functor A is a C -valued sheaf on P(X ,x) for the topology J.
(b) For every object U of P(X ,x), the family of morphisms

A({x,u}) : A(U)→ A({x,u}),

indexed by u ∈U, constitute a product of the family of objects A({x,u}), indexed
by u ∈U.

(c) For every object U of P(X ,x), the family of morphisms

{A({x,u}) : A({x,u})→ A(U) | u ∈U},

indexed by u ∈U, constitute a coproduct of the family of objects A({x,u}), in-
dexed by u ∈U.

Proof. Let U be an object of P(X ,x). If T is a subcategory of P(X ,x)/U , then we
write AT for the T op-diagram in C defined by the composition

T op // (P(X ,x)/U)op // P(X ,x)op A // C

of the canonical inclusion, the canonical projection, and the given functor A. Now, let
S be a covering sieve on U . We define S′ to be the full subcategory S that consists of
all objects in S of the form V : V →U . The subcategory S′ is final in S, since there is
a unique morphism in S from the general object F : V →U to the object F : F →U
which is in the subcategory S′. It follows that the morphisms A(F) : A(U)→ A(V ),
indexed by F : V →U in obS, constitute a limit of the Sop-diagram AS if and only if
the morphisms A(V ) : A(U)→A(V ), indexed by V : V →U in obS′, constitute a limit
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of the S′op-diagram AS′ . Suppose that property (a) holds. The sieve S on U generated
by the set of morphisms {{x,u} : {x,u} →U | u ∈U} is a covering sieve. This set,
in turn, is the set of object in the final subcategory S′ of S, and the only non-identity
morphisms in S′ are the unique morphisms from {x} : {x}→U to {x,u} : {x,u}→U .
Since A({x}) is equal to the null object 0(1), we conclude that property (b) holds.

Conversely, suppose that property (b) holds. We let S be a covering sieve on the
object U and consider a family of morphisms fV : B→ A(V ), indexed by V : V →U
in obS′, such that for every morphism W : (V →U)→ (W →U) in S′, fW = A(W ).
By property (b), this family of morphisms is uniquely determined by the subfamily,
indexed by u ∈ U , that consists of the morphisms f{x,u} : B→ A({x,u}). This, in
turn, determines a unique morphism f : B→ A(U) with the property for all u ∈U ,
f{x,u} = A({x,u})◦ f . Now, for V : V →U in obS′ and v ∈V , we have

A({x,v})◦ fV = f{x,v} = A({x,v})◦ f : B→ A({x,v}),

which shows that fV = A(V )◦ f . Hence, property (a) holds.
Finally, for every U ∈ obP(X ,x) and every u,v ∈U , the composite morphism

A({x,u}) A(U) A({x,v})// //
A({x,u}) A({x,v})

is equal to the identity morphism, if u = v, and is the zero morphism, otherwise. In
this situation, it follows from [11, Theorem VIII.2.2] that properties (b) and (c) both
are equivalent to the property that the sum, indexed by u ∈U , of the morphisms

A(U) A({x,u}) A(U)// //
A({x,u}) A({x,u})

is equal to the identity morphism. This completes the proof.

Corollary 4.5. Let (X ,x) be a finite pointed real set, and let (C ,D,0) be a pointed
additive category with strict duality. In this situation, the duality functor

Cat∗((P(X ,x), x̄)op,(C ,0))op D // Cat∗((P(X ,x), x̄)op,(C ,0))

preserves sheaves.

Proof. Let the pointed functor A : (P(X ,x), x̄)op→ (C ,0) be a sheaf and let U be an
object of P(X ,x). In this situation, it follows from Proposition 4.4 that the family of
morphisms A({x,Du}) : A({x,Du})→ A(DU) indexed by u ∈ U is a coproduct of
the family of objects A({x,Du}) indexed by u ∈U . Hence, the family of morphisms

D(A(DU))
D(A({x,Du}))

// D(A({x,Du}))

(DA)(U)
(DA)({x,u})

// (DA)({x,u})

indexed by u ∈U constitute a product of the family of objects (DA)({x,u}) indexed
by u ∈U . By Proposition 4.4, the pointed functor DA : (P(X ,x), x̄)op → (C ,0) is a
sheaf as stated.
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Let f : (X1,x1) → (X2,x2) is a map of finite pointed sets, and let (C ,0) be a
pointed additive category. In this case, the pointed functor

f ∗ : (P(X2,x2), x̄2)→ (P(X1,x1), x̄1)

induces a pointed functor

fp : Cat∗((P(X1,x1)
op, x̄1),(C ,0)) // Cat∗((P(X2,x2), x̄2)

op,(C ,0))

called the direct image functor.

Lemma 4.6. Let f : (X1,x1)→ (X2,x2) be a map of finite pointed sets and let (C ,0)
be a pointed additive category. The direct image functor

fp : Cat∗((P(X1,x1)
op, x̄1),(C ,0)) // Cat∗((P(X2,x2), x̄2)

op,(C ,0))

preserves sheaves.

Proof. Let the pointed functor A : (P(X1,x1), x̄1)
op → (C ,0) be a sheaf. It suffices,

by Proposition 4.4, to show that for all x2 ∈U2 ⊂ X2, the family of morphisms

fp(A)(U2)
fp(A)({x2,u2})

// fp(A)({x2,u2})

A( f ∗(U2))
A( f ∗({x2,u2})) // A( f ∗({x2,u2}))

indexed by u2 ∈U2 constitute a product of the family of objects

fp(A)({x2,u2}) = A( f ∗({x2,u2}))

indexed by u2 ∈U2. But this readily follows from the family of morphisms

f ∗({x2,u2}) : f ∗({x2,u2})→ f ∗(U2),

indexed by u2 ∈ U2, being a coproduct of the family of pointed sets f ∗({x2,u2}),
indexed by u2 ∈U2, and from the pointed functor A : (P(X1,x1), x̄1)

op→ (C ,0) being
a sheaf.

Definition 4.7. The real Γ -construction of the pointed exact category with weak
equivalences and strict duality (C ,wC ,D,0) is the real Γ -pointed exact category
with weak equivalences and strict duality

(C (−),wC (−),D(−),0(−))

where

(C (X ,x),D(X ,x),0(X ,x))⊂ CatDual∗((P(X ,x),D, x̄)op,(C ,D,0))

is the full sub-pointed category with strict duality whose objects are the sheaves;
where the sequence A→ B→ C in C (X ,x) is exact if, for all x ∈ U ⊂ X , the se-
quence A(U) → B(U) → C(U) in C is exact; where the morphism A → B is in
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wC (X ,x) if, for every x ∈U ⊂ X , the morphism A(U)→ B(U) is in wC ; and where
for f : (X1,x1)→ (X2,x2) a pointed map,

f∗ : C (X1,x1)→ C (X2,x2)

is the direct image functor.

Remark 4.8. In Definition 4.7, we ask the reader to verify that the pointed map

FinRealSet∗((X1,x1),(X2,x2))

CatDual∗((C (X1,x1),D(X1,x1),0(X1,x1)),(C (X2,x2),D(X2,x2),0(X2,x2)))

//

that takes a pointed map to the associated direct image functor is a real map.

Let (X ,x) be a fixed finite pointed real set and let (C ,wC ,D,0) be a pointed
exact category with weak equivalences and strict duality. We view (X ,x) as a discrete
pointed category with strict duality, where the duality functor D : Xop→ X is defined
by Du = tu, and write

CatDual∗((X ,x),(C ,wC ,D,0))

for the exact category with weak equivalences and strict duality defined as follows.
The underlying pointed category with strict duality is CatDual∗((X ,D,x),(C ,D,0));
the sequence A→ B→C is exact if A(u)→ B(u)→C(u) is exact in C , for all u ∈ X ;
and the map A→ B is a weak equivalence if A(u)→ B(u) is in wC , for all u ∈ X .
Now, the pointed duality preserving functor

(X ,D,x) i // (P(X ,x),D, x̄)

defined by i(u) = {x,u} induces a pointed exact duality preserving functor

(C (X ,x),wC (X ,x),D(X ,x),0(X ,x)) i∗ // CatDual∗((X ,x),(C ,wC ,D,0)).

We note that the domain and target of the real functor i∗ are a covariant functor and
a contravariant functor, respectively, of (X ,x). In particular, the functor i∗ is not a
natural transformation.

Lemma 4.9. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality. For every finite pointed real set (X ,x), there exists a pointed exact
adjunction (i!, i∗,1,ε, f ,1) from (C1,wC1,D1,01) to (C2,wC2,D2,02), where

(C1,wC1,D1,01) = CatDual∗((X ,x),(C ,wC ,D,0))
(C2,wC2,D2,02) = (C (X ,x),wC (X ,x),D(X ,x),0(X ,x)).

Moreover, the natural transformations ε and f both are isomorphisms.
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Proof. We define the functor i! as follows. If B : (X ,x)→ (C ,0) is an object of C1,
then we define i!(B) : (P(X ,x), x̄)→ (C ,0) to be the pointed functor that takes the
object U to a choice of sum in C of the family of objects B(u), u ∈U , and that takes
the morphism F : U→V to the morphism i!(B)(F) : i!(B)(U)→ i!(B)(V ) whose uth
component is the canonical injection B(u)→ i!(B)(V ), if u∈ F ⊂U ∩V , and the zero
morphism, otherwise. We require the sum i!(B)(U) to be equal to B(u), if U = {x,u},
and to be equal to 0(1), if B(u) = 0(1) for all u ∈U , But in all other cases, the sum
may be chosen arbitrarily. It follows from Proposition 4.4 that the pointed functor
i!(B) is a sheaf. If f : B1 ⇒ B2 is a morphism in C1, then i!( f ) : i!(B1)→ i!(B2) is
the unique morphism for which i!( f )U is the sum of the set of morphisms { fu | u ∈
U}. This defines the functor i!; it is pointed and exact. The unit η : idC1 ⇒ i∗ ◦ i!
is the identity natural transformation, and the counit ε : i! ◦ i∗⇒ idC2 is the pointed
natural isomorphism for which εA : (i!i∗A)(U)→ A(U) is the unique isomorphism
in C whose uth component is the morphism A({x,u}) : A({x,u})→ A(U). The two
composite pointed natural transformations

i!
i!◦η +3 i! ◦ i∗ ◦ i!

ε◦i! +3 i! i∗
η◦i∗ +3 i∗ ◦ i! ◦ i∗ i∗◦ε +3 i∗

are the respective identity natural transformations. In the case of the former, this
follows form the uniqueness of the isomorphism between two choices of sums of a
given set of objects. This shows that (i!, i∗,1,ε) is a pointed exact adjunction.

Finally, we define f : i!⇒ (D2,D1)(i!)op to be the following natural isomorphism.
If x∈U ⊂ X is an object of P(X ,x), then ((D1,D2)i!)(B)(U) is a choice of product of
the family of objects B(u), u ∈U , with the product equal to 0(1) in case B(u) = 0(1)
for all u ∈ U . Now we let fU : (i!(B))(U)→ ((D1,D2)i!)(B)(U) be the canonical
isomorphism from the sum to the product of the same finite family of objects in an
additive category. We have f = (D2,D1) f op, by the uniqueness of the canonical iso-
morphism from the sum to the product of a finite set of object in an additive category.
By the same reason, the two diagrams in Definition 1.27 commute. This completes
the proof.

Remark 4.10. In the proof of Lemma 4.9, the morphism εA is an isomorphism in C ,
and hence, is in wC , because A : P(X ,x)op → C is a sheaf. The conclusion of the
lemma would not hold with the category C (X ,x) of sheaves replaced by the larger
category Cat∗(P(X ,x)op,(C ,0)) of presheaves, unless wC = C .

We have the real Γ -space |N(wC (−),D(−),0(−))[−]|R. The following result
shows that it is special.
Corollary 4.11. Let (C ,wC ,D,0) be a pointed exact category with weak equiva-
lences and strict duality. For every finite pointed real set (X ,x), the pointed real map

|N(wC (X ,x),D(X ,x),0(X ,x))[−]|R
i∗ // |N CatDual∗((X ,x),(wC ,D,0))[−]|R

is a weak equivalence of pointed real spaces.

Proof. It follows from Lemma 4.9 and Corollary 1.34 that the map of the statement is
a pointed real homotopy equivalence with pointed real homotopy inverse the pointed
real map H∗(i!, f ).
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5 The real direct sum K-theory spectrum

In this section, we associate to the pointed exact category with weak equivalences
and strict duality (C ,wC ,D,0) a real symmetric spectrum KR⊕(C ,wC ,D,0) that
we call the real direct sum K-theory spectrum. Being defined by a group-completion
process, it lends itself more easily to calculation by homological means.

The real Γ -category construction associates to the pointed exact category with
weak equivalences and strict duality (C ,wC ,D,0) the real Γ -pointed exact cate-
gory with weak equivalences and strict duality (C (−),wC (−),D(−),0(−)). It is a
pointed real functor from the pointed real category of (κ-small) pointed finite real
sets FinRealSet∗ to the pointed real category of (κ-small) pointed exact categories
with weak equivalences and strict duality wExCatDual∗. We define

S2,1[−] = ∆R[2][−]/∂∆R[2][−];

it is a real simplicial finite pointed real set. For every positive integer r, we define

S2r,r[−] = S2,1[−]∧·· ·∧S2,1[−]

to be the r-real simplicial finite pointed real set given by the r-fold smash product.

Definition 5.1. For r ⩾ 1, the r-real Segal construction of the pointed exact cate-
gory with weak equivalences and strict duality (C ,wC ,D,0) is the r-real simplicial
pointed exact category with weak equivalences and strict duality

(S2r,r
⊕ C [−],wS2r,r

⊕ C [−],D[−],0[−]) = (C (−),wC (−),D(−),0(−))◦S2r,r[−]

given by the composition of the r-real simplicial finite pointed real set S2r,r[−] and
the real Γ -category construction of (C ,wC ,D,0). The 0-real Segal construction of
(C ,wC ,D,0) is equal to (C ,wC ,D,0).

We compare the r-real Segal construction and the r-fold iterate of the 1-real Segal
construction. To this end, we consider the composition

Cat∗(P(S2,1[n1]∧·· ·∧S2,1[nr])
op,(C ,0))

//
i∗r Cat∗(P(S2,1[n1])

op∧P(S2,1[n2])
op∧·· ·∧P(S2,1[nr])

op,(C ,0))

//
kr Cat∗(P(S2,1[n1])

op,Cat∗(P(S2,1[n2])
op, . . . ,Cat∗(P(S2,1[nr])

op,(C ,0)) . . .)),

of the pointed functor i∗r induced by the pointed functor

P(S2,1[n1])∧·· ·∧P(S2,1[nr])
ir // P(S2,1[n1]∧·· ·∧S2,1[nr])

that maps the object U1 ∧ ·· · ∧Ur to the object U1 ∧ ·· · ∧Ur and the pointed functor
kr defined by the canonical isomorphism of pointed categories given by the closed
symmetric monoidal structure on the category of (κ-small) pointed categories. The
composite pointed functor kr ◦ i∗r restricts to a pointed natural transformation

S2r,r
⊕ C [n1,n2, . . . ,nr]

i#r // S2,1
⊕ (S2,1

⊕ (. . .S2,1
⊕ C [nr] . . .)[n2])[n1]
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through pointed duality preserving exact functors. As n varies, the functors i#r form an
r-real natural transformation from the r-real simplicial pointed exact category with
weak equivalences and strict duality defined by the r-real Segal construction to the
r-real simplicial pointed exact category with weak equivalences and strict duality
defined by the r-fold iterate of the 1-real Segal construction. The functor ir is not
essentially surjective, since not every pointed subset of S2,1[n1]∧·· ·∧S2,1[nr] is of the
form U1∧ ·· ·∧Ur, and the functor i#r is not an isomorphism of categories. However,
we have the following result.

Lemma 5.2. For every positive integer r, the pointed real map

|N(wS2r,r
⊕ [−],D[−],0[−])[−]|R

i#r // |N(wS2,1
⊕ . . .S2,1

⊕ C [−],D[−],0[−])[−]|R

is a weak equivalence of pointed real spaces.

Proof. By Proposition 3.4 and the real realization lemma, it suffices to show that for
fixed [n] = [n1, . . . ,nr], the pointed real map

|N(wS2r,r
⊕ [n],D[n],0[n])[−]|R

i#r // |N(wS2,1
⊕ . . .S2,1

⊕ C [n],D[n],0[n])[−]|R

is a weak equivalence of pointed real spaces. To this end, we consider the following
commutative diagram of pointed categories with strict duality and pointed duality
preserving functors in which the vertical functors are induced from the pointed real
functor i : (X ,x)→ (P(X ,x),D, x̄) defined by i(u) = {x,u}.

wS2r,r
⊕ C [n1, . . . ,nr]

i#r //

��

wS2,1
⊕ (. . .S2,1

⊕ C [nr] . . .)[n1]

��

Cat∗(S2r,r[n1, . . . ,nr],(wC ,0))
kr // Cat∗(S2,1[n1], . . . ,Cat∗(S2,1[nr],(wC ,0)), . . .)

Taking real nerves and geometric realization, we obtain a commutative diagram of
pointed real spaces. In this diagram, the lower horizontal map is a homeomorphism,
since the functor kr is an isomorphism of categories, and Corollary 4.11 shows that
the vertical maps are weak equivalences of pointed real spaces. Hence, also the top
horizontal map is a weak equivalence of pointed real spaces as desired.

If σ ∈ Σr then the symmetric monoidal structure on the category of finite pointed
real sets gives rise to a canonical isomorphism of finite pointed real sets

S2,1[nσ(1)]∧·· ·∧S2,1[nσ(r)]
l′σ // S2,1[n1]∧·· ·∧S2,1[nr]

and, as n varies, this is a canonical isomorphism of r-real pointed finite real sets

S2r,r[−]◦ rop
σ

l′σ // S2r,r[−],
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where rσ is the real functor defined earlier. It induces a canonical natural isomorphism
of r-simplicial categories through pointed duality preserving exact functors

S2r,r
⊕ C [−]◦ rop

σ
lσ // S2r,r

⊕ C [−]

defined by lσ = C (−) ◦ l′σ , and if both σ ,τ ∈ Σr then the coherence theorem for
symmetric monoidal categories shows that the following diagram commutes.

S2r,r
⊕ C [−]◦ rop

τ ◦ rop
σ

lτ◦rop
σ

��

S2r,r
⊕ C [−]◦ rop

στ

lστ
��

S2r,r
⊕ C [−]◦ rop

σ
lσ // S2r,r

⊕ C [−]

The following result is an immediate consequence.

Lemma 5.3. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality and let r be a positive integer. The symmetric group Σr acts from
the left on the diagonal real simplicial category S2r,r

⊕ C [−] ◦∆ op with σ ∈ Σr acting
through the pointed duality preserving exact functor lσ .

We define the rth space in the real direct sum K-theory spectrum to be the pointed
real space given by the geometric realization

KR⊕(C ,D)r = |N(wS2r,r
⊕ [−],D[−],0[−])[−]|R

of the (r+1)-real simplicial pointed set given by the real nerve of the r-real simplicial
pointed category with strict duality (wS2r,r

⊕ C [−],D[−],0[−]). By Lemma 5.3, there
is a left Σr-action on KR⊕(C ,wC ,D,0)r with σ ∈ Σr acting through the pointed real
map induced by the pointed duality preserving exact functor lσ .

We define the structure maps

σ⊕r,s : KR⊕(C ,wC ,D,0)r ∧S2s,s→ KR⊕(C ,wC ,D,0)r+s

in the real direct sum K-theory spectrum to be the composition

|N(wS2r,r
⊕ C [−],D[−],0[−])[−]|R∧S2,1∧·· ·∧S2,1

oo
id∧hs |N(wS2r,r

⊕ C [−],D[−],0[−])[−]|R∧ S̄2,1∧·· ·∧ S̄2,1

//
dr∧id |N(wS2r,r

⊕ C [−],D[−],0[−])[−]|′R∧ S̄2,1∧·· ·∧ S̄2,1

//
j⊕r,s |N(wS2(r+s),r+s

⊕ C [−],D[−],0[−])[−]|′R
oo

dr+s |N(wS2(r+s),r+s
⊕ C [−],D[−],0[−])[−]|R

where the real map j⊕r,s, which is the only map that is not an isomorphism, is defined
as follows. Let A0 → ··· → Ap be an element of N(wS2r,r

⊕ C [m],D[m],0[m])[p], let
ui ∈ ∆R[mi] let v j ∈ ∆R[2], and let w ∈ ∆R[p]. Then

j⊕r,s(class of (A0→ ·· · → Ap,u1, . . . ,ur,w,v1, . . . ,vs))

= class of (Ã0→ ·· · → Ãp,u1, . . . ,ur,v1, . . . ,vs,w),
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where, if Ai : P(S2r,r[m])op → C , then Ãi : P(S2r,r[m]∧ S2s,s[2, . . . ,2])op → C is the
unique pointed functor such that

Ãi(U ∧ id[2]∧·· ·∧ id[2]) = Ai(U).

It is clear from the definition that σ ⊕r,s is Σr×Σs-equivariant when Σr×Σs acts from
the left on the target through the group homomorphism + : Σr×Σs→ Σr+s.

Definition 5.4. The real direct sum K-spectrum of the pointed exact category with
weak equivalences and strict duality (C ,wC ,D,0) is the real symmetric spectrum
KR⊕(C ,wC ,D,0) whose rth space is the pointed real space with left Σr-action

KR⊕(C ,wC ,D,0)r = |N(wS2r,r
⊕ C [−],D[−],0[−])[−]|R

and whose structure maps are the Σr×Σs-equivariant pointed real maps

KR⊕(C ,wC ,D,0)r ∧S2s,s
σ ⊕r,s

// KR⊕(C ,wC ,D,0)r+s

defined above.

Remark 5.5. The functoriality of the real direct sum K-theory spectrum is completely
analogous to that of the real algebraic K-theory spectrum. Indeed, the statement and
proof of Proposition 3.6 translates verbatim to the current situation upon substituting
S2r,r
⊕ and KR⊕ for S2r,r and KR.

The following result, proved by Shimakawa [23, Theorem B], shows that the real
direct sum K-theory spectrum is a positively fibrant real symmetric spectrum.

Theorem 5.6. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality. For all positive integers r and s, the adjoint structure map

KR⊕(C ,wC ,D,0)r
σ̃⊕r,s

// Ω 2s,sKR⊕(C ,wC ,D,0)r+s

is a weak equivalence of pointed real spaces.

For r = 0 and s > 0, the adjoint structure map typically is not a weak equivalence
of real spaces. However, the real homotopy types of the domain and target are related
through group-completion as we now explain. We first define a map

KR⊕(C ,wC ,D,0)r×KR⊕(C ,wC ,D,0)r
µr

// KR⊕(C ,wC ,D,0)r

in the homotopy category of pointed real spaces as follows. If we set

KR⊕(C ,wC ,D,0)(2)r = |N((wC (−),D(−),0(−))◦ (S2r,r[−]∨S2r,r[−]))[−]|R

then Corollary 4.11 shows that the pointed real map

KR⊕(C ,wC ,D,0)(2)r
qr

// KR⊕(C ,wC ,D,0)r×KR⊕(C ,wC ,D,0)r
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induced by the pointed real maps p1, p2 : S2r,r[−]∨ S2r,r[−]→ S2r,r[−] that collaps
the second and first summands, respectively, is a weak equivalence of pointed real
spaces. The fold map ∇ : S2r,r[−]∨S2r,r[−]→ S2r,r[−] also induces a map

KR⊕(C ,wC ,D,0)(2)r
ar // KR⊕(C ,wC ,D,0)r

of pointed real spaces, and we define µr = γ(ar)◦γ(qr)
−1, where γ is the functor that

localizes with respect to the weak equivalences. The map µr is the composition law
in a monoid structure on KR⊕(C ,wC ,D,0)r in the homotopy category of pointed
real spaces with respect to the cartesian monoidal structure. Moreover, the basepoint
is a two-sided identity element. Indeed, if we let

KR⊕(C ,wC ,D,0)r ∨KR⊕(C ,wC ,D,0)
ir // KR⊕(C ,wC ,D,0)(2)r

be induced by the canonical inclusions in1, in2 : S2r,r[−]→ S2r,r[−]∨ S2r,r[−], then
qr ◦ ir is the canonical map from the coproduct to the product and ar ◦ ir is the fold
map. Finally, the adjoint structure map σ̃⊕r,s is a map of monoids with the monoid
structures on the domain and target given by µr and Ω 2s,sµr+s, respectively.

We recall that for s > 0, the monoid structure on the target of σ̃⊕r,s is an abelian
group structure. Indeed, considered as an object of the homotopy category of real
spaces, the sphere S2,1 has the structure of a cogroup object with respect to the
cocartesian monoidal structure in which the comultiplication is represented by the
pointed real map ψ1 : S2,1→ S2,1∨S2,1 defined by

ψ1(x+ iy) =


in1(x− x−1 + iy) if x < 0
in2(x− x−1 + iy) if x > 0
∞ if x = 0.

More generally, the sphere S2s,s, considered as an object of the homotopy category
of real spaces, has a cogroup structure with the comultiplication represented by the
pointed real map ψs : S2s,s→ S2s,s∨S2s,s defined by the composite

S2s,s S2,1∧ S2(s−1),s−1 ψ1∧id
// (S2,1∨S2,1)∧S2(s−1),s−1 // S2s,s∨S2s,s

where the right-hand map is the canonical isomorphism. Now, the two composition
laws on the target of σ̃⊕r,s induced by ψs and µr+s are mutually distributive and both
have the basepoint as two-sided identity element. This implies that the composition
laws are equal and commutative; see [24, Theorem 1.6.8].

Let k be a commutative ring, and let M be a monoid object in the homotopy
category of pointed real spaces with respect to the cartesian monoidal structure. For
every subgroup H ⊂GR, the homology H∗(MH ,k) is a graded k-algebra with respect
to the Pontryagin product, and the set of components π0(MH) is a monoid which we
view as a multiplicative subset of the Pontryagin algebra. If M is a group object, then
π0(MH) is a group. The following result is the real group-completion theorem.
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Theorem 5.7. Let k be a commutative ring, and let (C ,wC ,D,0) be a pointed exact
category with weak equivalences and strict duality. For every positive integer s and
for every subgroup H ⊂ GR, the map induced by the adjoint structure map

H∗((KR⊕(C ,wC ,D,0)0)
H ,k)[π0((KR⊕(C ,wC ,D,0)0)

H)−1]

//
σ̃⊕0,s∗ H∗((Ω 2s,sKR⊕(C ,wC ,D,0)s)

H ,k)

is an isomorphism of graded k-algebras.

The rest of this section is devoted to the proof of Theorem 5.7.
Remark 5.8. The map µr in the homotopy category of pointed real spaces defines a
commutative monoid structure on the object KRr = KR(C ,wC ,D,0)r. Indeed, the
following diagram in the category of pointed real spaces, commutes, since p1 ◦ t = p2
and ∇◦ t = ∇ as maps from S2r,r[−]∨S2r,r[−] to S2r,r[−].

KRr×KRr

t
��

KR(2)
r

qr
oo

t∗
��

ar // KRr

KRr×KRr KR(2)
r

qr
oo

ar // KRr

It follows that the Pontryagin ring H∗((KRr)
H) is an anti-symmetric graded ring with

the multiplicative subset π0((KRr)
H) contained in the center. Hence, the localization

H∗((KRr)
H)[(π0((KRr)

H))−1] admits calculation by right fractions.

Definition 5.9. A strict sum on the pointed exact category with weak equivalence
and strict duality (C̃ ,w C̃ , D̃, 0̃) is a pointed exact duality preserving functor

(C̃ ,wC̃ , D̃, 0̃)× (C̃ ,wC̃ , D̃, 0̃)
⊕

// (C̃ ,wC̃ , D̃, 0̃)

such that the following (i)–(iii) hold.

(i) For all Ã ∈ ob C̃ , 0̃(1)⊕ Ã = Ã = Ã⊕ 0̃(1).
(ii) For all Ã, B̃,C̃ ∈ C̃ , (Ã⊕ B̃)⊕C̃ = Ã⊕ (B̃⊕C̃).

(iii) For all Ã, B̃ ∈ ob C̃ , the morphisms

Ã Ã⊕ 0̃(1)
id⊕0

// Ã⊕ B̃ 0̃(1)⊕ B̃
0⊕id
oo B̃

form a sum in C̃ of Ã and B̃.

We first show that a structure of strict sum on (C̃ ,wC̃ , D̃, 0̃) makes it possible to
lift the monoid structure on KR(C̃ ,wC̃ , D̃, 0̃)r from the homotopy category of pointed
real spaces to the category of pointed real spaces.

Lemma 5.10. A strict sum on the pointed exact category with weak equivalences and
strict duality (C̃ ,wC̃ , D̃, 0̃) gives rise to a map of pointed real spaces

KR⊕(C̃ ,w C̃ , D̃, 0̃)r×KR⊕(C̃ ,w C̃ , D̃, 0̃)r
mr // KR⊕(C̃ ,w C̃ , D̃, 0̃)r

which is the composition law of a monoid structure on KR⊕(C̃ ,w C̃ , D̃, 0̃)r in the
category of pointed real spaces with respect to the cartesian monoidal structure and
which satisfies that γ(mr) = µr. Here r is a non-negative integer.
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Proof. We define the pointed real map mr to be the composition of the inverse of the
canonical pointed real homeomorphism from the realization of the product of two
(r + 1)-real simplicial pointed real sets to the product of their realizations and the
pointed real map induced by the strict sum functor⊕. It follows from Proposition 4.4
and Definition 5.9 (iii) that mr is well-defined and from loc. cit. (i)–(ii) that it is
the composition law of a monoid structure on KR⊕(C̃ ,w C̃ , D̃, 0̃)r in the cartesian
category of pointed real spaces.

To prove that γ(mr) = µr, we consider the pointed real map

KR⊕(C̃ ,w C̃ , D̃, 0̃)(2)r ×KR⊕(C̃ ,w C̃ , D̃, 0̃)(2)r
m(2)

r // KR⊕(C̃ ,w C̃ , D̃, 0̃)(2)r

defined by substituting S2r,r[−]∨S2r,r[−] for S2r,r[−] in the definition of mr. For every
map of r-real simplicial pointed real sets f : S2r,r[−]∨S2r,r[−]→ S2r,r, the diagram

KR⊕(C̃ ,w C̃ , D̃, 0̃)(2)r ×KR⊕(C̃ ,w C̃ , D̃, 0̃)(2)r
m(2)

r //

f∗× f∗
��

KR⊕(C̃ ,w C̃ , D̃, 0̃)(2)r

f∗
��

KR⊕(C̃ ,w C̃ , D̃, 0̃)r×KR⊕(C̃ ,w C̃ , D̃, 0̃)r
mr // KR⊕(C̃ ,w C̃ , D̃, 0̃)r

commutes, and we define

KR⊕(C̃ ,w C̃ , D̃, 0̃)r×KR⊕(C̃ ,w C̃ , D̃, 0̃)r
sr // KR⊕(C̃ ,w C̃ , D̃, 0̃)(2)r

to be the pointed real map sr = m(2)
r ◦ (in1∗× in2∗). From the calculation

p1∗ ◦ sr = p1∗ ◦m(2)
r ◦ (in1∗× in2∗) = mr ◦ ((p1∗ ◦ in1∗)× (p1∗ ◦ in2∗))

= mr ◦ (id×0̃) = pr1

p2∗ ◦ sr = p2∗ ◦m(2)
r ◦ (in1∗× in2∗) = mr ◦ ((p2∗ ◦ in1∗)× (p2∗ ◦ in2∗))

= mr ◦ (0̃× id) = pr2,

where 0̃ is the constant map, we find that

qr ◦ sr = (p1∗, p2∗)◦ sr = (pr1,pr2) = id

which shows that sr is a section of qr. In particular, we have γ(sr) = γ(qr)
−1, and

hence, the calculation

ar ◦ sr = ∇∗ ◦m(2)
r ◦ (in1∗× in2∗) = mr ◦ ((∇∗ ◦ in1∗)× (∇∗ ◦ in2∗)) = mr

shows that

γ(mr) = γ(ar ◦ sr) = γ(ar)◦ γ(sr) = γ(ar)◦ γ(qr)
−1 = µr

as desired. This completes the proof.
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Following [13, Proposition 4.2], we next prove the that, up to equivalence in the
appropriate sense, every pointed exact category with weak equivalences and strict
duality admits a strict sum.

Proposition 5.11. Let (C ,wC ,D,0) be a pointed exact category with weak equiva-
lences and strict duality. There exists a pointed exact category with weak equivalences
and strict duality (C̃ ,wC̃ , D̃, 0̃) equipped with a strict sum

(C̃ ,wC̃ , D̃, 0̃)× (C̃ ,wC̃ , D̃, 0̃)
⊕

// (C̃ ,wC̃ , D̃, 0̃)

and a pointed exact adjunction (F,G,η ,1, f ,1) from (C̃ ,w C̃ , D̃, 0̃) to (C ,wC ,D,0)
such that the natural transformations η and f both are natural isomorphisms.

Proof. We first define the category C̃ and the functor F : C̃ → C . We let ob C̃ be the
set of all tuples Ã = (A1, . . . ,An) of objects in C and let F : ob C̃ → obC be the map
that takes the 0-tuple ( ) to the nullobject 0(1), takes the 1-tuple (A) to the object A,
and takes the n-tuple (A1, . . . ,An) with n ⩾ 2 to an arbitrary choice of sum in C of
the objects A1, . . . ,An. We define the morphism sets in C̃ by

C̃ (Ã, B̃) = {B̃}×C (F(Ã),F(B̃)×{Ã},

where the two singleton sets are included in order to ensure that the morphism sets
corresponding to distinct pairs of objects are disjoint, and define

C̃ (Ã, B̃) F // C (F(Ã),F(B̃))

to be the projection onto the middle factor. The identity and composition in C̃ are
defined in the unique way that renders F a functor. We note that with these defintions
C̃ is an additive category and F an additive functor.

We next define G : C → C̃ to be the unique functor with F ◦G = idC that on
object sets is given by the map G : obC → ob C̃ defined by

G(A) =

{
( ) if A = 0(1)
(A) if A ̸= 0(1);

it is an additive functor. The functor G◦F takes ( ) to ( ) and takes (A1, . . . ,An) with
n ⩾ 1 to (F((A1, . . . ,An))). We note that (A1, . . . ,An) and (F((A1, . . . ,An))) both are
sums in C̃ of the objects (A1), . . . ,(An). The unit η : idC̃ ⇒G◦F is defined to be the
unique natural isomorphism between two choices of sum of the same objects, and the
counit ε : F ◦G⇒ idC is defined to be the identity natural isomorphism.

We define Ã→ B̃→ C̃ to be an exact sequence in C̃ if F(Ã)→ F(B̃)→ F(C̃)
is an exact sequence in C and define Ã→ B̃ to be in wC̃ if F(Ã)→ F(B̃) is in wC .
With these definitions, the functors F and G are exact.

We proceed to define the duality functor D̃ : C̃ op → C̃ together with the natural
isomorphism f : F ⇒ (D̃,D)Fop. We define

ob C̃ op D̃ // ob C̃
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to be the map that to (A1, . . . ,An)
op associates (D(Aop

1 ), . . . ,D(Aop
n )) and define

F(Ã)
fÃ // D(Fop(D̃op(Ã)))

with Ã = (A1, . . . ,An) to be the unique isomorphism between two choices of sum in
C of the objects A1, . . . ,An. Since the morphisms fÃ are isomorphisms and since the
functor F is fully faithful, there is a unique way to define a collection of maps

C̃ op(Ãop, B̃op)
D̃ // C̃ (D̃(Ãop), D̃(B̃op))

such that D̃ : C̃ op→ C̃ is a functor and the collection of isomorphisms fÃ is a natural
isomorphism f : F ⇒ (D̃,D)Fop. We have f = (D̃,D) f op by the uniqueness of the
isomorphism between two choices of sum of the same family of objects. We define
the basepoint 0̃ : (1,1, id)→ (C̃ ,wC̃ , D̃) by 0̃(1) = ( ). It is an exact duality pre-
serving functor. Finally, in the case at hand, all morphisms in the two diagrams in
Definition 1.27 are the unique isomorphisms between possibly different choices of
sum of the same family of objects. Hence, the diagrams necessarily commute.

Finally, the strict sum functor ⊕ is defined, on objects, by

(A1, . . . ,Am)⊕ (B1, . . . ,Bn) = (A1, . . . ,Am,B1, . . . ,Bn).

The object Ã⊕ B̃ is a preferred choice of sum in C̃ of the objects Ã and B̃ and we
define the functor ⊕ on morphism sets to be the categorical sum of morphisms. It is
clear that ⊕ is a strict sum in the sense of Definition 5.9.

Remark 5.12. If M is a (κ-small) category such that ob(M) = { /0}, then the triple of
the set M( /0, /0), the composition map ◦ : M( /0, /0)×M( /0, /0)→M( /0), and the identity
element id /0 ∈M( /0, /0) is a (κ-small) monoid, and every (κ-small) monoid is of this
form. We describe the nerve N(M)[−] explicitly as follows. The set N(M)[m] consists
of all functors a : [m]→M. Moreover, the map θ ∗ : N(M)[m]→ N(M)[l] induced by
the functor θ : [l]→ [m] takes the functor a : [m]→M given by the diagram

/0 oo
a1 /0 oo

a2
. . . oo

am /0

to the functor b = a◦θ : [l]→M given by the diagram

/0 oo
b1 /0 oo

b2
. . . oo

bl /0

whose components b1, . . . ,bl are given as follows. We let I1, . . . , Il be the pairwise
disjoint intervals in the target of the object map θ : ob[l]→ ob[m] defined by

Ii = { j ∈ ob[m] | θ(i−1)< j ⩽ θ(i)}.

The intervals need not be non-empty and they need not partition ob[m]. Now, if the
interval Ii = { j1, . . . , jr} with j1 < · · ·< jr is non-empty, then bi = a j1 ◦ · · · ◦a jr , and
if Ii is the empty interval, then bi = id /0.

We recall that the intervals I1, . . . , Il above have the following interpretation in
terms of the simplicial circle S1[−] = ∆ [1][−]/∂∆ [1][−]. The complement of the
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basepoint in S1[m] consists of the m elements σ̄1,m, . . . , σ̄m,m, where σ̄ j,m = {σ j,m} is
the class of the functor σ j,m : [m]→ [1] defined by

σ j,m(s) =

{
0 if s < j
1 if s ⩾ j.

Now, the pointed map θ ∗ : S1[m]→ S1[l] is characterized as follows: For all 1 ⩽ i ⩽ l,

(θ ∗)−1(σ̄i,l) = {σ̄ j,m | j ∈ Ii}.

A strict sum on the pointed exact category with weak equivalences and strict
duality (C̃ ,w C̃ , D̃, 0̃) gives rise to the map of pointed real simplicial sets

N(w C̃ , D̃, 0̃)[−]×N(w C̃ , D̃, 0̃)[−]
⊕[−]

// N(w C̃ , D̃, 0̃)[−]

that to the pair (Ã, B̃) of functors from [n] to w C̃ assigns the composite functor

[n] ∆ // [n]× [n]
Ã×B̃

// w C̃ ×w C̃
⊕

// w C̃ .

It is the composition law of a monoid structure with respect to the cartesian monoidal
structure on the object N(w C̃ , D̃, 0̃)[−] of the category of (κ-small) real simplicial
pointed real sets. The identity element for the monoid structure is the basepoint 0̃[−].
The nerve of this monoid as defined in Remark 5.12 gives rise to the simplicial real
simplicial pointed real set

N(N(w C̃ , D̃, 0̃)[−],⊕[−], 0̃[−])[−].

We define the geometric realization of the simplicial real simplicial set X [−,−] to be
the real space, pointed if X [−,−] is, given by

|X [−,−]|R = |[m] 7→ |[n] 7→ X [m,n]|R|.

Lemma 5.13. Let (C̃ ,w C̃ , D̃, 0̃) be a pointed exact category with weak equivalences
and strict duality equipped with the strict sum

(C̃ ,w C̃ , D̃, 0̃)× (C̃ ,w C̃ , D̃, 0̃)
⊕

// (C̃ ,w C̃ , D̃, 0̃).

There is a canonical weak equivalence of pointed real spaces

|N(N(w C̃ , D̃, 0̃)[−],⊕[−], 0̃[−])[−]|R
//

i′! |N(wC̃ (S1[−]), D̃(S1[−]), 0̃(S1[−]))[−]|R.
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Proof. We define the map i′! as the composition of two pointed real maps

|N(N(w C̃ , D̃, 0̃)[−],⊕[−], 0̃[−])[−]|R
//u |N CatDual∗(S1[−],(wC̃ , D̃, 0̃))[−]|R
//

i! |N(wC̃ (S1[−]), D̃(S1[−]), 0̃(S1[−]))[−]|R,

each of which is the realization of a map of simplicial real simplicial pointed real
sets, and begin by defining the middle simplicial real simplicial pointed set. More
generally, let (X ,x) and (Y,y) be two finite pointed sets equipped with total orderings
of the complements of the respective basepoints, say, X ∖ {x} = {x1, . . . ,xm} and
Y ∖ {y} = {y1, . . . ,yl}, and let f : (X ,x)→ (Y,y) be a pointed map that is pointed
order preserving in the sense that its restriction to f−1(Y ∖{y}) is order preserving.
In this situation, we define the pointed functor

CatDual∗((X ,x),(w C̃ , D̃, 0̃))
f∗

// CatDual∗((Y,y),(w C̃ , D̃, 0̃))

as follows. If f−1(yi) = {x j1 , . . . ,x jr} with j1 < · · ·< jr is non-empty, then

f∗(B̃)(yi) = B̃(x j1) ⊕ . . . ⊕ B̃(x jr)

with the strict sum on the right-hand side taken in the indicated order; and if f−1(yi)
is empty, then f∗(B̃)(yi) = 0̃(1). The functor f∗ is duality preserving, since (X ,x)
and (Y,y) have trivial real structures. Moreover, if also g : (Y,y)→ (Z,z) is a pointed
order preserving pointed map, then we have (g◦ f )∗ = g∗ ◦ f∗.

In the case at hand, we give the complement of the basepoint in S1[m] the total
ordering such that σ̄1,m < · · · < σ̄m,m; see Remark 5.12 for the definition of σ̄ j,m.
One verifies that for every functor θ : [l]→ [m], the pointed map θ ∗ : S1[m]→ S1[l]
is pointed order preserving; whence, we obtain the simplicial pointed category with
strict duality CatDual∗(S1[−],(w C̃ , D̃, 0̃)), and the simplicial real simplicial pointed
set N CatDual∗(S1[−],(w C̃ , D̃, 0̃))[−] is the degreewise real nerve.

We next define the pointed real map u and prove that it is an isomorphism. In fact,
it readily follows from Remark 5.12 that there is an isomorphism of simplicial real
simplicial pointed sets

N(N(w C̃ , D̃, 0̃)[−],⊕[−], 0̃[−])[−]
u[−,−]

// N CatDual∗(S1[−],(wC̃ , D̃, 0̃))[−]

that, with Ã1, . . . , Ãm ∈ N(w C̃ , D̃, 0̃)[n], is defined by

u[m,n]( /0 oo
Ã1

. . . oo
Ãm /0 )(σ̄ j,m) = Ã j.

Accordingly, the induced map of the geometric realizations, u = |u[−,−]|R, is an
isomorphism of pointed real spaces as desired.

It remains to define the map i! and prove that it is a weak equivalence of real
pointed spaces. To this end, we recall the pointed adjunction (i!, i∗,η ,ε) given by
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Lemma 4.9. Let again (X ,x) be a finite pointed set equipped a total ordering of the
complement of the basepoint, say, X ∖{x}= {x1, . . . ,xm}. We define

CatDual∗((X ,x),(w C̃ , D̃, 0̃))
i! // (w C̃ (X ,x), D̃(X ,x), 0̃(X ,x))

as in the proof of Lemma 4.9, making the following particular choice of the sum that
defines i!(B̃)(U), where U is an object of P(X ,x). If U ∖ {x} = {x j1 , . . . ,x jr} with
j1 < · · ·< jr non-empty, then we define

i!(B̃)(U) = B̃(x j1)⊕ B̃(x j2) ⊕ . . . ⊕ B̃(x jr),

where the strict sum is formed in the indicated order; and if U = {x}, then we define
i!(B̃)({x}) = 0̃(1) as before. With this definition, the functor i! is duality preserving.
Moreover, if also (Y,y) is a finite pointed set equipped with a total ordering of the
complement of the basepoint, and if f : (X ,x)→ (Y,y) is a pointed order preserving
pointed map, then the following diagram commutes.

CatDual∗((X ,x),(w C̃ , D̃, 0̃))
i! //

f∗
��

(w C̃ (X ,x), D̃(X ,x), 0̃(X ,x))

f∗
��

CatDual∗((Y,y),(w C̃ , D̃, 0̃))
i! // (w C̃ (Y,y), D̃(Y,y), 0̃(Y,y))

It follows that, in the case at hand, the functor i! gives rise to a map of simplicial real
simplicial pointed sets

N CatDual∗(S1[−],(w C̃ , D̃, 0̃))[−]
i! // N(w C̃ (S1[−]), D̃(S1[−]), 0̃(S1[−]))[−],

and Corollary 4.11 shows that the induced map of geometric realizations is a weak
equivalence of pointed real spaces. This completes the proof.

Proof of Theorem 5.7. By Theorem 5.6, we may assume that s = 1. We construct a
commutative diagram of pointed real spaces

KR⊕(C ,wC ,D,0)0
σ̃⊕0,1

//

σ̃⊕
(0,0),(1,0)

��

Ω 2,1KR⊕(C ,wC ,D,0)1

σ̃(0,1),(1,0)
��

Ω 1,0KR⊕(C ,wC ,D,0)1,0
σ̃(1,0),(0,1)

// Ω 3,1KR⊕(C ,wC ,D,0)1,1

with KR⊕(C ,wC ,D,0)1,r defined analogously to KR⊕(C ,wC ,D,0)r, substituting
the simplicial r-real simplicial finite pointed set S2r+1,r[−] = S1[−]∧S2r,r[−] for the
r-simplicial finite pointed set S2r,r[−]. The right-hand vertical map and the lower
horizontal map are both weak equivalences of pointed real spaces by the theorem
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of Shimakawa [23, Theorem B]. Hence, it suffice to show that the map of graded
k-algebras

H∗((KR⊕(C ,wC ,D,0)0)
H ,k)[π0((KR⊕(C ,wC ,D,0)0)

H)−1]

// H∗((Ω 1,0KR⊕(C ,wC ,D,0)(1,0))
H ;k)

H∗(Ω 1((KR⊕(C ,wC ,D,0)(1,0))
H);k)

induced adjoint structure map σ̃(0,0),(1,0) is an isomorphism. This, in turn, follows
from Quillen [6, Appendix] as we now explain. We consider the following commu-
tative diagram.

KR⊕(C ,wC ,D,0)0
σ̃(0,0),(1,0)

// Ω 1,0KR⊕(C ,wC ,D,0)(1,0)

KR⊕(C̃ ,w C̃ , D̃, 0̃)0
σ̃(0,0),(1,0)

//

(F, f )∗

OO

Ω 1,0KR⊕(C̃ ,w C̃ , D̃, 0̃)(1,0)

Ω 1,0(F, f )∗

OO

KR⊕(C̃ ,w C̃ , D̃, 0̃)0
σ̃ // Ω 1,0BKR⊕(C̃ ,w C̃ , D̃, 0̃)0

Ω 1,0i′!

OO

Here (C̃ ,w C̃ , D̃, 0̃) and (F, f ) are as in Proposition 5.11; hence, Remark 5.5 shows
that the top vertical maps are weak equivalences of pointed real spaces. The lower
right-hand term is the loop space of the pointed real space

BKR⊕(C̃ ,w C̃ , D̃, 0̃)0 = |N(N(w C̃ , D̃, 0̃)[−],⊕[−], 0̃[−])[−]|,

and Lemma 5.13 shows that the lower right-hand vertical map is a weak equivalence
of pointed real spaces. Therefore, it suffices to show that the map of graded k-algebras

H∗((KR⊕(C ,wC ,D,0)0)
H ,k)[π0((KR⊕(C ,wC ,D,0)0)

H)−1]

// H∗((Ω 1,0BKR⊕(C ,wC ,D,0)0)
H ,k)

H∗(Ω 1(BKR⊕(C ,wC ,D,0)0)
H ,k)

induced by the lower horizontal map σ̃ is an isomorphism. Now, if H = {1}, then this
follows from the group-completion theorem in [6, Appendix] applied to the simplicial
monoid (N(w C̃ )[−],⊕[−], 0̃[−]); and if H =GR, then it follows from loc. cit. applied
to the simplicial monoid (N Sym(w C̃ , D̃)[−],Sym⊕[−],Sym0̃[−]). This completes
the proof.

Remark 5.14. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality, and let H ⊂ GR be a subgroup. The canonical map

π0((KR⊕(C ,wC ,D,0)0)
G
R)

// KR⊕0,0(C ,wC ,D,0)

is a group-completion of the domain considered as a commutative monoid with the
map π0((µ0)

G
R) as the composition law and with the basepoint as the identity element.
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In addition, Addendum 1.29 identifies the domain with the pointed set of equivalence
classes of symmetric spaces in (wC ,D) under the equivalence relation generated by
the relation that identifies the symmetric spaces (c1, f1) and (c2, f2) if there is a map
of symmetric spaces in (wC ,D) from (c1, f1) to (c2, f2).
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6 The forgetful map

In this section, we define for every pointed exact category with weak equivalences and
strict duality (C ,wC ,D,0) a real simplicial pointed exact duality preserving functor

(S2,1
⊕ C [−],wS2,1

⊕ C [−],D[−],0[−])
ϕ∗

// (S2,1C [−],wS2,1C [−],D[−],0[−]).

from the real Segal construction to the real Waldhausen construction. The functor ϕ ∗
is given by forgetting a large part of the information contained in the sheaves that
constitute the objects in the categories S2,1

⊕ C [n], so we call it the forgetful functor.
We define the functor ϕ : Cat([2], [n])→ P(S2,1[n])op, on objects, by

ϕ([2] [n]θ // ) = {[n] [2]
ρ

// | ρ ◦θ = id[2]}∪{∞[n]}

and, on morphisms, by

ϕ([2] [n]
$$

::

KS
θ1

θ2

) = ϕ([2] [n]//
θ1 )∩ϕ([2] [n]//

θ2 )

ϕ([2] [n]//
θ1 )

ϕ([2] [n]//
θ2

).
��

Here ∞[n] = ∂∆R[2][n] is the basepoint of S2,1[n]. We note that the complement of
the basepoint in ϕ(θ : [2]→ [n]) has cardinality (θ(2)−θ(1))(θ(1)−θ(0)).

Lemma 6.1. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality. The functor ϕ induces a real simplicial pointed duality preserving
exact functor

(S2,1
⊕ C [−],wS2,1

⊕ C [−],D[−],0[−])
ϕ∗

// (S2,1C [−],wS2,1C [−],D[−],0[−]).

Proof. The functor ϕ induces a functor

Cat∗(P(S2,1[n])op,(C ,0))
ϕ∗

// Cat(Cat([2], [n]),C ),

and we first prove that this functor maps the full subcategory S2,1
⊕ C [n] of the domain

to the full subcategory S2,1C [n] of the target. So we let B : P(S2,1[n])op → C be an
object of S2,1

⊕ C [n] and show that A = B ◦ ϕ : Cat([2], [n])→ C satisfies (i)–(ii) of
Definition 2.3. First, for every functor µ : [1]→ [n], we have directly from the defi-
nition of ϕ that ϕ(s0µ) = ϕ(s1µ) = {∗}. Since the functor B is pointed, we find that
A(s0µ) = A(s1µ) = 0(1), which shows that A satisfies (i). Next, we wish to show that
for every functor τ : [3]→ [n], the sequence

B(ϕ(d0τ)) // B(ϕ(d1τ)) // B(ϕ(d2τ)) // B(ϕ(d3τ))
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is 4-term exact. Since B is a sheaf, it will suffice to show that ϕ(d0τ) ⊂ ϕ(d1τ),
ϕ(d2τ)⊃ ϕ(d3τ), and ϕ(d1τ)∖ϕ(d0τ) = ϕ(d2τ)∖ϕ(d3τ). We have

ϕ(d0τ) = {[n] [2]//
ρ

| ρ([0,τ(1)]) = 0,ρ(τ(2)) = 1,ρ([τ(3),n]) = 2}

ϕ(d1τ) = {[n] [2]//
ρ

| ρ([0,τ(0)]) = 0,ρ(τ(2)) = 1,ρ([τ(3),n]) = 2}

ϕ(d2τ) = {[n] [2]//
ρ

| ρ([0,τ(0)]) = 0,ρ(τ(1)) = 1,ρ([τ(3),n]) = 2}

ϕ(d3τ) = {[n] [2]//
ρ

| ρ([0,τ(0)]) = 0,ρ(τ(1)) = 1,ρ([τ(2),n]) = 2}

which shows, first, that ϕ(d0τ)⊂ ϕ(d1τ) and ϕ(d2τ)⊃ ϕ(d3τ), and, second, that the
two complements agree and equal

{[n] [2]//
ρ

| ρ([0,τ(0)]) = 0,ρ([τ(1),τ(2)]) = 1,ρ([τ(3),n]) = 2}.

This shows that A satisfies (ii). Finally, it is clear from the definitions that the resulting
functor ϕ ∗ : S2,1

⊕ C [n]→ S2,1C [n] is pointed, exact, and duality preserving.

Example 6.2. The forgetful functor ϕ ∗ : S2,1
⊕ C [n]→ S2,1C [n] is an isomorphism of

categories, for n ⩽ 2. We illustrate the case n = 3 in detail. The pointed set S2,1[3] has
elements s̄0, s̄1, s̄2, and ∞[3], which we abbreviate s0, s1, s2, and ∞. Now, the object
B of the domain category S2,1

⊕ C [3] is given by a diagram of the form

B({s0,s1,s2,∞})

B({s0,∞}) B({s0,s1,∞}) B({s1,∞})

B({s1,s2,∞})

B({s2,∞})

B({s0,s2,∞})

oo
//

//
oo

��
55

55
55

55
55

55
55

55
55
ZZ555555555555555555

��
55

55
55

55
55

55
55

55
55ZZ555555555555555555

DD																		 ��		
		
		
		
		
		
		
		
		

DD																		��	
		
		
		
		
		
		
		
		
	

77oooooooooooooooooowwo
ooo

ooo
ooo

ooo
ooo

oo OO

��

ggPPPPPPPPPPPPPPPPPP ''P
PPP

PPP
PPP

PPP
PPP

PP

wwooo
o
77oooo��

OO

''OO
OO
ggOOOO

which is subject to the sheaf condition that every “linear” subdiagram is a biproduct
diagram in C . The forgetful functor ϕ ∗ takes B to the object A = B ◦ ϕ of S2,1C [3]
given by the subdiagram

A(d0) A(d1) A(d2) A(d3)

B({s0,∞}) B({s0,s1,∞}) B({s1,s2,∞}) B({s2,∞})

// // //

// // //
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We remark that this subdiagram does not contain the object B({s1,∞}).
We next factor the functor ϕ ∗ through the extended real Waldhausen construction

defined in Definition 2.5. To this end, we factor the functor ϕ as the composition

Cat([2], [n])
s1 // Cat([3], [n])

ϕ̃
// P(S2,1[n])op,

where the functor ϕ̃ is defined, on objects, by

ϕ̃([3] [n]//
σ

) = {[n] [2]//
ρ

| ρ ◦σ = s1}∪{∞[n]}

and, on morphisms, by

ϕ̃([3] [n]
$$

::

KS
σ1

σ2

) = ϕ̃([3] [n]//
σ1

)∩ ϕ̃([3] [n]//
σ2

)

ϕ̃([3] [n]//
σ1

)

ϕ̃([3] [n]//
σ2

).
��

Lemma 6.3. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality. The functor ϕ̃ induces a real simplicial pointed duality preserving
exact functor

(S2,1
⊕ C [−],wS2,1

⊕ C [−],D[−],0[−])
ϕ̃∗

// (S̃2,1C [−],wS̃2,1C [−], D̃[−], 0̃[−]).

Proof. We show that for every object B : P(S2,1[n])op→C of S2,1
⊕ C [n], the composite

functor Ã=B◦ ϕ̃ : Cat([3], [n])→C satisfies (i)–(ii) of Definition 2.5. First, for every
functor θ : [2]→ [n], we have ϕ̃(s0θ) = ϕ̃(s2θ) = {∞[n]}, since s1 : [3]→ [2] does
not factor through s0 : [3]→ [2] or s2 : [3]→ [2]. This shows that Ã satisfies (i). Next,
for every functor τ : [4]→ [n], we have

ϕ̃(d0τ) = {[n] [2]
ρ

// | ρ([0,τ(1)]) = 0,ρ([τ(2),τ(3)]) = 1,ρ([τ(4),n]) = 2}

ϕ̃(d1τ) = {[n] [2]
ρ

// | ρ([0,τ(0)]) = 0,ρ([τ(2),τ(3)]) = 1,ρ([τ(4),n]) = 2}

ϕ̃(d2τ) = {[n] [2]
ρ

// | ρ([0,τ(0)]) = 0,ρ([τ(1),τ(3)]) = 1,ρ([τ(4),n]) = 2}

ϕ̃(d3τ) = {[n] [2]
ρ

// | ρ([0,τ(0)]) = 0,ρ([τ(1),τ(2)]) = 1,ρ([τ(4),n]) = 2}

ϕ̃(d4τ) = {[n] [2]
ρ

// | ρ([0,τ(0)]) = 0,ρ([τ(1),τ(2)]) = 1,ρ([τ(3),n]) = 2},

and hence, ϕ̃(d1τ) = ϕ̃(d0τ)∨ ϕ̃(d2τ) and ϕ̃(d3τ) = ϕ̃(d2τ)∨ ϕ̃(d4τ). Since B is a
sheaf, we conclude that Ã satisfies (ii).
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Remark 6.4. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality and let n be a fixed non-negative integer. The pointed exact duality
preserving functor

S2,1
⊕ C [n] i∗ // CatDual∗(S2,1[n],(C ,0)),

from Lemma 4.9 factors as the composition

S2,1
⊕ C [n]

ϕ̃∗
// S̃2,1C [n] v // CatDual∗(S2,1[n],(C ,0)),

where the functor v is defined as follows. Given an element ρ̄ of S2,1[n] different from
the basepoint, there is unique functor σ = σ(ρ̄) : [3]→ [n] such that ρ ◦σ = s1 and
such that σ(1)−σ(0) = 1 = σ(3)−σ(2). We now define the functor v on objects
and morphisms, respectively, by v(A)(ρ̄) = A(σ) and v( f )ρ̄ = fσ . The definition of
σ(ρ̄) shows that ϕ̃(σ(ρ̄)) = {ρ̄,∞[n]} = i(ρ̄), so i∗ factors as v ◦ ϕ̃ ∗. We also note
that the functor v is pointed, exact, and duality preserving.

We end this section by introducing a companion S̄2,1
⊕ C [n] of the restricted real

Waldhausen construction.
Definition 6.5. Let n be a non-negative integer. Then (C[n],D) is the category with
strict duality defined as follows. The set of objects is the set of all pairs of integers
(a,b) with 0 ⩽ a ⩽ b ⩽ n, and the set of morphisms is generated by

(a,b) (a−1,b)
p

// (with 0 < a ⩽ b ⩽ n)

(a−1,b) (a,b)s // (with 0 < a ⩽ b ⩽ n)

(a,b+1) (a,b)i // (with 0 ⩽ a ⩽ b < n)

(a,b) (a,b+1)r // (with 0 ⩽ a ⩽ b < n)

subject to the relations that

i◦ p = p◦ i : (a,b+1) (a−1,b)// (for all 0 < a ⩽ b < n)

r ◦ s = s◦ r : (a−1,b) (a,b+1)// (for all 0 < a ⩽ b < n)

p◦ s = id : (a−1,b) (a−1,b)// (for all 0 < a ⩽ b ⩽ n)

r ◦ i = id : (a,b+1) (a,b+1)// (for all 0 ⩽ a ⩽ b < n).

The functor D : C[n]op→C[n] is defined, on objects, by

D((a,b)op) = (n−b,n−a),

where 0 ⩽ a ⩽ b ⩽ n, and, on morphisms, by

D((a,b)op)

D((a−1,b)op)

D((a,b+1)op)

D((a,b)op),

D(pop)=i

OO

D(sop)=r

��

D(rop)=s

��

D(iop)=p

OO
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where 0 < a ⩽ b ⩽ n and 0 ⩽ a ⩽ b < n, respectively.

Definition 6.6. Let n be a non-negative integer, and let (C ,wC ,D,0) be a pointed
exact category with weak equivalences and strict duality. The degree n restricted real
Segal construction of (C ,wC ,D,0) is the pointed exact category with weak equiva-
lences and strict duality

(S̄2,1
⊕ C [n],wS̄2,1

⊕ C [n], D̄[n], 0̄[n]),

where

(S̄2,1
⊕ C [n],D[n])⊂ CatDual((C[n],D)),(C ,D))

is the full subcategory with strict duality of all functors

A : C[n] // C

such that

(i) for all integers 0 ⩽ a ⩽ b ⩽ n with a = 0 or b = n,

A(a,b) = 0(1),

(ii) for all integers 0 < a < b ⩽ n, the diagram

A(a,b)
A(p)

//

A(i)
��

A(a−1,b)

A(i)
��

A(a,b−1)
A(p)

// A(a−1,b−1)

is an admissible square in C ;

where the sequence A→ B̄→ C̄ in S̄2,1C [n] is exact if, for all integers 0 ⩽ a ⩽ b ⩽ n,
the sequence A(a,b)→ B̄(a,b)→ C̄(a,b) in C is exact; where the morphism A→ B̄
is in wS̄2,1C [n] if, for all integers 0 ⩽ a ⩽ b ⩽ n, the morphism A(a,b)→ B̄(a,b) is
in wC ; and where the basepoint 0̄[n] is the constant diagram 0̄[n](1)(a,b) = 0(1).

We recall from [21, Section 6.2] that an exact category C is semi-idempotent
complete if every morphism that admits a section is an admissible epimorphism. For
such C , the axiom (ii) in Definition 6.6 is redundant.

Lemma 6.7. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality. For every integer n ⩾ 0, there exists a pointed exact adjunction

( j∗⊕,e⊕,η ,ε,1,g)

from (S2,1
⊕ C [n],wS2,1

⊕ C [n],D[n],0[n]) to (S̄2,1
⊕ C [n],wS̄2,1

⊕ C [n], D̄[n], 0̄[n]). Moreover,
the natural transformations η , ε , and g all are isomorphisms.
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Proof. We define the functor j⊕ : C[n]→ P(S2,1[n])op as follows. On objects,

j⊕(a,b) = {[n] [2]
ρ

// | ρ(0) = 0,ρ([a,b]) = 1,ρ(n) = 2}∪{∞[n]}

and, on morphisms, by

j⊕(a,b)

j⊕(a−1,b)

j⊕(s)= j⊕(a−1,b)

��

j⊕(p)= j⊕(a−1,b)

OO
j⊕(a,b)

j⊕(a,b−1).

j⊕(r)= j⊕(a,b)

��

j⊕(i)= j⊕(a,b)

OO

The functor j⊕ is well-defined, since for all 0 < a < b ⩽ n,

j⊕(a−1,b) = j⊕(a−1,b−1)∩ j⊕(a,b).

Moreover, as in the proof of Lemma 2.12, one readily verifies that it induces a pointed
exact duality preserving functor j∗⊕ : S2,1

⊕ C [n]→ S̄2,1
⊕ C [n].

We next define the functor e⊕ : S̄2,1
⊕ C [n]→ S2,1

⊕ C [n]. So let B : C[n]→ C be an
object of S̄2,1

⊕ C [n]. We define the functor e⊕(B) : P(S2,1[n])→ C as follows. First,
if ρ̄ ∈ S2,1[n] is different from the basepoint, then we define e⊕(B)({ρ̄,∞[n]}) to the
lower left-hand term in a choice of completion of the following admissible square in
which a = minρ−1(1) and b = maxρ−1(1).

B(a,b+1)
B(p)

// //

��

B(i)
��

B(a−1,b+1)
��

B(i)
��

B(a,b)
B(p)

// // B(a−1,b)

The completion can be chosen arbitrarily except that for B = 0̄[n], we required it to
be the unique diagram in which every object is equal to 0(1). Second, if U is an
object of P(S2,1[n]) such that U ⊂ S2,1[n] contains two or more elements different
from the basepoint, then we define e⊕(B)(U) to be a choice of sum in C of the
family of objects e⊕(B)({ρ̄,∞[n]}) indexed by ρ̄ ∈U . If B = 0̄[n], then we require
the sum to be equal to 0(1), but otherwise, it can be chosen arbitrarily. This defines
the functor e⊕(B) on objects. Thirdly, if F : U →V is a morphism in P(S2,1[n]), then
we define the morphism e⊕(B)(F) : e⊕(B)(V )→ e⊕(B)(U) to be the composition of
the canonical projection e⊕(B)(V )↠ e⊕(B)(F) followed by the canonical inclusion
e⊕(B)(F)↣ e⊕(B)(U). To prove compatibility with composition, we let F : U →V
and G : V →W be composable morphisms. Then the diagram

e⊕(B)(W ) // //

'' ''NN
NNN

NNN
NNN

e⊕(B)(G) // //

����

e⊕(B)(V )

����

e⊕(B)(F ∩G) // //

''

''NN
NNN

NNN
NNN

e⊕(B)(F)
��

��

e⊕(B)(U)
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of canonical projections and canonical inclusions commutes. This shows that e⊕(B)
is indeed a functor. Finally, it follows from Proposition 4.4 that e⊕(B) is an object of
S2,1
⊕ C [n]. This defines the functor e⊕ on objects; it is defined on morphisms by using

the uniqueness, up to canonical isomorphism, of kernels, cokernels, and sums. It is
clear that e⊕ is pointed; we leave it to the reader to verify that it is exact.

We define η to be the natural isomorphism whose value at A ∈ obS2,1
⊕ C [n] is the

natural isomorphism ηA : A⇒ e⊕(A◦ j⊕) defined as follows. We first define ηA at the
objects U of P(S2,1[n]) of the form U = {ρ̄,∞[n]} with ρ̄ ∈ S2,1[n] different from the
basepoint. To this end, we let a = minρ−1(1) and b = maxρ−1(1) and write

j⊕(a,b+1) = j⊕(a−1,b+1)∨V

j⊕(a−1,b) = j⊕(a−1,b+1)∨W.

In this situation, we have the commutative diagram

A(V ) A( j⊕(a,b+1)) A( j⊕(a−1,b+1))

A(U ∨V ) A( j⊕(a,b)) A( j⊕(a−1,b))

A(U) A(U ∨W ) A(W )

V∗ //
p∗

//

(U∨V )∗
//

p∗
//

U∗ //
W∗ //

V∗

��

i∗

��

i∗

��

U∗

��

(U∨W )∗

��

W∗

��

with all rows and columns exact. This diagram is a completion of the upper right-hand
square. Therefore, the objects A(U) and e⊕( j∗⊕(A))(U) are canonically isomorphic,
and we define ηA : A(U)→ e⊕( j∗⊕(A))(U) to be the canonical isomorphism. Next,
we define ηA at an object U of P(S2,1[n]) such that U ⊂ S2,1[n] contains two or more
elements different from the basepoint. The objects A(U) and e⊕( j∗⊕(A))(U) are sums
in C of the families of objects A({ρ̄,∞[n]}) and e⊕( j∗⊕(A))({ρ̄,∞[n]}), respectively,
indexed by ϕ̄ ∈ U , and we define the isomorphism ηA : A(U)→ e⊕( j∗⊕(A))(U) to
be the sum of the isomorphisms ηA : A({ρ̄,∞[n]})→ e⊕( j∗⊕(A))({ρ̄,∞[n]}) already
defined. It is clear that η is pointed.

We define ε to be the natural isomorphism whose value at B ∈ ob S̄2,1
⊕ C [n] is the

natural isomorphism εB : e⊕(B)◦ j⊕⇒ B defined as follows. Let N(a,b) = a(n−b)
be the number of elements different from the basepoint in j⊕(a,b). We proceed by
recursion on N(a,b)⩾ 0 to define the morphism εB on the object (a,b) in such a way
that in the diagram

e⊕(B)( j⊕(a,b)) e⊕(B)( j⊕(a−1,b))

B(a,b) B(a−1,b),

e⊕(B)( j⊕(a,b+1))

B(a,b+1)

p∗
//

s∗
oo

p∗
//

s∗
oo

εB

��

εB

��

εB

��

r∗oo

i∗
//

r∗oo

i∗
//

the two left-hand squares and the two right-hand squares commute. If N(a,b) = 0,
then e⊕(B)( j⊕(a,b)) = B(a,b) = 0(1), and we define εB to be the unique map. So
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we fix the object (a,b) and assume that εB has been defined at all objects (c,d) with
N(c,d)< N(a,b) in such a way that the required squares commute. To define the εB
at the object (a,b), we consider the following diagram.

e⊕(B)(V ) e⊕(B)( j⊕(a,b+1)) e⊕(B)( j⊕(a−1,b+1))

e⊕(B)(U ∨V ) e⊕(B)( j⊕(a,b)) e⊕(B)( j⊕(a−1,b))

e⊕(B)(U) e⊕(B)(U ∨W ) e⊕(B)(W )

V∗ //
p∗

//

(U∨V )∗
//

p∗
//

U∗ //
W∗ //

V∗

��

i∗

��

i∗

��

U∗

��

(U∨W )∗

��

W∗

��

V∗
oo

s∗
oo

(U∨V )∗
oo

s∗
oo

U∗
oo

W∗
oo

V∗

OO

r∗

OO

r∗

OO

U∗

OO

(U∨W )∗

OO

W∗

OO

Here, V and W were defined earlier, and U = {ρ̄,∞[n]} with ρ : [n]→ [2] given by
ρ([0,a− 1]) = 0, ρ([a,b]) = 1, and ρ([b+ 1,n]) = 2. We compare this diagram to
the following diagram, where the subdiagram of rightward pointing and downward
pointing morphisms is the chosen completion of the admissible square consisting of
the maps p∗ and i∗, and where the remaining morphisms are the splittings induced
from the given sections s∗ of p∗ and retractions r∗ of i∗.

B11 B(a,b+1) B(a−1,b+1))

B12 B(a,b) B(a−1,b)

e⊕(B)(U) B32 B33

//
p∗

//

//
p∗

//

// //

oo
s∗

oo

oo
s∗

oo

oo oo

��

i∗

��

i∗

��

�� �� ��

OO

r∗

OO

r∗

OO

OO OO OO

There is a unique morphism of diagrams from the first diagram to the second diagram
that, on upper middle terms, upper right-hand terms, and middle right-hand terms
are given by the morphisms εB already defined, and that, on lower left-hand terms,
is given by the identity morphism. Now, we take εB on the object (a,b) to be the
morphism of central terms. This completes the recursive definition of the natural
isomorphism εB : e⊕(B)◦ j⊕⇒ B. It is clear that ε is pointed.

Finally, we define g : e⇒ (D̄[n],D[n])eop to be the pointed natural isomorphism
whose value at B is the natural isomorphism gB : e⊕(B)⇒ ((D̄[n],D[n])eop)(B) whose
value at (a,b), in turn, is the canonical isomorphism of sums of lower left-hand terms
in different choices of completion of the same admissible squares. It follows from the
uniqueness of kernels, cokernels, and sums, up to canonical isomorphism, implies
that the two diagrams in Definition 1.27 commute.

We define ϕ̄ : Cat([1], [n])→ C[n] to be the unique functor that is given, on ob-
jects, by ϕ̄(µ) = (µ(0),µ(1)) and, on morphisms, by

ϕ̄(µ1⇒ µ2) = p◦ · · · ◦ p◦ i◦ · · · ◦ i : ϕ̄(µ1)→ ϕ̄(µ2),
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where there are µ1(0)−µ2(0) copies of p and µ2(1)−µ1(1) copies of i. The functor ϕ̄
is an isomorphism of the category Cat([1], [n]) onto the subcategory of C[n] generated
by the morphisms p and i.

Lemma 6.8. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality and let n be a non-negative integer. The functor ϕ̄ induces a pointed
duality preserving exact functor

(S̄2,1
⊕ C [n],wS̄2,1

⊕ C [n], D̄[n], 0̄[n])
ϕ̄∗

// (S̄2,1C [n],wS̄2,1C [n], D̄[n], 0̄[n]).

Proof. The functor ϕ̄ induces a functor

Cat(C[n],C )
ϕ̄∗

// Cat(Cat([1], [n]),C )

and comparing Definitions 2.11 and 6.6, we see that it restricts to the stated pointed
exact duality preserving functor.

Remark 6.9. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality and let n be a non-negative integer. The following diagram of
pointed exact duality preserving functors commute.

S2,1
⊕ C [n]

ϕ∗

��

S2,1
⊕ C [n]

j∗⊕
//

ϕ̃∗

��

S̄2,1
⊕ C [n]

ϕ̄∗

��

S2,1C [n] S̃2,1C [n]
s∗1oo

j∗
// S̄2,1C [n]

Here, we recall, the horizontal functors all are equivalences of categories. By contrast,
the vertical functors are not equivalences of categories except in trivial cases.

Finally, we define for every pointed exact category with weak equivalences and
strict duality (C ,wC ,D,0) a map of real symmetric spectra

KR⊕(C ,wC ,D,0)
ϕ∗

// KR(C ,wC ,D,0)

from the real direct sum K-theory spectrum to the real algebraic K-theory spectrum.
Let r be a positive integer, and let [n] = [n1]×·· ·× [nr] be an object of the r-fold

product real category ∆R×·· ·×∆R. We define the functor

Cat([2], [n])
ϕr

// P(S2r,r[n])

to be the composition

Cat([2], [n]) // Cat([2], [n1])×·· ·×Cat([2], [nr])

// P(S2,1[n1])×·· ·×P(S2,1[nr]) // P(S2r,r[n])

of the canonical isomorphism (pr1∗, . . . ,prr∗), the product functor ϕ × ·· · × ϕ , and
the functor that to the object (U1, . . . ,Ur) and the morphism (F1, . . . ,Fr) associate the
object U1∧·· ·∧Ur and the morphism F1∧·· ·∧Fr, respectively.
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Lemma 6.10. Let (C ,wC ,D,0) be a pointed exact category with weak equivalences
and strict duality. For every positive integer r, the functor ϕr induces an r-real sim-
plicial pointed duality preserving exact functor

(S2r,r
⊕ C [−],wS2r,r

⊕ C [−],D[−],0[−])
ϕ∗r // (S2r,rC [−],wS2r,rC [−],D[−],0[−]).

Proof. The proof is similar to the proof of Lemma 6.1

Definition 6.11. Let (C ,wC ,D,0) be a pointed exact category with weak equiva-
lences and strict duality. The forgetful map is the map of real symmetric spectra

KR⊕(C ,wC ,D,0)
ϕ∗

// KR(C ,wC ,D,0)

that in level r ⩾ 1 is given by the pointed real map

|N(wS2r,r
⊕ C [−],D[−],0[−])[−]|R

ϕ∗r // |N(wS2r,rC [−],D[−],0[−])[−]|R

induced by the r-real simplicial pointed exact duality preserving functor ϕ ∗r and that
in level r = 0 is the identity map.
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7 The split-exact case

In this section, we explictly describe the category S2,1C [n] in the case, where the exact
category C is split-exact. We begin by proving some basic results about split-exact
categories.

Given any exact category C = (C ,E ), we define the exact category of exact se-
quences in C to be the exact category E(C ) whose set of objects is the given set E of
exact sequences in C and whose set of morphisms from the object A1→ A2→ A3 to
the object B1→ B2→ B3 consists of all triples ( f1, f2, f3) of morphisms fi : Ai→ Bi
that make the left-hand diagram below commute. The sequence in E(C ) indicated by
the right-hand diagram below is defined to be exact if the three horizontal sequences
in the diagram are exact sequences in C .

A1
f1 //

��

B1

��

A2
f2 //

��

B2

��

A3
f3 // B3

A1
f1 //

��

B1

��

g1 // C1

��

A2
f2 //

��

B2

��

g2 // C2

��

A3
f3 // B3

g3 // C3

Now, for split-exact C , we have the following result.
Lemma 7.1. If the exact category C is split-exact, then the exact category E(C ) of
exact sequences in C is again split-exact.

Proof. We must show that the exact sequence in E(C ) given by the left-hand diagram
below can be completed to a biproduct diagram in E(C ). To this end, we first choose
biproduct diagrams in C completing the three columns and the top and bottom row
as indicated by the right-hand diagram below.

A1
f1 //

h1
��

B1
g1 //

h2
��

C1

h3
��

A2
f2 //

k1
��

B2
g2 //

k2
��

C2

k3
��

A3
f3 // B3

g3 // C3

A1

f1 //

h1
��

B1

g1 //

h2
��

u1
oo C1

h3
��

s1
oo

A2
f2 //

k1
��

r1

OO

B2
g2 //

k2
��

r′2

OO

C2

k3
��

r3

OO

A3

f3 //

v1

OO

B3

g3 //

v′2

OO

u3
oo C3

v3

OO

s3
oo

We do not claim any compatibility between these maps other than all columns and the
top and bottom row being biproduct diagrams in C . However, using these biproduct
diagrams, we can express the morphism g2 : B2→C2 as

g2 = (h3r3 + v3k3)g2(h2r′2 + v′2k2)

= h3r3g2h2r′2 +h3r3g2v′2k2 + v3k3g2h2r′2 + v3k3g2v′2k2

= h3r3h3g1r′2 +h3r3g2v′2k2 + v3g3k2h2r′2 + v3g3k2v′2k2

= h3g1r′2 +h3r3g2v′2k2 + v3g3k2.
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We now define s2 : C2→ B2 by

s2 = h2s1r3−h2s1r3g2v′2s3k3 + v′2s3k3

and calculate

g2s2 = (h3g1r′2 +h3r3g2v′2k2 + v3g3k2)(h2s1r3−h2s1r3g2v′2s3k3 + v′2s3k3)

= (h3g1r′2 +h3r3g2v′2k2 + v3g3k2)(h2s1r3)

− (h3g1r′2 +h3r3g2v′2k2 + v3g3k2)h2s1r3g2v′2s3k3

+(h3g1r′2 +h3r3g2v′2k2 + v3g3k2)v′2s3k3

= h3r3−h3r3g2v′2s3k3 +h3r3g2v′2s3k3 + v3k3

= h3r3 + v3k3 = idC2 .

This shows that s2 is a section of g2. Moreover, the calculation

s2h3 = (h2s1r3−h2s1r3g2v′2s3k3 + v′2s3k3)h3 = h2s1

k2s2 = k2(h2s1r3−h2s1r3g2v′2s3k3 + v′2s3k3) = s3k3

shows that the triple (s1,s2,s3) is a morphism of exact sequences. This shows that
the morphism of exact sequences (s1,s2,s3) is a section of the morphism of exact
sequences (g1,g2,g3). Finally, if we define u2 : B2→ A2 to be the unique morphism
that makes the middle row in the diagram below a biproduct diagram in C , then said
diagram is the desired biproduct diagram in E(C ) completing the exact sequence in
E(C ) given by the left-hand diagram at the beginning of the proof.

A1

f1 //

h1
��

B1
u1

oo

g1 //

h2
��

C1
s1

oo

h3
��

A2

f2 //

k1
��

B2
u2

oo

g2 //

k2
��

C2
s2

oo

k3
��

A3

f3 // B3
u3

oo

g3 // C3
s3

oo

This completes the proof.

Addendum 7.2. Let C be a split-exact category and let

A1
f1 //

h1
��

B1
g1 //

h2
��

C1

h3
��

A2
f2 //

k1
��

B2
g2 //

k2
��

C2

k3
��

A3
f3 // B3

g3 // C3
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be a commutative diagram in C in which all rows and columns are exact. Then there
exists a commutative diagram in C of the form

A1 B1
u1oo C1

s1oo

A2

r1

OO

B2
u2oo

r2

OO

C2
s2oo

r3

OO

A3

v1

OO

B3
u3oo

v2

OO

C3
s3oo

v3

OO

such that, in the combined diagram,

A1

f1 //

h1
��

B1

g1 //

u1
oo

h2
��

C1

h3
��

s1
oo

A2

f2 //

k1
��

r1

OO

B2

g2 //

u2
oo

k2
��

r2

OO

C2

k3
��

s2
oo

r3

OO

A3

f3 //

v1

OO

B3

g3 //

u3
oo

v2

OO

C3
s3

oo

v3

OO

all rows and columns are bi-product diagrams in C . Moreover, the sections s1 and s3
and the retractions r1 and r3 may be predescribed freely.

Proof. First, we use the predescribed sections s1 and s3 and retractions r1 and r3
to complete the given diagram to the diagram on the left-hand side below in which
the top and bottom rows and the left-hand and right-hand columns are biproduct
diagrams. Second, we follow the proof of Lemma 7.1 to further complete this diagram
to the diagram on the right-hand side below, where also the middle row is a biproduct
diagram, and where the map of exact sequence (s1,s2,s3) is a section of the map of
exact sequences (g1,g2,g3).

A1

f1 //

h1
��

B1

g1 //

u1
oo

h2
��

C1

h3
��

s1
oo

A2
f2 //

k1
��

r1

OO

B2
g2 //

k2
��

C2

k3
��

r3

OO

A3

f3 //

v1

OO

B3

g3 //

u3
oo C3

s3
oo

v3

OO

A1

f1 //

h1
��

B1

g1 //

u1
oo

h2
��

C1

h3
��

s1
oo

A2

f2 //

k1
��

r1

OO

B2

g2 //

u2
oo

k2
��

C2

k3
��

s2
oo

r3

OO

A3

f3 //

v1

OO

B3

g3 //

u3
oo C3

s3
oo

v3

OO

We now define r2 : B2→ B1 and v2 : B3→ B2 by

r2 = f1r1u2 + s1r3g2

v2 = f2v1u3 + s2v3g3
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and calculate

r2h2 = ( f1r1u2 + s1r3g2)h2 = f1r1h1u1 + s1r3h3g1

= f1u1 + s1g1 = idB1

k2v2 = k2( f2v1u3 + s2v3g3) = f3k1v1u3 + s3k3v3g3

= f3u3 + s3g3 = idB3

h2r2 + v2k2 = h2( f1r1u2 + s1r3g2)+( f2v1u3 + s2v3g3)k2

= f2h1r1u2 + s2h3r3g2 + f2v1k1u2 + s2v3k3g2

= f2(h1r1 + v1k1)u2 + s2(h3r3 + v3k3)g2

= f2u2 + s2g2 = idB2 .

This shows that the middle column in the bottom diagram in the statement is a biprod-
uct diagram in C . Finally, we calculate

u1r2 = u1( f1r1u2 + s1r3g2) = r1u2

r2s2 = ( f1r1u2 + s1r3g2)s2 = s1r3

u2v2 = u2( f2v1u3 + s2v3g3) = v1u3

v2s3 = ( f2v1u3 + s2v3g3)s3 = s2v3

which shows that the middle diagram in the statement commutes.

The basis for the description of the category S2,1C [n] for split-exact C is the
following result. Here, for D a category, we write π0(iD) for the set of isomorphism
classes of objects.

Proposition 7.3. Let (C ,0) be a pointed split-exact category. For every non-negative
integer n, the map induced by the forgetful functor

π0(iS2,1
⊕ C [n]) π0(iS2,1C [n]).

π0(ϕ∗) //

is a bijection.

Proof. We fix the non-negative integer n. It suffices by Remark 6.9 to show that the
map π0(ϕ̃ ∗) is injective and that the map π0(ϕ̄ ∗) is surjective.

First, we recall from Remark 6.4 that the composite functor

S2,1
⊕ C [n]

ϕ̃∗
// S̃2,1C [n] v // Cat∗(S2,1[n],(C ,0))

is equal to the functor i∗ defined in the proof of Proposition 4.11. Moreover, the latter
functor was proved in said proof to be an equivalence of categories. Hence, we find
that π0(ϕ̃ ∗) is injective as desired.

Second, to prove that the map π0(ϕ̄ ∗) is surjective, we will prove the stronger
statement that given an object B : Cat([1], [n])→C of S̄2,1C [n], there exists an object
A : C[n]→ C of S̄2,1

⊕ C [n] such that B = A◦ ϕ̄ . This forces us to define

A(a,b) = B(µ(a,b)) (for all 0 ⩽ a ⩽ b ⩽ n)
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with µ = µ(a,b) is determined by ϕ̄(µ) = (a,b), and to define

A(a,b) A(a−1,b)
p∗

// (with 0 < a ⩽ b ⩽ n)

A(a,b+1) A(a,b)
i∗ // (with 0 ⩽ a ⩽ b < n)

to be the images by the functor B of the unique morphisms µ(a,b)⇒ µ(a−1,b) and
µ(a,b+1)⇒ µ(a,b), respectively. It remains to define the morphisms

A(a−1,b) A(a,b)
s∗ // (with 0 < a ⩽ b ⩽ n)

A(a,b) A(a,b+1)
r∗ // (with 0 ⩽ a ⩽ b < n)

such that s∗ is a section of p∗, such that r∗ is a retraction of i∗, and such that for all
0 < a ⩽ b < n, the diagram following diagram commutes.

A(a,b+1) A(a−1,b+1)
s∗oo

A(a,b)

r∗

OO

A(a−1,b)
s∗oo

r∗

OO

To define the morphisms s∗ and r∗, we proceed by induction on N(a,b) = a(n− b),
beginning from the trivial case N(a,b) = 0. So we fix (a,b) and assume that the
morphisms s∗ : A(c−1,d)→ A(c,d) and r∗ : A(c,d)→ A(c,d+1) with the required
properties have been defined for all (c,d) with N(c,d)< N(a,b). In this situation, we
apply Addendum 7.2 to a completion of the admissible square

A(a,b+1)
p∗

//

i∗
��

A(a−1,b+1)

i∗
��

A(a,b)
p∗

// A(a−1,b)

with the predescribed section s∗ of the top horizontal map p∗ and retraction r∗ of the
right-hand vertical map i∗ provided by the inductive hypothesis. We conclude that
there exists a section s∗ of the bottom horizontal map p∗ and a retraction r∗ of the
left-hand vertical map i∗ that make the top square diagram commute. This completes
the proof.

Corollary 7.4. Let (C ,0) be a pointed exact category and let n be a non-negative
integer. If C is split-exact, then so are the exact categories S2,1C [n] and S2,1

⊕ C [n].

Proof. We first consider the exact category S2,1
⊕ C [n]. From the proof of Proposi-

tion 4.11, we have the exact adjoint equivalence of categories (i!, i∗,η ,ε) from the
exact category S2,1

⊕ C [n] to the exact category Cat∗(S2,1[n],(C ,0)). The latter exact
category is clearly split-exact, and therefore, so is S2,1

⊕ C [n].
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We proceed to prove that S2,1C [n] is split-exact. We recall from Lemma 7.1 that
the exact category E(C ) of exact sequence in C again is split-exact. Therefore, it
follows from Proposition 7.3 that the map

π0(iS2,1
⊕ E(C )[n]) π0(iS2,1E(C )[n])

π0(ϕ∗) //

is a bijection. Moreover, since the exact categories S2,1
⊕ E(C )[n] and E(S2,1

⊕ C [n]) and
the exact categories S2,1E(C )[n] and E(S2,1C [n]) are canonically isomorphic, we
conclude that the map

π0(iE(S2,1
⊕ C [n])) π0(iE(S2,1C [n])

π0(E(ϕ∗)) //

is a bijection. This shows that every exact sequence in S2,1C [n] is isomorphic to
an exact sequence that is the image by ϕ ∗ of an exact sequence in S2,1

⊕ C [n]. Now,
since every exact sequence in S2,1

⊕ C [n] is split-exact, we conclude that every exact
sequence in S2,1C [n] is isomorphic to a split-exact sequence. But an exact sequence
that is isomorphic to a split-exact sequence is itself split-exact.

Let A,B ∈ obS2,1
⊕ C [n]. We proceed to describe the set of morphisms

ϕ ∗(A)
f

// ϕ ∗(B)

from ϕ ∗(A) to ϕ ∗(B) in the category S2,1C [n]. The morphism f is determined by
the family of morphisms fθ : ϕ ∗(A)(θ)→ ϕ ∗(B)(θ) indexed by the set of functors
θ : [2]→ [n]. In addition, since A and B are sheaves, the morphism fθ , in turn, is
determined by the family of morphisms

A({ρ ′,∞})
fθ ,ρ,ρ ′

// B({ρ ,∞})

indexed by the set of pairs (ρ,ρ ′) of elements of ϕ(θ) different from the basepoint
with fθ ,ρ,ρ ′ defined as the composite morphism

A({ρ ′,∞}) ϕ ∗(A)(θ) ϕ ∗(B)(θ) B({ρ,∞}).
A({ρ ′,∞})

//
fθ //

B({ρ,∞})
//

We call the morphism fθ ,ρ,ρ ′ the (ρ,ρ ′)th component of the morphism fθ .

Lemma 7.5. Let n be a non-negative integer and let (C ,0) be a pointed exact cate-
gory. Let A,B ∈ obS2,1

⊕ C [n] and let

ϕ ∗(A)(θ)
fθ // ϕ ∗(B)(θ)

be a family of morphisms in C indexed θ ∈ obCat([2], [n]). The following (i)–(ii) are
equivalent.
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(i) The family of morphisms { fθ} constitute a natural transformation

ϕ ∗(A)
f

// ϕ ∗(B).

(ii) The family of component morphisms

A({ρ ′,∞})
fθ ,ρ,ρ ′

// B({ρ,∞}),

indexed by θ ∈ obCat([2], [n]) and ρ,ρ ′ ∈ ϕ(θ) different from the basepoint,
satisfies the following (a)–(c), for every morphism θ ′⇒ θ in Cat([2], [n]).
(a) If both ρ,ρ ′ ∈ ϕ(θ) and ρ,ρ ′ ∈ ϕ(θ ′), then fθ ,ρ,ρ ′ = fθ ′,ρ,ρ ′ .
(b) If ρ,ρ ′ ∈ ϕ(θ) and ρ ∈ ϕ(θ ′) but ρ ′ /∈ ϕ(θ ′), then fθ ,ρ,ρ ′ = 0.
(c) If ρ,ρ ′ ∈ ϕ(θ ′) and ρ /∈ ϕ(θ) but ρ ′ ∈ ϕ(θ), then fθ ′,ρ,ρ ′ = 0.

Proof. The family of morphisms fθ : ϕ ∗(A)(θ)→ ϕ ∗(B)(θ) with θ ∈ obCat([2], [n])
form a natural transformation f : ϕ ∗(A)→ ϕ ∗(B) if and only if the diagram

A(ϕ(θ ′))
fθ ′ // B(ϕ(θ ′))

A(ϕ(θ))
fθ //

A(ϕ(θ)∩ϕ(θ ′))

OO

B(ϕ(θ))

B(ϕ(θ)∩ϕ(θ ′))

OO

commutes, for every morphism θ ′⇒ θ in Cat([2], [n]). But since A and B are sheaves,
this diagram commutes precisely if the conditions (a)–(c) are satisfied.

Lemma 7.6. Let n be a non-negative integer and let (C ,0) be a pointed exact cat-
egory. Let A,B ∈ obS2,1

⊕ C [n] and let f : ϕ ∗(A)→ ϕ ∗(B) is a morphism in S2,1C [n].
If θ ,θ ′ ∈ obCat([2], [n]) and if ρ,ρ ′ ∈ ϕ(θ)∩ϕ(θ ′) are different from the basepoint,
then the two component morphisms

A({ρ ′,∞})
fθ ,ρ,ρ ′

// B({ρ,∞}), A({ρ ′,∞})
fθ ′,ρ,ρ′

// B({ρ,∞}),

are equal.

Proof. If, in addition, there exists a morphism θ ′⇒ θ in Cat([2], [n]), then it follows
from Lemma 7.5 that fθ ,ρ,ρ ′ = fθ ′,ρ,ρ ′ . In general, we assume that θ ′(1)⩽ θ(1) and
consider the following morphisms in Cat([2], [n]), where we represent the functor
φ : [2]→ [n] by the vertical array of the numbers φ(0), φ(1), and φ(2).

θ(0)

θ(1)

θ(2)

0

θ(1)

θ(2)

0

θ(1)

n

0

θ ′(1)

n

0

θ ′(1)

θ ′(2)

θ ′(0)

θ ′(1)

θ ′(2)

ks +3 ks ks +3

This shows that fθ ,ρ,ρ ′ = fθ ′,ρ,ρ ′ as stated.

Lemma 7.7. Let n be a non-negative integer, and let ρ,ρ ′ : [n]→ [2] be two functors
that are surjective on objects. The following (i)–(ii) are equivalent.
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(i) There exists a morphism ρ ′⇒ ρ in Cat([n], [2]).
(ii) For every morphism θ ′ ⇒ θ in Cat([2], [n]), if both ρ ∈ ϕ(θ) and ρ ′ ∈ ϕ(θ ′),

then also ρ ∈ ϕ(θ ′) and ρ ′ ∈ ϕ(θ).

Proof. There exists a morphism ρ ′ ⇒ ρ in Cat([n], [2]) if and only if ρ ′(s) ⩽ ρ(s),
for all s ∈ ob([n]); and there exists a morphism θ ′⇒ θ in Cat([2], [n]) if and only if
θ ′(s) ⩽ θ(s), for all s ∈ ob([2]). We first assume that (i) holds and prove (ii). So we
let θ ′⇒ θ be a morphism in Cat([2], [n]). For all s ∈ ob[2], we have

s = ρ ′(θ ′(s))⩽ ρ ′(θ(s))⩽ ρ(θ(s)) = s

s = ρ ′(θ ′(s))⩽ ρ(θ ′(s))⩽ ρ(θ(s)) = s

which shows that ρ ′ ∈ ϕ(θ) and ρ ∈ ϕ(θ ′) as desired. This proves (ii).
Next, we show that if (i) fails, then also (ii) fails. If a morphism ρ ′⇒ ρ does not

exist, then either minρ ′−1(1)< minρ−1(1) or maxρ ′−1(1)< maxρ−1(1) or both. If
the first inequality holds, then we consider θ ′⇒ θ with θ ,θ ′ : [2]→ [n] defined by

θ(s) =


0 if s = 0
minρ−1(1) if s = 1
n if s = 2

θ ′(s) =


0 if s = 0
minρ ′−1(1) if s = 1
n if s = 2

We now have ρ ∈ ϕ(θ), ρ ′ ∈ ϕ(θ ′), but ρ /∈ ϕ(θ ′) since ρ(θ ′(1)) = 0, so (ii) fails.
Similarly, if the second of the two inequalities above holds, then we consider the
morphism θ ′⇒ θ with θ ,θ ′ : [2]→ [n] defined by

θ(s) =


0 if s = 0
maxρ−1(1) if s = 1
n if s = 2

θ ′(s) =


0 if s = 0
maxρ ′−1(1) if s = 1
n if s = 2

We now have ρ ∈ ϕ(θ), ρ ′ ∈ ϕ(θ ′), but ρ ′ /∈ ϕ(θ) since ρ ′(θ(1)) = 2, so again (ii)
fails. This proves that (ii) implies (i).

Definition 7.8. Let n be a non-negative integer. A morphism ρ ′⇒ ρ in Cat([n], [2])
is admissible if there exists θ : [2]→ [n] such that ρ,ρ ′ ∈ ϕ(θ).

Remark 7.9. Let ρ,ρ ′ : [n] → [2] be a pair of surjective functors. There exists a
morphism ρ ′⇒ ρ in Cat([n], [2]) if and only if both minρ−1(1) ⩽ minρ ′−1(1) and
maxρ−1(1) ⩽ maxρ ′−1(1). The morphism is admissible if and only if, in addition,
minρ ′−1(1) ⩽ maxρ−1(1). Hence, there exists an admissible morphism ρ ′ ⇒ ρ in
Cat([n], [2]) if and only if the following three inequalities hold:

minρ−1(1)⩽ minρ ′−1(1)⩽ maxρ−1(1)⩽ maxρ ′−1(1).

We conclude that the admissible morphisms are saturated in the sense that if the
composite morphism ρ ′′⇒ ρ ′⇒ ρ is admissible, then both ρ ′′⇒ ρ ′ and ρ ′⇒ ρ are
admissible. Indeed, we have

minρ ′−1(1)⩽ minρ ′′−1(1)⩽ maxρ−1(1)⩽ maxρ ′−1(1),
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where the left-hand and right-hand inequalities hold because there are morphisms
ρ ′′ ⇒ ρ ′ and ρ ′ ⇒ ρ , respectively, and where the middle inequality holds by the
assumption that ρ ′′⇒ ρ is admissible. In general, however, the composition ρ ′′⇒ ρ
of two admissible morphisms ρ ′′⇒ ρ ′ and ρ ′⇒ ρ need not be admissible.

Definition 7.10. Let n be a non-negative integer, let (C ,0) be a pointed exact cate-
gory, and let A,B ∈ obS2,1

⊕ C [n]. The matrix of a morphism

ϕ ∗(A)
f

// ϕ ∗(B)

in S2,1C [n] is the family of morphisms ( fρ⇐ρ ′) indexed by the set of the admissible
morphisms ρ ′⇒ ρ in Cat([n], [2]) in which fρ⇐ρ ′ is the (ρ,ρ ′)th component

A({ρ ′,∞}) ϕ ∗(A)(θ) ϕ ∗(B)(θ) B({ρ,∞})
A({ρ ′,∞})

//
fθ //

B({ρ,∞})
//

of the map fθ : ϕ ∗(A)(θ)→ ϕ ∗(B)(θ), for any θ ∈ obCat([2], [n]) with ρ,ρ ′ ∈ ϕ(θ).

It follows form Lemma 7.6 that the matrix of f is well-defined.
Remark 7.11. The matrix (idρ⇐ρ ′) of the identity morphism is given by

idρ⇐ρ ′ =

{
id if ρ = ρ ′

0 if ρ ̸= ρ ′.

The matrix of the composition g ◦ f : ϕ ∗(A) → ϕ ∗(C) of f : ϕ ∗(A) → ϕ ∗(B) and
g : ϕ ∗(B)→ ϕ ∗(C) is given by the matrix multiplication formula

(g◦ f )ρ⇐ρ ′′ = ∑
ρ⇐ρ ′⇐ρ ′′

gρ⇐ρ ′ ◦ fρ ′⇐ρ ′′ .

Here the sum on the right-hand side is indexed by all factorizations ρ ′′⇒ ρ ′⇒ ρ of
the admissible morphism ρ ′′⇒ ρ in Cat([n], [2]).

Proposition 7.12. Let n be a non-negative integer, let (C ,0) be a pointed exact cat-
egory, and let A,B ∈ obS2,1

⊕ C [n]. The map

S2,1C [n](ϕ ∗(A),ϕ ∗(B)) // ∏C (A({ρ ′,∞}),B({ρ,∞}))

that to the morphism f associates its matrix ( fρ⇐ρ ′) is an isomorphism of abelian
groups. Here, the product on the right-hand side is indexed by the set of admissible
morphisms ρ ′⇒ ρ in Cat([n], [2]).

Proof. If ρ ′⇒ ρ is an admissible morphism, and if ρ,ρ ′ ∈ ϕ(θ), then Lemmas 7.5
and 7.7 show that every morphism g : A({ρ ′,∞})→ B({ρ,∞}) in C appears as the
component g = fρ⇐ρ ′ = fθ ,ρ,ρ ′ of a morphism f : ϕ ∗(A)→ ϕ ∗(B) in S2,1C [n]. This
shows that the map in the statement is surjective. Similarly, if f : ϕ ∗(A)→ ϕ ∗(B) is
a morphism in S2,1C [n], if θ ∈ obCat([2], [n]), and if ρ,ρ ′ ∈ ϕ(θ), then Lemmas 7.5
and 7.7 show that fθ ,ρ,ρ ′ = fρ⇐ρ ′ , if there exists a (necessarily admissible) morphism
ρ ′⇒ ρ in Cat([n], [2]), and that fθ ,ρ,ρ ′ = 0, otherwise. This shows that the map in the
statement is also injective.
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Remark 7.13. We recall from the proof of Proposition 7.3 that the forgetful functor
ϕ ∗ is fully faithful, and hence, the map

S2,1
⊕ C [n](A,B)

ϕ∗
// S2,1C [n](ϕ ∗(A),ϕ ∗(B))

is injective. The image is precisely the morphisms f whose matrix ( fρ⇐ρ ′) is diagonal
in the sense that fρ⇐ρ ′ is zero for ρ ̸= ρ ′.

We next consider the map of the sets of isomorphism classes of symmetric objects

π0(Sym(iS2,1
⊕ C [n],D[n])) π0(Sym(iS2,1C [n],D[n]))

π0(Sym(ϕ∗))
//

induced by the forgetful functor. The map is injective, by an argument similar to
the proof of Proposition 7.3, but it is generally not surjective. However, orthogonal
sum of symmetric spaces gives rise to abelian monoid structures on the domain and
target, and we proceed to show that the induced map of the abelian groups obtained
by group-completion is a bijection. In preparation, we recall from [20] some classical
theory concerning symmetric spaces.

Definition 7.14. Let (C ,E ,D,η) be an exact category with duality, and let (A,φ) be
a non-degenerate symmetric object in the category with duality (C ,D,η).

(1) An admissible monomorphism i : L→ A such that the composite morphism

L i // A
φ

// D(A)
D(i)

// D(L)

is zero is said to admit an orthogonal complement with respect to (A,φ), and a
kernel i⊥ : L⊥→ A of the admissible epimorphism D(i) ◦φ : A→ D(L) is said
to be an orthogonal complement of i : L→ A with respect to (A,φ).

(2) An admissible monomorphism i : L→ A is said to be a sub-Lagrangian of (A,φ)
if it admits an orthogonal complement i⊥ : L⊥→ A and if the unique morphism
j : L→ L⊥ such that i = i⊥ ◦ j is an admissible monomorphism.

(3) A sub-Lagrangian i : L→ A of (A,φ) is a Lagrangian of (A,φ) if the admissible
monomorphism j : L→ L⊥ is an isomorphism.

(4) A non-degenerate symmetric object (A,φ) in (C ,D,η) is metabolic if it admits
a Lagrangian i : L→ A.

Remark 7.15. (i) The assumption that φ : A→ D(A) be an isomorphism is used to
conclude in (2) that D(i) ◦φ : A→ D(L) is an admissible epimorphism, and hence,
admits a kernel. This kernel, i⊥ : L⊥→ A, is unique, up to unique isomorphism.
(ii) An admissible monomorphism i : L→ A is a Lagrangian for the non-degenerate
symmetric object (A,φ) if and only if the sequence

L A D(L)i //
D(i)◦φ

//

is exact.
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Example 7.16. Let (C ,E ,D,η) be an exact category with duality, let L be an object
of C , and let γ : D(L)→ D(D(L)) be a symmetric form on D(L), not necessarily
non-degenerate. We define the associated split metabolic object H(L,γ) to be the
non-degenerate symmetric space (A,φ) in (C ,D,η), where A is a choice of sum of L
and D(L) in C , and where the morphism φ : A→ D(A) is given by(

D(in1)◦φ ◦ in1 D(in1)◦φ ◦ in2
D(in2)◦φ ◦ in1 D(in2)◦φ ◦ in2

)
=

(
0 idD(L)

ηL γ

)
.

The symmetric object H(L,γ) is metabolic with in1 : L→ A as a Lagrangian. We
write H(L) instead of H(L,0) and call it the hyperbolic object associated with L.

Lemma 7.17. Let (C ,E ,D,η) be an exact category with duality and let (A,φ) be a
symmetric object in (iC ,D,η). Suppose that i : L→ A is a sub-Lagrangian of (A,φ)
and let p : L⊥→ L⊥/L be a cokernel of j : L→ L⊥. In this situation, there is a unique
non-degenerate symmetric from φ̄ : L⊥/L→ D(L⊥/L) making the diagram

L⊥/L L⊥ A

D(L⊥/L) D(L⊥) D(A)

p
oo i⊥ //

φ̄
��

D(i⊥)◦φ◦i⊥
��

φ
��D(p)

//
D(i⊥)

oo

commute. Moreover, the orthogonal sum (A,φ) ⊥ (L⊥/L,−φ̄) is metabolic with the
morphism (i⊥, p) : L⊥→ A⊕ (L⊥/L) as a Lagrangian.

Proof. See [20, Lemma 2.6].

Example 7.18. Taking L= 0 in Lemma 7.17, we find that (A,φ)⊥ (A,−φ) is metabolic
with the diagonal morphism ∆ : A→ A⊕A as a Lagrangian.

Lemma 7.19. Let (C ,E ,D,η) be a split-exact category with duality and let (A,φ) be
a metabolic symmetric object in (C ,D,η). The symmetric object (A,φ) together with
choices of a Lagrangian i : L→ A of (A,φ) and a retraction r : A→ L of i determine
a metabolic symmetric object (A′,φ ′) in (C ,D,η) and an isomorphism

H(L)⊥ (A′,φ ′)
g

// (A,φ)⊥ (A′,φ ′)

of symmetric objects in (C ,D,η).

Proof. The morphism s = φ−1 ◦D(r) is a section of D(i) ◦ φ , but the composite
morphism r ◦ s need not be zero. It satisfies D(r ◦ s) = ηL ◦ r ◦ s, however, so the
common morphism γ : D(L)→ D(D(L)) is a symmetric form on D(L). Moreover,
the morphism f = i+s : H(L,γ)→ (A,φ) is an isomorphism of symmetric objects in
(C ,D,η). So we may assume that (A,φ) is equal to the split metabolic object H(L,γ)
defined in Example 7.16. Now,

H(L,0)⊥ H(L,−γ)
g

// H(L,γ)⊥ H(L,−γ)
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defined by

(
D(ini)◦g◦ in j

)
=


idL 0 − idL η−1

L ◦ γ
0 idD(L) 0 0
0 0 idL 0
0 idD(L) 0 idD(L)


is the desired isomorphism of symmetric objects in (C ,D,η).

If (C ,E ,D,η) is an exact category with duality, then orthogonal sum gives rise
to a symmetric monoidal structure on the groupoid Sym(iC ,D,η) of non-degenerate
symmetric objects in (C ,D,η). This, by turn, gives rise to an abelian monoid struc-
ture on the set π0(Sym(iC ,D,η)) of isomorphism classes of objects, and we let

π0(Sym(iC ,D,η))
ι // π0(Sym(iC ,D,η))gp

be the group-completion. We write [(A,φ)] for the image by ι of the isomorphism
class of the object (A,φ) of Sym(iC ,D,η).

Corollary 7.20. Let (C ,E ,D,η) be a split-exact category with duality, let (A,φ) be a
non-degenerate symmetric object in (C ,D,η), and let i : L→ A be a sub-Lagrangian
of (A,φ). In this situation, the following identities hold in π0(Sym(iC ,D,η))gp.

(i) [(A,φ)]+ [(A,−φ)] = [H(A)]
(ii) [(A,φ)] = [H(L)]+ [(L⊥/L, φ̄)]

Proof. The left-hand side of (i) is equal to [(A,φ) ⊥ (A,−φ)], by definition, and
(A,φ)⊥ (A,−φ) is metabolic with Lagragian ∆ : A→ A⊕A, by Example 7.18. The
identity (i) now follows from Lemma 7.19. To prove (ii), we similarly conclude from
Lemmas 7.17 and 7.19 that

[(A,φ)]+ [(L⊥/L,−φ̄)] = [H(L⊥)].

Hence, adding [(L⊥/L, φ̄)] on both sides and applying (i), we obtain that

[(A,φ)]+ [H(L⊥/L)] = H(L⊥)+ [(L⊥/L, φ̄)].

Finally, since C is split-exact, L⊥ is a sum of L and L⊥/L, and therefore, H(L⊥) is an
orthogonal sum of H(L) and H(L⊥/L). Hence, subtracting H(L⊥/L) on both sides,
the identity (ii) follows.

We return to the problem at hand. Let ρ : [n]→ [2] be a surjective functor. There
always exists a morphism Dρ ⇒ ρ or ρ ⇒ Dρ . If both exists, then ρ = Dρ . If the
former but not the latter exists, then we say that ρ is positive; and if the latter but not
the former exists, then we say that ρ is negative.

Theorem 7.21. Let (C ,E ,D,η) be a split-exact category with duality. For every
non-negative integer n, the map induced by the forgetful functor

π0(Sym(iS2,1
⊕ (C ,E ,D,η)[n]))gp ϕ∗

// π0(Sym(iS2,1(C ,E ,D,η)[n]))gp

is an isomorphism.
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Proof. Only surjectivity is at issue. We assume that (C ,D) is a strict category with
duality and consider the diagram of additive categories with strict duality

S2,1
⊕ (C ,D)[n] S2,1(C ,D)[n]

Film S2,1(C ,D)[n] · · · Fil0 S2,1(C ,D)[n]

ϕ∗
//

ϕ ′

�� im //
i1 //

ϕ ′′

OO

defined as follows. We choose a linear order ρm ⩽ · · · ⩽ ρ1 on the set of positive
surjective functors ρ : [n]→ [2] in such a way that ρ ′ ⩽ ρ whenever there exists a
morphism ρ ′⇒ ρ . This is possible, since every partial order on a set can be extended
to a linear order. The category Filu S2,1C [n] has the same object set as S2,1

⊕ C [n], and
if A,B ∈ ob(Filu S2,1C [n]), then

Filu S2,1C [n](A,B)⊂ S2,1C [n](ϕ ∗(A),ϕ ∗(B))

is the subset of all morphisms f : ϕ ∗(A)→ ϕ ∗(B) with the property that the matrix
entry fρ⇐ρ ′ is zero whenever ρ is positive and ρu ⩽ ρ or ρ ′ is negative and ρu ⩽ Dρ ′
or both. For u = 0, the matrix entries fρ⇐ρ ′ are unrestricted. The functors iu are given
by the identity maps on object sets and by the canonical inclusions on morphism
sets; the functor ϕ ′ is given by the identity map on object sets and by the map ϕ ∗ on
morphism sets; and the functor ϕ ′′ is given by the map ϕ ∗ on object sets and by the
identity map on morphism sets. Both ϕ ′ and ϕ ′′ are equivalences of exact categories
with duality.

By easy induction, it suffices to show that for all 1 ⩽ u ⩽ m, the map

π0(Sym(Filu S2,1(C ,D)[n]))gp // π0(Sym(Filu−1 S2,1(C ,D)[n]))gp

induced by iu is surjective. To this end, we let (A,φ) be a non-degenerate symmetric
space in Filu−1 S2,1(C ,D)[n] and proceed to show that the class [(A,φ)] is in the
image. Let i : L→ A be the admissible monomorphism in S2,1

⊕ (C ,D)[n] given by

L(U) = A(U ∩{ρu,∞}) A(U).
A(U∩{ρu,∞})

//

We claim that the admissible monomorphism ϕ ∗(i) : L→ A is a sub-Lagrangian of
the symmetric space (A,φ) in Filu−1 S2,1(C ,D)[n]. To prove the claim, we first note
that, since ρu is positive, there is no morphism ρu ⇒ Dρu. In particular, there is no
admissible morphism ρu⇒ Dρu, and therefore, the composite

L A D(A) D(L)
ϕ∗(i)

//
φ

//
D(ϕ∗(i))

//

is the zero morphism. It follows that ϕ ∗(i) admits an orthogonal complement with
respect to (A,φ) in Filu−1 S2,1(C ,D)[n]. We next let i⊥ : L⊥ → A be the admissible
monomorphism in S2,1

⊕ (C ,D)[n] defined by

L⊥(U) = A(U ∖{Dρu}) A(U).
A(U∖{Dρu})

//

89



The admissible monomorphism ϕ ∗(i⊥) : L⊥→ A is a kernel of D(ϕ ∗(i))◦φ . Indeed,
if ρ ′⇒Dρu is an admissible morphism, then ρ ′ is negative and ρu ⩽ Dρ ′, and hence,
the only non-zero matrix entry of D(ϕ ∗(i))◦φ is

(D(ϕ ∗(i))◦φ)Dρu⇐Dρu = φDρu⇐Dρu ,

which is an isomorphism. This shows that ϕ ∗(i)⊥ = ϕ ∗(i⊥) is an orthogonal comple-
ment of ϕ ∗(i) with respect to (A,φ). Finally, we have ϕ ∗(i) = ϕ ∗(i)⊥ ◦ϕ ∗( j), where
j : L→ L⊥ is the admissible monomorphism in S2,1

⊕ (C ,D)[n] defined by

L(U) = A(U ∩{ρu,∞}) A(U ∖{Dρu}) = L⊥(U).
A(U∩{ρu,∞})

//

This shows that ϕ ∗(i) : L→ A is a sub-Lagrangian of (A,φ) as claimed.
We conclude from Corollary 7.20 (ii) that the equality

[(A,φ)] = [H(L)]+ [(L⊥/L, φ̄)]

holds in π0(Sym(Filu−1 S2,1(C ,D)[n]))gp. We further claim that both summands on
the right-hand side are contained in the image of π0(Sym(Filu S2,1(C ,D)[n]))gp. For
the first summand, this is clear, and for the second summand, we must show that the
matrix entry (D(ϕ ∗(i)⊥)◦φ ◦ϕ ∗(i)⊥)ρ⇐ρ ′ is zero whenever ρ is positive and ρu ⩽ ρ
or ρ ′ is negative and ρu ⩽ Dρ ′ or both. But only the cases ρ = ρu and ρ ′ = Dρu need
proof, and both follow immediately from L⊥({Dρu,∞}) being trivial. This completes
the proof.

90



8 The comparison theorem

This section is devoted to proof of the following comparison theorem. In outline, the
proof is similar to Quillen’s proof of [18, Theorem 2], but the details are somewhat
more involved.

Theorem 8.1. Let (C ,D,0) be a pointed split-exact category with strict duality, and
let iC ⊂ C be the subcategory of isomorphisms. Then the forgetful map

KR⊕(C , iC ,D,0)
ϕ∗

// KR(C , iC ,D,0)

is a level weak equivalence of real symmetric spectra.

We begin the proof with the following reduction.

Lemma 8.2. The following (i)–(ii) are equivalent.

(i) For every pointed split-exact category with strict duality (C ,D,0), the map

KR⊕(C , iC ,D,0)1
ϕ∗

// KR(C , iC ,D,0)1

is a weak equivalence of pointed real spaces.
(ii) For every pointed split-exact category with strict duality (C ,D,0), the map

KR⊕(C , iC ,D,0)
ϕ∗

// KR(C , iC ,D,0)

is a level weak equivalence of real symmetric spectra.

Proof. The statement (i) is a special case of the statement (ii). So we assume (i) and
prove (ii). We wish to show that for every pointed split-exact category with strict
duality (C ,D,0) and for every non-negative integer r, the map

|N(iS2r,r
⊕ [−],D[−],0[−])[−]|R

ϕ∗r // |N(iS2r,rC [−],D[−],0[−])[−]|R

is a weak equivalence of pointed real spaces. The statement is trivial for r = 0 and
holds for r = 1 by assumption. For r ⩾ 2, we consider the commutative diagram

|N(iS2r,r
⊕ [−],D[−],0[−])[−]|R

i#r //

ϕ∗r
��

|N(iS2,1
⊕ . . .S2,1

⊕ C [−],D[−],0[−])[−]|R

ϕ∗... ϕ∗

��

|N(iS2r,rC [−],D[−],0[−])[−]|R
ur // |N(iS2,1 . . .S2,1C [−],D[−],0[−])[−]|R,

where the right-hand map is given by applying the forgetful functor ϕ ∗ in each of
the r real simplicial directions in the r-fold iterate of the 1-real Segal construction,
where the upper horizontal map is the weak equivalence of pointed real spaces from
Lemma 5.2, and where the lower horizontal map is the isomorphism of pointed real
spaces defined in the discussion following Definition 3.1. It follows that it will suffice
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to show that the right-hand vertical map is a weak equivalence of pointed real spaces.
We write this map as the composite map

|N(iS2,1
⊕ S2,1

⊕ . . .S2,1
⊕ C [−],D[−],0[−])[−]|R

ϕ∗(1)
// |N(iS2,1S2,1

⊕ . . .S2,1
⊕ C [−],D[−],0[−])[−]|R

ϕ∗(2)
// |N(iS2,1S2,1 . . .S2,1

⊕ C [−],D[−],0[−])[−]|R
...

ϕ∗
(r)

// |N(iS2,1S2,1 . . .S2,1C [−],D[−],0[−])[−]|R

with the map ϕ ∗(i) given by applying the forgetful functor ϕ ∗ in the ith real simplicial
direction. We first show that the map ϕ ∗(1) is a weak equivalence of pointed real spaces.
By Proposition 3.4, we may instead show that the map

|N(iS2,1
⊕ S2,1

⊕ . . .S2,1
⊕ C [−],D[−],0[−])[−]|′R

ϕ∗(1)
// |N(iS2,1S2,1

⊕ . . .S2,1
⊕ C [−],D[−],0[−])[−]|′R

is a weak equivalence of pointed real spaces, and by the realization lemma, this map,
in turn, is a weak equivalence of pointed real spaces if and only if the map

|N(iS2,1
⊕ (S2,1

⊕ (. . .S2,1
⊕ C [nr] . . .)[n2])[−])[−]|R

ϕ∗
// |N(iS2,1(S2,1

⊕ (. . .S2,1
⊕ C [nr] . . .)[n2])[−])[−]|R

is a weak equivalence of pointed real spaces, for all non-negative integers n2, . . . ,nr.
Since Corollary 7.4 shows that S2,1

⊕ (. . .S2,1
⊕ C [nr] . . .)[n2] is split-exact, this follows

from the assumption that (i) holds. Hence, the map ϕ ∗(1) is a weak equivalence of
pointed real spaces. Finally, to prove that ϕ ∗(i) is a weak equivalence of pointed real
spaces, we consider the following commutative diagram of real simplicial pointed
exact categories with strict duality, where the vertical functors are the isomorphisms
of categories induced by the transposition (1, i) ∈ Σr as in Lemmas 3.2 and 5.3.

S2,1 . . .S2,1S2,1
⊕ S2,1

⊕ . . .S2,1
⊕ C [−]◦∆ op

ϕ∗
(i)

//

l(1,i)
��

S2,1 . . .S2,1S2,1S2,1
⊕ . . .S2,1

⊕ C [−]◦∆ op

l(1,i)
��

S2,1
⊕ . . .S2,1S2,1S2,1

⊕ . . .S2,1
⊕ C [−]◦∆ op

ϕ∗(1)
// S2,1 . . .S2,1S2,1S2,1

⊕ . . .S2,1
⊕ C [−]◦∆ op

This shows that it will suffice to prove that the map

|N(iS2,1
⊕ S2,1 . . .S2,1S2,1

⊕ . . .S2,1
⊕ C [−],D[−],0[−])[−]|R

ϕ∗(1)
// |N(iS2,1S2,1 . . .S2,1S2,1

⊕ . . .S2,1
⊕ C [−],D[−],0[−])[−]|R
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is a weak equivalence of pointed real spaces. But this follows from the argument
above, since, by Corollary 7.4, the exact categories

S2,1(. . .S2,1(S2,1(S2,1
⊕ (. . .S2,1

⊕ C [nr] . . .)[ni+1])[n1])[ni−1] . . .)[n2]

are split-exact. This completes the proof.

Before we proceed, we recall the following general result.

Lemma 8.3. Let f : X → Y be a map of spaces and suppose that for every prime
field k, the induced map f∗ : H∗(X ,k)→ H∗(Y,k) of singular homology groups with
k-coefficients is an isomorphism. Then the induced map

f∗ : H∗(X ,Z)→ H∗(Y,Z)

of singular homology groups with Z-coefficients is an isomorphism.

Proof. Let HA be a choice of Eilenberg-Mac Lane spectrum for the abelian group A.
The abelian groups πq(HA∧L X+) and Hq(X ,A) are isomorphic and the isomorphism
may be chosen to be natural both in X and A. We recall the arithmetic square

HZ∧L X+
//

��

∏(HZ∧L X+)p

��

(HZ∧L X+)Q // (∏(HZ∧L X+)p)Q

where (−)p and (−)Q indicates p-completion and rationalization, respectively, and
where the products range over all prime numbers. It is a homotopy cartesian square
by [3, Proposition 2.9]. Therefore, it suffices to prove the following (1)–(2).

(1) For all integers q, the map f induces isomorphisms

πq((HZ∧L X+)Q)
∼−→ πq((HZ∧L Y+)Q).

(2) For all integers q and for all prime numbers p, the map f induces isomorphisms

πq((HZ∧L X+)p)→ πq((HZ∧Y+)p).

The statement (1) holds because f induces an isomorphism of singular homology
groups with Q-coefficients. To prove (2), we recall that p-completion is defined to
be Bousfield localization with respect to a Moore spectrum Mp. Therefore, the state-
ment (2) is equivalent to the statement that the map f induces an isomorphism

πq(Mp∧L HZ∧L X+)→ πq(Mp∧L HZ∧L Y+)

for all integers q and prime numbers p. But Mp ∧L HZ is an Eilenberg-Mac Lane
spectrum for the prime field Fp, so this holds because f induces an isomorphism of
singular homology with Fp-coefficients.
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Remark 8.4. For every field extension k′/k, we have a natural isomorphism

H∗(X ,k)⊗k k′ ∼−→ H∗(X ,k′).

Therefore, since the functor −⊗k k′ is fully faithful, the map f : X → Y induces an
isomorphism of singular homology groups with k-coefficients if and only if it induces
an isomorphism of singular homology groups with k′-coefficients. It follows that, in
the hypothesis of Lemma 8.3, we may replace the prime field k by any extension field
k′/k. In particular, we may replace k by an algebraic closure of k.

Lemma 8.5. Let (C ,D,0) be a pointed split-exact category with strict duality, and
suppose that for every non-negative integer n, for every subgroup H ⊂ GR, and for
every algebraically closed field k, the forgetful map

H∗(|N(iS2,1
⊕ C [n],D[n])[−]|HR ,k)[π0(|N(iS2,1

⊕ C [n],D[n])[−]|HR )−1]

ϕ∗
// H∗(|N(iS2,1C [n],D[n])[−]|HR )[π0(|N(iS2,1C [n],D[n],k)[−]|HR )−1]

is an isomorphism of graded k-algebras. Then the forgetful map

KR⊕(C , iC ,D,0)1
ϕ∗

// KR(C , iC ,D,0)1

is a weak equivalence of pointed real spaces.

Proof. We wish to prove that the top horizontal map in the following commutative
diagram is a weak equivalence of pointed real spaces.

|N(iS2,1
⊕ C [−],D[−])[−]|R

ϕ∗
//

σ̃⊕0,1
��

|N(iS2,1C [−],D[−])[−]|R

σ̃⊕0,1
��

Ω 2,1(|N(iS2,1
⊕ S2,1

⊕ C [−],D[−])[−]|R)
ϕ∗

// Ω 2,1(|N(iS2,1
⊕ S2,1C [−],D[−])[−]|R)

We claim that the vertical maps are weak equivalences of pointed real spaces. Indeed,
this follows from Shimakawa [23, Theorem B] once we show that the two top terms
are real connected in the sense that both the underlying pointed spaces and the sub-
spaces of GR-fixed points are connected. We prove that the top left-hand term is real
connected; the proof for the top right-hand term is analogous. First,

N(iS2,1
⊕ C [0])[0] = {0[0](1)}

which shows that the underlying pointed space is connected. Second, by Lemma 1.20,
we have the homeomorphism

|N Sym(sd iS2,1
⊕ C [−],sdD[−])[−]| d // |N(iS2,1

⊕ C [−],D[−])[−]|GR
R

and since
N Sym(sd iS2,1

⊕ C [0],sdD[0])[0] = {(0[1](1), id)}
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we conclude that also the subspace of GR-fixed points is connected. This proves the
claim.

We proceed to show that the bottom horizontal map in the diagram at the top of
the proof is a weak equivalence of pointed real spaces. By Proposition 3.4, we may
instead show that the map

Ω 2,1(|N(iS2,1
⊕ (S2,1

⊕ C [−])[−],D[−][−])[−]|′R)
ϕ∗

// Ω 2,1(|N(iS2,1
⊕ (S2,1C [−])[−],D[−][−])[−]|′R)

is a weak equivalence of pointed real spaces. To prove this, it suffices to show that
for every non-negative integer n, the map

Ω 2,1(|N(iS2,1
⊕ (S2,1

⊕ C [n])[−],D[n][−])[−]|R)
ϕ∗

// Ω 2,1(|N(iS2,1
⊕ (S2,1C [n])[−],D[n][−])[−]|R)

is a weak equivalence of pointed real spaces; compare [8, Lemma 2.4]. This map, in
turn, is a map of group objects in the homotopy category of pointed real spaces with
respect to the cartesian monoidal structure. Therefore, it will suffice to show that for
every subgroup H ⊂ GR, the induced map

H∗((Ω 2,1|N(iS2,1
⊕ (S2,1

⊕ C [n])[−],D[n][−])[−]|R)H)

ϕ∗
// H∗((Ω 2,1|N(iS2,1

⊕ (S2,1C [n])[−],D[n][−])[−]|R)H)

is an isomorphism; compare [24, Chapter 7, Section 3, Theorem 9]. By Lemma 8.3
and Remark 8.4, it will suffice to show that for every subgroup H ⊂GR and for every
algebraically closed field k, the induced map

H∗((Ω 2,1|N(iS2,1
⊕ (S2,1

⊕ C [n])[−],D[n][−])[−]|R)H ,k)

ϕ∗
// H∗((Ω 2,1|N(iS2,1

⊕ (S2,1C [n])[−],D[n][−])[−]|R)H ,k)

is an isomorphism. Finally, the real group-completion theorem, Theorem 5.7, identi-
fies the latter map with the map

H∗(|N(iS2,1
⊕ C [n],D[n])[−]|HR ,k)[π0(|N(iS2,1

⊕ C [n],D[n])[−]|HR )−1]

ϕ∗
// H∗(|N(iS2,1C [n],D[n])[−]|HR ,k)[π0(|N(iS2,1C [n],D[n])[−]|HR )−1]

which we assumed to be an isomorphism. This completes the proof.

We follow the strategy of Quillen [18] in proving that the hypothesis of Lemma 8.5
is satisfied. It is helpful to first discuss the strategy more generally.

Let G be a (κ-small) symmetric monoidal groupoid, and let k be a (κ-small) field.
The graded k-vector space H∗(BG ,k) has the structure of a bi-antisymmetric graded
k-bialgebra, where the product and unit maps are induced by the monoidal product
⊕ : G ×G → G and the unit 0 ∈ obG , respectively. The localization

T (G ,k) = H∗(BG ,k)[π0(BG )−1]
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has an induced bi-antisymmetric graded k-bialgebra structure. Moreover, the latter
k-bialgebra has an antipode, and therefore, is a bi-antisymmetric k-Hopf algebra.

Let G be a κ-small group. We view G as a groupoid with ob(G) = { /0} and say
that a functor E : G→ G is a representation of G in G . The set

Rep(G,G ) = π0(BCat(G,G ))

of isomorphism classes of such representations forms a commutative monoid with
composition law [E1] + [E2] = [E1⊕E2] and with identity element the class [0] of
the trivial representation of G on the object 0. Given a κ-small graded k-vector space
V , we write H0(BG,V ) = ∏H i(BG,Vi) for the product k-vector space, the product
indexed by the set of non-negative integers, and define a characteristic class of repre-
sentations in G with coefficients in V to be a natural transformation

Rep(−,G ) H0(B(−),V )+3θ

of functors from the category of κ-small groups to the category of κ-small sets.
The characteristic class θ is said to be additive if it is a natural homomorphism of
monoids. The natural k-vector space structure of H0(B(−),V ) induces to a k-vector
space structure on the sets CharCl(G ,V ) and AddCharCl(G ,V ) of characteristic
classes and additive characteristic classes, respectively, of representations in G with
coefficients in V .

Lemma 8.6. Let G be a symmetric monoidal groupoid, let k be a field, and let V be
a graded k-vector space. There is a natural k-linear isomorphism

GrVectk(QT (G ,k),V )
hV // AddCharCl(G ,V )

from the k-vector space of graded k-linear maps from the graded k-vector space of in-
decomposables in T (G ,k) to V and onto the k-vector space of additive characteristic
classes of representations in G with coefficients in V .

Proof. Let G be a group. Since k is a field, the canonical map

H i(BG,Vi)
αi // Homk(Hi(BG,k),Vi)

is an isomorphism, and hence, an element x ∈ H0(BG,V ) is uniquely determined by
the map of graded k-vector spaces α(x) : H∗(BG,k)→V . In particular, given a func-
tor E : G→ G , the induced map E∗ : H∗(BG,k)→ H∗(BG ,k) determines a unique
element uG(E) ∈ H0(BG,H∗(BG ,k)). The natural transformation

Rep(−,G ) H0(B(−),H∗(BG ,k))+3u

defined in this way is a characteristic class of representations in G with coefficients
in H∗(BG ,k). It is the universal characteristic class in the sense that the map

GrVectk(H∗(BG ,k),V )
θV // CharCl(G ,V )
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that takes the map of graded k-vector spaces f : H∗(BG ,k)→V to the characteristic
class θV ( f ) defined by the composite natural transformation

Rep(−,G ) H0(B(−),H∗(BG ,k)) H0(B(−),V )+3 +3u f∗

is an isomorphism of k-vector spaces. Moreover, it induces an isomorphism

GrDerk(H∗(BG ,k),V )
θV // AddCharCl(G ,V )

from the k-vector space of graded k-linear derivations from H∗(BG ,k) to V viewed as
a left H∗(BG ,k)-module via the augmentation and onto the k-vector space of additive
characteristic classes of representations in G with coefficients in V .

Next, there is a natural isomorphism

GrVectk(QH∗(BG ,k),V )
δV // GrDerk(H∗(BG ,k),V )

that to the map of graded k-vector spaces f : QH∗(BG ,k)→V associates the graded
k-linear derivation δV ( f ) : H∗(BG ,k)→V defined by the composite map

H∗(BG ,k)
id−ηε

// IH∗(BG ,k)
pr

// QH∗(BG ,k)
f

// V.

Finally, the localization induces an isomorphism of graded k-vector spaces

QH∗(BG ,k)
γ

// QT (G ,k).

Now, the natural isomorphism in the statement is defined to be the composition

GrVectk(QT (G ,k),V ) GrVectk(QH∗(BG ,k),V )

GrDerk(H∗(BG ,k),V ) AddCharCl(G ,V )

γ∗
oo

δV //
θV //

of the indicated natural isomorphisms.

In the following, we write k[d] for the graded k-vector space that is equal to k in
degree d and otherwise zero.

Proposition 8.7. Let k be a field, let G1 and G2 be symmetric monoidal groupoids,
and let i : G1→ G2 be a strong symmetric monoidal functor. Suppose that the induced
map of abelian groups i∗ : (π0(BG1))

gp→ (π0(BG2))
gp is surjective and that for every

positive integer d, the induced map of k-vector spaces

AddCharCl(G2,k[d])
i∗ // AddCharCl(G1,k[d])

is injective. Then the induced map of k-Hopf algebras

T (G1,k)
i∗ // T (G2,k)

is surjective.
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Proof. The degree zero part of the graded k-Hopf algebra T (Gi,k) is canonically
isomorphic to the group k-Hopf algebra k[(π0(BGi))

gp]. Therefore, by assumption,
the map i∗ : T (G1,k)→ T (G2,k) is surjective in degree zero. Hence, it will suffice to
show that the induced map of the graded k-vector spaces of indecomposables

QT (G1,k)
i∗ // QT (G2,k)

is surjective; compare [15, Proposition 3.8]. Equivalently, it suffices to show that for
every positive integer d, the top horizontal map in the following commutative diagram
of k-vector spaces and k-linear maps is injective.

GrVectk(QT (G1,k),k[d])

hk[d]

��

GrVectk(QT (G2,k),k[d])
i∗oo

hk[d]

��

AddCharCl(G1,k[d]) AddCharCl(G2,k[d])
i∗oo

Here, the vertical maps are the canonical isomorphisms of Lemma 8.6, and the lower
horizontal map is injective by assumption. This completes the proof.

We apply Proposition 8.7 to the strong symmetric monoidal functor

iS2,1
⊕ C [n]

ϕ∗
// iS2,1C [n],

where the symmetric monoidal structure of the domain and target categories are given
by a choice of sum, and to the strong symmetric monoidal functor

Sym(iS2,1
⊕ C [n],D[n])

ϕ∗
// Sym(iS2,1C [n],D[n]),

where the symmetric monoidal structure of the domain and target categories are given
by a choice of orthogonal sum. We note that both of these strong symmetric monoidal
functors admit a strong symmetric monoidal retraction, up to monoidal natural iso-
morphism.

We will need the following generalization of [18, Lemma of Theorem 2].

Lemma 8.8. Let k be an algebraically closed field and r a positive integer. Then there
exists an order R in a number field of degree r over Q with the following properties:
Let N1 be a right R-module, let R∗ act on N1 by multiplication, and let the group
homology H∗(N1,k) be endowed with the induced right k[R∗]-module structure. Let
N2 be a right module over the subring S ⊂ R⊗R of elements fixed by the symmetry
isomorphism, let a∈ R∗ act on N2 by multiplication by a⊗a∈ S, and let H∗(N2,k) be
given the induced right k[R∗]-module structure. Then, for all non-negative integers
i and j, the right k[R∗]-module Hi(N1,k)⊗k H j(N2,k) decomposes as a direct sum
of eigenspaces belonging to a finite set of characters χ : R∗ → k∗. Moreover, if the
non-negative integers i and j satisfy 0 < i+ 2 j < r, then the trivial character does
not occur in this decomposition.
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Proof. Suppose first that k is of characteristic zero. We may assume that k is the
algebraic closure of Q in C. We let R be the ring of integers in a totally real field F
of degree r over Q. To see that such a field exists, we recall that, by Dirichlet, there
exists an odd prime ℓ such that r divides (ℓ− 1)/2. Hence, we can take F to be the
subfield of Q(µℓ)∩R fixed by the subgroup of order (ℓ− 1)/2r. Now, for abelian
groups N1 and N2, we have a natural isomorphism

Λ i
k(N1⊗Z k)⊗k Λ j

k (N2⊗Z k) // Hi(N1,k)⊗k H j(N2,k).

Hence, if the abelian groups N1 and N2 are endowed with right R∗-actions, then this
isomorphism is an isomorphism of right k[R∗]-modules. Let N1 and N2 be as in the
statement. The group N1⊗Z k is a right module over the ring R⊗Z k, and the right
R∗-action on this group is induced by the right multiplication by R on N1. The ring
R⊗Z k is semi-simple. Indeed, if σ1, . . . ,σr is an enumeration of the embeddings of
F in k, then, by Galois theory, the map R⊗Z k→ ∏1⩽u⩽r k whose uth component
takes x⊗ y to σu(x)y is an isomorphism. We have the corresponding idempotent de-
composition of the right R⊗Z k-module N1⊗Z k, and we see that, on the uth factor,
the group R∗ acts through the character σu : R∗ → k∗. Similarly, the group N2⊗Z k
is a right module over the ring S⊗Z k, and the right action by a ∈ R∗ on this group
is induced by the right multiplication by a⊗ a ∈ S on N2. The ring S⊗Z k again
is semi-simple, the ring homomorphism S⊗Z k→∏1⩽v⩽w⩽r k whose (v,w)th factor
takes x1⊗ x2⊗ y to σv(x1)σw(x2)y being an isomorphism. Under the corresponding
idempotent decomposition of the right S⊗Z k-module N2⊗Z k, the group R∗ acts on
(v,w)th factor through the character σvσw : R∗→ k∗. Hence, the right k[R∗]-module
in question, Hi(N1,k)⊗k H j(N2,k), decomposes as a direct sum of eigenspaces be-
longing to the characters χ : R∗→ k∗ of the form

χ = ∏
1⩽u⩽r

σnu
u · ∏

1⩽v⩽w⩽r
(σvσw)

nv,w

with nu and nv,w non-negative integers that satisfy ∑u nu = i and ∑v,w nv,w = j. Suppose
that the character τ =∏1⩽u⩽r σmu

u , where the exponents mu are non-negative integers,
is the trivial character. Then, for all a ∈ R∗, we have

∑
1⩽u⩽r

mu log(|σu(a)|) = 0,

where |− | is the absolute value in C. By Dirichlet’s unit theorem, this happens only
if the exponents mu are all equal. In the case as hand, we see that if 0 < i+ 2 j < r,
then the character χ cannot be trivial. This completes the proof in the case where k is
of characteristic zero.

We next suppose that k is of characteristic p > 0 and let kr ⊂ k be the subfield of
order pr. The norm map N : k∗r → k∗1 is surjective, since N(a) = apr

= a for all a∈ k∗1,
and hence, its kernel U is a cyclic group of order (pr−1)/(p−1). We choose a gen-
erator x ∈U . The group of units in the subfield k1(x)⊂ kr contains U as a subgroup,
and comparing orders, we see that k1(x) = kr. Hence, the minimal polynomial

g(X) = X r +b1X r−1 + · · ·+br−1X +br
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of x over k1 has order r, and its constant term is br = (−1)rN(x) = (−1)r. We choose
a monic polynomial with integer coefficients

f (X) = X r +a1X r−1 + · · ·+ar−1X +ar

that reduces to g(X) modulo p and that has constant term is ar = (−1)r, and define
R = Z[X ]/( f (X)). The polynomial f (X) is irreducible over Z because the polymial
g(X) is irreducible over k1, and therefore, the ring R is an order in the number field
F = Q[X ]/( f (X)) of degree r over Q. Let x̃ ∈ R be the class of X . The unique ring
homomorphism λ : R→ kr that takes x̃ to x induces an isomorphism of R/pR onto kr.
We abuse language and write λ : R∗→ k∗ for the character defined as the composition
of λ and the canonical inclusion of k∗r into k∗. The image of the character λ contains
the subgroup U ⊂ k∗r ⊂ k∗. Indeed, x̃ is a unit in R, because the constant term of the
polynomial f (X) is a unit in Z, and λ (x̃) = x which generates U .

Now, let N1 and N2 be as in the statement. The argument in [18, p. 214] shows
that for s = 1 and for s = 2, there exist isomorphisms of graded k[R∗]-algebras

Λk(Ns⊗Z k)⊗k Γk(pNs⊗Z k) // H∗(Ns,k).

Here Ns⊗Z k and pNs⊗Z k are located in degrees 1 and 2, respectively, and pNs ⊂ Ns
is the subgroup of elements annihilated by p. The isomorphisms are canonical if
p ̸= 2 or if p = 2 and 2Ns ⊂ 2Ns, but otherwise depend on choices. The case s = 1
is proved in loc. cit., and the proof in the case s = 2 is entirely analogous once one
notices that the ring S/pS is semi-simple and that the order of its group of units is not
divisible by p. To see this, we note that the ring homomorphism λ : R→ kr induces an
isomorphism of S/pS onto the subring of kr⊗kr fixed by the symmetry isomorphism.
This subring is readily identified by Galois theory. The result is that, if r = 2m is even,
then S/pS is isomorphic to a product of m copies of kr and one copy of kr−1; and that
if r = 2m−1 is odd, then S/pS is isomorphic to a product of m copies of kr.

The groups N1⊗Z k and pN1⊗Z k are right modules over the ring R⊗Z k, and
the right actions by R∗ on these groups are induced by the right multiplication by
R on N1. The ring R⊗Z k is semi-simple. Indeed, if φ : kr → kr is the Frobenius,
then Galois theory shows that the ring homomorphism R⊗Z k → ∏0⩽u<r k whose
uth component takes x1⊗ y to φu(λ (x1))y is an isomorphism. It follows that, in the
corresponding idempotent decomposition of the right R⊗Z k-modules N1⊗Z k and
pN1⊗Z k, the group R∗ acts on the uth factors through the character λ pu

: R∗ → k∗.
Similarly, the groups N2⊗Z k and pN2⊗Z k are right modules over the ring S⊗Z k, and
the right actions by a∈ R∗ on these groups are induced by the right multiplications by
a⊗a∈ S on N2. The ring S⊗Z k again is semi-simple. Indeed, the ring homomorphism
S⊗Z k→∏0⩽v⩽w<r k whose (v,w)th factor takes x1⊗x2⊗y to φv(λ (x1))φw(λ (x2))y
is an isomorphism. Therefore, in the corresponding idempotent decomposition of the
right S⊗Z k-modules N2⊗Z k and pN2⊗Z k, the group R∗ acts on the (v,w)th factor
through the character λ pv+pw

: R∗ → k∗. By the above reasoning, we conclude that
the right k[R∗]-module Hi(N1,k)⊗H j(N2,k) decomposes as a sum of eigenspaces
belonging to the characters χ : R∗→ k∗ of the form χ = λ d with

d = ∑
0⩽u<r

(mu +nu)pu + ∑
0⩽v⩽w<r

(mv,w +nv,w)(pv + pw),
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where mu, nu, mv,w, and nv,w are non-negative integers such that ∑u(mu+2nu) = i and
∑v,w(mv,w +2nv,w) = j. Now, if the character τ = λ d is the trivial character, then d is
divisible by (pr− 1)/(p− 1). Indeed, the image of λ : R∗ → k∗ contains the cyclic
subgroup U of order (pr−1)/(p−1). Therefore, we see that if 0 < i+2 j < r, then
the character χ cannot be trivial.

Remark 8.9. Let r be positive integer, let A be an object of an additive category C ,
and suppose that the morphisms iv : A→ Ar and pv : Ar→ A indexed by 1 ⩽ v ⩽ r is
a biproduct diagram of r copies of A. There is a natural ring homomorphism

Mr(Z)
η∗

// Mr(End(A))
sA // End(Ar)

defined by the composition of the ring homomorphism induced by the unique ring
homomorphism η : Z→ End(A) and the natural ring isomorphism that to the matrix
of endomorphisms ( fuv) associates the endomorphism ∑u,v(iu ◦ fuv ◦ pv). This defines
a left Mr(Z)-module structure on Ar which is natural in the sense that if f : A1→A2 is
a morphism in C , then its r-fold sum f r : Ar

1→ Ar
2 is a Mr(Z)-linear morphism. Now,

let R be an order in a number field of degree r over Q. Choosing an ordered basis of
R over Z, we obtain an embedding of R as a subring of Mr(Z). Hence, the natural left
Mr(Z)-module structure on Ar gives rise to a natural left R-module structure on Ar by
restriction.

We first consider ϕ ∗ : iS2,1
⊕ C [n]→ iS2,1C [n]. To this end, we consider the com-

mutative diagram of additive categories

S2,1
⊕ C [n] S2,1C [n]

Film S2,1C [n] · · · Fil1 S2,1C [n] Fil0 S2,1C [n]

ϕ∗
//

ϕ ′

�� im //
i2 //

i1 //

ϕ ′′

OO

defined as follows. We choose a linear ordering

ρ1 ⩾ ρ2 ⩾ · · ·⩾ ρm

of the set of surjective functors ρ : [n]→ [2] with the property that if there exists
a morphism ρ ′ ⇒ ρ , then ρ ′ ⩾ ρ . This is possible since every partial order can be
extended to a linear order. Now, the categories Filu S2,1C [n] have the same set of
objects as the category S2,1

⊕ C [n], and if A,B ∈ obFilu S2,1C [n], then

Filu S2,1C [n](A,B)⊂ S2,1C (ϕ ∗(A),ϕ ∗(B))

is defined to be the subset of all morphisms f : ϕ ∗(A)→ ϕ ∗(B) with the property that
the matrix entries fρ⇐ρ ′ with ρu ⩽ ρ ′ and ρ ̸= ρ ′ are zero. Here, for u = 0, none
of the matrix entries fρ⇐ρ ′ are required to be zero. The functors iu are given by the
identity maps on object sets and by the canonical inclusions on morphism sets. The
functor ϕ ′ is given by the identity map on object sets and by the map ϕ ∗ on morphism
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sets. The functor ϕ ′′ is given by the map ϕ ∗ on object sets and by the identity map on
morphism sets. We further define the functor

Filu−1 S2,1C [n]
ru // Filu S2,1C [n]

to be the retraction of the inclusion functor iu that is given on morphism sets by

ru( f )ρ⇐ρ ′ =

{
0 if ρ ̸= ρ ′ = ρu

fρ⇐ρ ′ otherwise.

Finally, we note that the functors ϕ ′ and ϕ ′′ both are equivalences of categories.

Proposition 8.10. Let (C ,0) be a pointed split-exact category, and let n be a non-
negative integer. Let k be an algebraically closed field and let d be a positive integer.
The map induced by the forgetful functor

AddCharCl(iS2,1C [n],k[d])
ϕ∗

// AddCharCl(iS2,1
⊕ C [n],k[d])

is injective.

Proof. It will suffice to show that for every integer 1 ⩽ u ⩽ m, the map

AddCharCl(i Filu−1 S2,1C [n],k[d])
i∗u // AddCharCl(i Filu S2,1C [n],k[d])

is injective. So we fix an element θ of the kernel of this map and proceed to show
that this element is zero. We must show that for every representation

G E // i Filu−1 S2,1C [n],

the class θG(E) ∈ Hd(G,k) is zero. Let

i Filu−1 S2,1C [n] v // Filu−1 S2,1C [n]

be the canonical inclusion. We choose an integer r > d that is not divisible by the
characteristic of k and let R be as in Lemma 8.8. Let Er be the r-fold monoidal
product of the representation E. Since θ is additive, we have θG(Er) = rθG(E), and
hence, it will suffice to show that θG(Er) is zero. Let Ar = (v ◦Er)( /0). It follows
from Remark 8.9 that Ar has a natural left R-module structure and that v ◦Er is a
representation of G on Ar through R-linear automorphisms.

By the above reasoning and by the naturality of θ , it will suffice to consider
the following situation. Let A be an object of i Filu−1 S2,1C [n] and let the object
A({ρu,∞}) of C be endowed with a left R-module structure; let G be the full group
of automorphisms g : A→ A with the property that the component map gρu⇐ρu is R-
linear; and let E be the canonical representation of G on A. We must show that the
class θG(E) ∈ Hd(G,k) is zero. To this end, we let

1 // N // G ru
// Ḡ

iu
vv

// 1
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be the group extension, where Ḡ is the group of automorphisms ḡ : ru(A)→ ru(A)
such that the component map ḡρu⇐ρu is R-linear. The map

Hd(G,k)
i∗u // Hd(Ḡ,k)

takes θG(E) to θḠ(i
∗
u(E)) which is zero since θ is in the kernel of i∗u. Hence, it suffices

to prove that the map iu∗ : Hd(Ḡ,k)→ Hd(G,k) is an isomorphism. Equivalently, it
suffices to prove that the map ru∗ : Hd(G,k)→ Hd(Ḡ,k) is an isomorphism. Up to
canonical isomorphism, the latter map is equal to the edge homomorphism of the
Hochschild-Serre spectral sequence

E2
s,t = Hs(Ḡ,Ht(N,k))⇒ Hs+t(G,k).

Therefore, it will suffice to show that the groups E2
s,t with 0 < t < r are zero. To this

end, we employ Lemma 8.8 with N1 = N and with N2 = 0 as follows.
The subgroup N ⊂ G consists of the automorphisms h : A→ A with the property

that hρ⇐ρ ′ = (idA)ρ⇐ρ ′ unless ρ ′ = ρu. It follows that the map

N // ∏C (A({ρu,∞}),A({ρ,∞}))

that to g associates the partial matrix (gρ⇐ρu) is a group isomorphism. Here, the
product is indexed by the set of admissible morphisms ρu ⇒ ρ with ρ ̸= ρu and is
an abelian group under matrix addition. The left R-module structure on A({ρu,∞})
gives rise to a right R-module structure on C (A({ρu,∞}),A({ρ,∞})) and we give N
the right R-module structure that makes the isomorphism above R-linear.

We define the group homomorphism

(R∗)op α // Inn(G)

by α(a)(g) = γ(a)−1 ◦g◦ γ(a) where γ(a) ∈ G is given by the diagonal matrix

γ(a)ρ⇐ρ ′ =


la if ρ = ρ ′ = ρu

id if ρ = ρ ′ ̸= ρu

0 if ρ ̸= ρ ′.

Here la denotes left multiplication by a ∈ R on A({ρu,∞}). We claim that R∗ acts
trivially on the subgroup Ḡ⊂ G and that R∗ acts on the subgroup N ⊂ G through the
right R-module structure defined above. To see this, we note the following.

(1) If ḡ ∈ Ḡ and ḡρ⇐ρu is non-zero, then ρ = ρu.
(2) If g ∈ G and gρu⇐ρ ′ is non-zero, then ρ ′ = ρu.

Here (1) follows immediately from the definition of Filu S2,1C [n] and (2) follows
from the definition of Filu−1 S2,1C [n] and from the inequality ρu ⩽ ρ ′, which, in turn,
holds by our choice of linear order. Now, for ḡ ∈ Ḡ, we have

α(a)(ḡ)ρ⇐ρ ′ = γ(a)−1
ρ⇐ρ ◦ ḡρ⇐ρ ′ ◦ γ(a)ρ ′⇐ρ ′

=

{
l−1
a ◦ ḡρu⇐ρu ◦ la if ρ = ρ ′ = ρu

ḡρ⇐ρ ′ otherwise
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and since ḡρu⇐ρu is R-linear, we have α(a)(ḡ) = ḡ as claimed. Similarly, for g ∈ N
and for ρu⇒ ρ admissible with ρ ̸= ρu, we have

α(a)(g)ρ⇐ρu = γ(a)−1
ρ⇐ρ ◦gρ⇐ρu ◦ γ(a)ρu⇐ρu = gρ⇐ρu ◦ la

as claimed.
We now fix 0 < t < r and show that, in the Hochschild-Serre spectral sequence,

the groups E2
s,t =Hs(Ḡ,Ht(N,k)) are zero. To this end, we evaluate the right R∗-action

on E2
s,t induces by the right R∗-action on N in two different ways and, by comparing

the two results, conclude that E2
s,t is zero. The right action by ḡ ∈ Ḡ on

V = Ht(N,k) = Ht(B(k,k[N],k))

is given by the map induced by the chain map B(id,cg, id), where g ∈G is any lifting
of ḡ, and where cg(h) = g−1hg. Therefore, if we let R∗ act from the right on V via the
group homomorphism γ̄ = ru ◦ γ : R∗ → Ḡ, then by what was said above, this right
R∗-action is equal to the right R∗-action on V induced from the right R∗-action on N.
It follows that the induced right action by a ∈ R∗ on E2

s,t is equal to the map

Hs(B(V,k[Ḡ],k))
h(a)∗

// Hs(B(V,k[Ḡ],k)),

where h(a) is the chain map defined, up to canonical isomorphism, as the composite

B(V,k[Ḡ],k[Ḡ])⊗k[Ḡ] k
r̃γ̄(a)⊗id

// (c∗γ̄(a)B(V,k[Ḡ],k[Ḡ]))⊗k[Ḡ] k

φ
// B(V,k[Ḡ],k[Ḡ])⊗k[Ḡ] k.

Here φ(x⊗ y) = x⊗ y and r̃γ̄(a) is any choice of a chain map

B(V,k[Ḡ],k[Ḡ])
r̃γ̄(a)

//

ε
��

B(V,k[Ḡ],k[Ḡ])

ε
��

V
rγ̄(a)

// V

that lifts the right multiplication by γ̄(a) on V . First, we have the choice

r̃γ̄(a) = r̃ (1)
γ̄(a) = B(id, id,rγ̄(a))

which gives h(a) = h(1)(a) = B(id, id, id) = id. This shows that the right R∗-action on
the k-vector space E2

s,t is trivial. Second, we have the choice

r̃γ̄(a) = r̃ (2)
γ̄(a) = B(rγ̄(a),cγ̄(a),cγ̄(a)) = B(rγ̄(a), id, id)

which gives h(a) = h(2)(a) = B(rγ̄(a), id, id). This, we claim, implies that the right
k[R∗]-module E2

s,t decomposes as a direct sum of eigenspaces attached to non-trivial
characters. Indeed, the category A of right k[R∗]-modules of this kind is abelian, and
by Lemma 8.8, it contains V . Therefore, the complex B(k,k[Ḡ],V ) considered as a
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complex of right k[R∗]-modules with a ∈ R∗ acting through the chain map h(2)(a)
is a complex in A , and hence, its homology groups are in A . The claim follows.
Comparing the two descriptions of the right k[R∗]-module E2

s,t , we conclude that it is
zero. This shows that the map ru∗ : Hd(G,k)→ Hd(Ḡ,k) is an isomorphism, which,
in turn, shows that the characteristic class θ is zero as desired.

Remark 8.11. Let r be a positive integer and let A be an object in an additive cat-
egory with strict duality (C ,D). If the morphisms iu : A→ Ar and pu : Ar → A in-
dexed by 1 ⩽ u ⩽ r form a biproduct diagram of r copies of A, then the morphisms
Dpop

u : DAop → D(Ar)op and Diop
u : D(Ar)op → DAop indexed by 1 ⩽ u ⩽ r form a

biproduct diagram of r copies of DAop. In this situation, the diagram

Mr(Z)op ηop
∗ //

(−)t

��

Mr(End(A))op
sop
A //

(−)t

��

End(Ar)op

D

��

Mr(Z)
η∗

// Mr(End(A)op)

Mr(D)

��

Mr(Z)
η∗

// Mr(End(DAop))
sDAop

// End(D(Ar)op)

commutes. Indeed, the two left-hand squares commute by naturality, and it follows
readily from the definition of the map sA that the right-hand rectangular diagram
commutes. The object D(Ar)op has both a natural left Mr(Z)-module structure and
natural right Mr(Z)-module structure. The left Mr(Z)-module structure is defined by
Remark 8.9 using the biproduct morphisms Dpop

u and Diop
u . The right Mr(Z)-module

structure is induced by the left Mr(Z)-module structure on Ar defined by Remark 8.9
using the biproduct morphisms iu and pu. Now, by the commutativity of the diagram
above, we conclude that left multiplication by the matrix a ∈Mr(Z) is equal to right
multiplication by its transpose a t ∈Mr(Z). In particular, if f : A1→ A2 is a morphism
in C , then the morphism D( f r)op : D(Ar

2)
op→ D(Aop

1 ) is linear with respect to both
module structures.

We next consider the strong symmetric monoidal functor

Sym(iS2,1
⊕ C [n],D[n])

ϕ∗
// Sym(iS2,1C [n],D[n])

and the commutative following diagram of additive categories with strict duality

(S2,1
⊕ C [n],D[n]) (S2,1C [n],D[n])

(Film S2,1C [n],D[n]) · · · (Fil0 S2,1C [n],D[n])

ϕ∗
//

ϕ ′

�� im //
i1 //

ϕ ′′

OO

defined as follows. We say that a surjective functor ρ : [n]→ [2] is positive, if there
exists a non-identity morphism ρ ⇒ Dρop, and choose a linear ordering

ρ1 ⩾ ρ2 ⩾ · · ·⩾ ρm
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of the set of positive surjective functors ρ : [n]→ [2] such that ρ ′ ⩾ ρ whenever there
exists a morphism ρ ′ ⇒ ρ . Now, the categories Filu S2,1C [n] have the same objects
as the category S2,1

⊕ C [n], and if A,B ∈ obFilu S2,1C [n], then

Filu S2,1C [n](A,B)⊂ S2,1C [n](ϕ ∗(A),ϕ ∗(B))

is the subset of all morphisms f : ϕ ∗(A)→ ϕ ∗(B) with the property that the matrix
entry fρ⇐ρ ′ is zero whenever ρ ̸= ρ ′ and either ρ ⩽ Dρop

u or ρu ⩽ ρ ′ or both. For
u = 0, the matrix entries fρ⇐ρ ′ are unrestricted. The functors iu are given by the
identity maps on object sets and by the canonical inclusions on morphism sets; the
functor ϕ ′ is given by the identity map on object sets and by the map ϕ ∗ on morphism
sets; and the functor ϕ ′′ is given by the map ϕ ∗ on object sets and by the identity map
on morphism sets. We further define

(Filu−1 S2,1C [n],D[n])
ru // (Filu S2,1C [n],D[n])

to be the retraction of the inclusion functor iu that is given on morphism sets by

ru( f )ρ⇐ρ ′ =

{
0 if ρ ̸= ρ ′ and ρ = Dρop

u or ρ ′ = ρu

fρ⇐ρ ′ otherwise.

The functors iu and ru are additive and duality preserving, and the functors ϕ ′ and ϕ ′′
are adjoint equivalences of additive categories with strict duality.

Proposition 8.12. Let (C ,D,0) be a pointed split-exact category with strict duality
and let n be a non-negative integer. Let k be an algebraically closed field and let d be
a positive integer. Then the map induced by the forgetful functor

AddCharCl(Sym(iS2,1C [n],D[n]),k[d])

ϕ∗
// AddCharCl(Sym(iS2,1

⊕ C [n],D[n]),k[d])

is injective.

Proof. It will suffice to show that for every integer 1 ⩽ u ⩽ m, the map

AddCharCl(Sym(i Filu−1 S2,1C [n],D[n]),k[d])

i∗u // AddCharCl(Sym(i Filu S2,1C [n],D[n]),k[d])

is injective. So we fix an element θ of the kernel of this map and proceed to show
that this element is zero. We must show that for every representation

G E // Sym(i Filu−1 S2,1C [n],D[n]),

the class θG(E) ∈ Hd(G,k) is zero. Let

Sym(i Filu−1 S2,1C [n],D[n]) v // Filu−1 S2,1C [n]
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be the forgetful functor. We choose an integer r > 2d that is not divisible by the
characteristic of k and let R be as in Lemma 8.8. Let Er be the r-fold monoidal product
of the representation E. Since θ is additive, we have θG(Er) = rθG(E), so it will
suffice to show that θG(Er) is zero. Let Er( /0) = (Ar, f r). It follows from Remark 8.9
that Ar and D(Ar)op are left Mr(Z)-modules, that f r : Ar → D(Ar)op is an Mr(Z)-
linear isomorphism, and that v◦Er is a representation of G on Ar through left Mr(Z)-
module automorphisms. Moreover, Remark 8.11 shows that the right Mr(Z)-module
structure on Ar induced from the left Mr(Z)-module structure on D(Ar)op is equal to
the transpose of the left Mr(Z)-module structure on Ar. It follows that v◦Er also is a
representation of G on Ar through right Mr(Z)-module automorphisms.

By the above reasoning and by the naturality of θ , it will suffice to consider the
following situation. Let (A, f ) be an object of Sym(i Filu−1 S2,1C [n],D[n]) and let
the objects A({ρu,∞}) and A({Dρop

u ,∞}) of C be endowed with a left R-module
structure and a right R-module structure, respectively, such that the isomorphism

A({ρu,∞}) (DAop)({ρu,∞}) D(A({Dρop
u ,∞})op)

fρu⇐ρu
//

is R-linear; let G be the full group of automorphisms g : (A, f )→ (A, f ) for which
the component maps gρu⇐ρu and gDρop

u ⇐Dρop
u

are R-linear; and let E be the canonical
representation of G on (A, f ). We must show that θG(E) ∈ Hd(G,k) is zero. Let

1 // N // G ru
// Ḡ

iu
vv

// 1

be the group extension, where Ḡ is the group of automorphisms

(ru(A),ru( f ))
ḡ

// (ru(A),ru( f ))

such that the component maps ḡρu⇐ρu and ḡDρop
u ⇐Dρop

u
are D-linear. The map

Hd(G,k)
i∗u // Hd(Ḡ,k)

takes θG(E) to θḠ(i
∗
u(E)) which is zero since θ is in the kernel of i∗u. Hence, it suffices

to prove that the map iu∗ : Hd(Ḡ,k)→ Hd(G,k) is an isomorphism. Equivalently, it
suffices to prove that the map ru∗ : Hd(G,k)→ Hd(Ḡ,k) is an isomorphism. Up to
canonical isomorphism, the latter map is equal to the edge homomorphism of the
Hochschild-Serre spectral sequence

E2
s,t = Hs(Ḡ,Ht(N,k))⇒ Hs+t(G,k).

Therefore, it will suffice to show that the groups E2
s,t with 0 < 2t < r are zero. We

will employ Lemma 8.8 prove that this is so, but first we analyze the subgroup N ⊂G
more carefully.

The subgroup N ⊂ G is the full group of automorphisms h : (A, f )→ (A, f ) such
that hρ⇐ρ ′ = (idA)ρ⇐ρ ′ unless either ρ = Dρop

u or ρ ′ = ρu or both. Moreover, the
equation f = Dhop ◦ f ◦ h, that every automorphism f : (A, f )→ (A, f ) satisfies, is
equivalent to the following additional restrictions (1)–(2) on the family of component
maps hρ⇐ρ ′ of the element h ∈ N.
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(1) For every admissible morphism ρu⇒ ρ with ρu > ρ > Dρop
u ,

fρ⇐ρ ◦hρ⇐ρu =−D(hDρop
u ⇐Dρop)

op ◦ fρu⇐ρu .

(2) If there exists an admissible morphism ρu⇒ Dρop
u , then

fDρop
u ⇐Dρop

u
◦hDρop

u ⇐ρu
+D( fDρop

u ⇐Dρop
u
◦hDρop

u ⇐ρu
)op

=−∑D(hDρop⇐ρu)
op ◦ fρ⇐ρ ′ ◦hρ ′⇐ρu ,

where the sum is indexed by the set of factorizations ρu⇒ ρ ′⇒ ρ⇒Dρop
u such

that ρu ̸= ρ ′ and ρ ̸= Dρop
u .

We note that the morphisms fρ⇐ρ and fρu⇐ρu in (1) are automorphisms. Hence, the
component maps hρ⇐ρu and hDρop

u ⇐Dρop determine each other. We also note that the
sum on the right-hand side of the equation in (2) is a Tate 0-cocycle in the left GR-
module C (A({ρu,∞}),A(Dρop

u ,∞})). Here the action of the generator σ ∈ GR is
given by σx = D(xop). This shows that the map

N // ∏C (A({ρu,∞}),A({ρ,∞}))

that to h associates the partial matrix (hρ⇐ρu) defines a bijection of N onto the subset
consisting of all tuples (hρ⇐ρu) that satisfy (2). Here, the product is indexed by the
set of admissible morphisms ρu⇒ ρ with ρu > ρ ⩾ Dρop

u .
We define N2 ⊂ N to be the full group of automorphism h : (A, f )→ (A, f ) with

the property that gρ⇐ρ ′ = (idA)ρ⇐ρ ′ unless both ρ = Dρop
u and ρ ′ = ρu. If g ∈G and

h ∈ N2, then (g ◦ h ◦ g−1)ρ⇐ρ ′ = (idA)ρ⇐ρ ′ unless ρ = Dρop
u and ρ ′ = ρu in which

case we find that

(g◦h◦g−1)Dρop
u ⇐ρu

= gDρop
u ⇐Dρop

u
◦hDρop

u ⇐ρu
◦ (gρu⇐ρu)

−1.

This shows that N2 ⊂ G is normal and that N2 ⊂ N is central. We let N1 = N/N2 be
the quotient and consider the central group extension

1 // N2 // N // N1 // 1.

We evaluate the groups N2 and N1.
First, we have the injective group homomorphism

N1
e1 // ∏C (A({ρu,∞}),A({ρ,∞}))

that to h associates the partial matrix (hρ⇐ρu). Here, the product is indexed by the set
of admissible morphisms ρu⇒ ρ with ρu > ρ > Dρop

u and is an abelian group under
matrix addition. The map e1 is an isomorphism onto the kernel of the map

∏C (A({ρu,∞}),A({ρ,∞}))
inv // Ĥ0(GR,C ((A({ρu,∞}),D(A({ρu,∞})op))

that to the tuple (hρ⇐ρu) associates the class of the Tate 0-cocycle

−∑D(hDρop⇐ρu)
op ◦ fρ⇐ρ ′ ◦hρ ′⇐ρu ∈ C (A({ρu,∞}),D(A({ρu,∞})op)).
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Here, the sum is indexed by the set of factorizations ρu ⇒ ρ ′ ⇒ ρ ⇒ Dρop
u such

that both ρu > ρ ′ and ρ > Dρop
u . This isomorphism gives the abelian group N1 the

structure of a right R-module.
Second, we have the injective group homomorphism

N2
e2 // C (A({ρu,∞}),D(A({ρu,∞})op))

defined by e2(h) = fDρop
u ⇐Dρop

u
◦ hDρop

u ⇐ρu
. It follows from the restriction (2) above

that the map e2 is an isomorphism onto the kernel of the norm map

C (A({ρu,∞}),D(A({ρu,∞})op))
1+σ

// C (A({ρu,∞}),D(A({ρu,∞})op)).

This isomorphism gives the abelian group N2 the structure of a right module over the
subring S⊂ R⊗R fixed by the symmetry isomorphism.

We will apply Lemma 8.8 with N1 and N2 defined as above. To this end, we define
the group homomorphism

(R∗)op α // Inn(G)

by α(a)(g) = γ(a)−1 ◦g◦ γ(a) where γ(a) ∈ G is given by the diagonal matrix

γ(a)ρ⇐ρ ′ =


la if ρ = ρ ′ = ρu

r−1
a if ρ = ρ ′ = Dρop

u

id if ρ = ρ ′ ̸= ρu,Dρop
u

0 otherwise.

Here la denotes left multiplication by a ∈ R on A({ρu,∞}), ra denotes right multipli-
cation by a ∈ R on A({Dρop

u ,∞}), and the assumption that fρu⇐ρu be R-linear implies
that γ(a) ∈ G. We claim that a ∈ R∗ acts on trivially on the subgroup Ḡ ⊂ G, that it
acts on N1 ⊂ G/N2 by right multiplication by a ∈ R, and that it acts on N2 ⊂ G by
right multiplication by a⊗a ∈ S. To see this, we note the following.

(1) If ḡ∈ Ḡ, then ḡρ⇐ρu is zero unless ρ = ρu and ḡDρop
u ⇐ρ is zero unless ρ = Dρop

u .
(2) If g∈G, then gρu⇐ρ ′ is zero unless ρ ′= ρu and gρ⇐Dρop

u
is zero unless ρ =Dρop

u .

Here (1) follows immediately from the definition of Filu S2,1C [n], and (2) follows
from the definition of Filu−1 S2,1C [n] and from the inequalities ρu ⩽ ρ ′ and ρ ⩽Dρop

u ,
which, in turn, hold by the choice of linear ordering. Now, for ḡ ∈ Ḡ,

α(a)(ḡ)ρ⇐ρ ′ = γ(a)−1
ρ⇐ρ ◦ ḡρ⇐ρ ′ ◦ γ(a)ρ ′⇐ρ ′

=


l−1
a ◦ ḡρu⇐ρu ◦ la if ρ = ρ ′ = ρu

ra ◦ ḡDρop
u ⇐Dρop

u
◦ r−1

a if ρ = ρ ′ = Dρop
u

ḡρ⇐ρ ′ otherwise,

and since ḡρu⇐ρu and ḡDρop
u ⇐Dρop

u
are both R-linear, we have α(a)(ḡ) = ḡ as claimed.

Similarly, given h̄ ∈ N1, we have

ᾱ(a)(h̄)ρ⇐ρu = γ̄(a)−1
ρ⇐ρ ◦ h̄ρ⇐ρu ◦ γ̄(a)ρu⇐ρu = h̄ρ⇐ρu ◦ la
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which, as claimed, is right multiplication by a ∈ R. Finally, for h ∈ N2, we have

α(a)(h)Dρop
u ⇐ρu

= γ(a)−1
Dρop

u ⇐Dρop
u
◦hDρop

u ⇐ρu
◦ γ(a)ρu⇐ρu = ra ◦hDρop

u ⇐ρu
◦ la

which is right multiplication by a⊗a ∈ S as claimed.
We now consider the Hochschild-Serre spectral sequence

E2
i, j = Hi(N1,k)⊗k H j(N2,k)⇒ Hi+ j(N,k).

Here, the E2-term takes the stated form because N2 ⊂ N is central and because k is
a field. The right action by Ḡ on N makes the spectral sequence a spectral sequence
of right k[Ḡ]-modules. We also view the spectral sequence as a spectral sequence of
right k[R∗]-modules via the group homomorphism γ̄ = ru ◦ γ : R∗ → Ḡ. The above
calculation shows that, as a right k[R∗]-module, E2

i, j is the tensor product of Hi(N1,k)
and H j(N2,k) with the right k[R∗]-module structures induced by the right actions of
R∗ on N1 and N2. Therefore, Lemma 8.8 shows that if 0 < i+ 2 j < r, then the right
k[R∗]-module E2

i, j decomposes as a direct sum of eigenspaces associated with non-
trivial characters of R∗ over k. It follows that if 0 < 2t < r, then the right k[Ḡ]-module
V = Ht(N,k) admits a finite filtration

0 =V−1 ⊂V0 ⊂ ·· · ⊂Vt =V

such that, viewed as right k[R∗]-modules, the filtration quotients gri V decompose as
direct sums of eigenspaces belonging to non-trivial characters of R∗ over k. There-
fore, the argument at the end of the proof of Proposition 8.10 shows that the group
homology groups Hs(Ḡ,gri V ) all are zero. It follows, by easy induction, that the
group homology groups Hs((Ḡ,Ht(N,k)) are zero whenever 0 < 2t < r. This implies
that the map ru∗ : Hd(G,k)→ Hd(Ḡ,k) is an isomorphism, which, in turn, implies
that the characteristic class θ is zero. This completes the proof.

Proof of Theorem 8.1. By Lemmas 8.2, 8.3, and 8.5, it will suffice to show that for
every algebraically closed field k, the following maps of k-Hopf algebras induced by
the forgetful functor are isomorphisms.

(1) T (iS2,1C [n],k)
ϕ∗

// T (iS2,1
⊕ C [n],k)

(2) T (Sym(iS2,1C [n],D[n]),k)
ϕ∗

// T (Sym(iS2,1
⊕ C [n],D[n]),k)

Both maps are split injective, so only the surjectivity is at issue. To prove surjectivity,
it will suffice to show the hypotheses of Proposition 8.7 are satisfied. In the case of the
map (1), this follows from Propositions 7.3 and 8.10, and in the case of the map (2),
it follows from Theorem ?? and Proposition 8.12. This completes the proof.
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9 Agreement with Schlichting’s construction

We use real additivity theorems and real group completion theorems to show that (the
underlying infinite loop space of the G-fixed spectrum of) real algebraic K-theory
agrees with Schlichting’s Grothendieck-Witt space.

Theorem 9.1. If (C ,D,η) is an exact category with duality, then the pointed real
spaces Ω 1,1B(iS1,1(C ,D,η)) and Ω 2,1B(iS2,1(C ,D,η)) are canonically naturally
weakly equivalent.

Proof. We will argue that, in the following diagram of pointed real spaces, the pointed
real maps, which we specify below, all are real weak equivalences.

Ω 1,1B(iS1,1(C ,D,η))

��

Ω 2,1B(iS2,1(C ,D,η))

��

Ω 3,2B(iS2,1
⊕ S1,1(C ,D,η))

��

Ω 3,2B(iS1,1
⊕ S2,1(C ,D,η))

��

Ω 3,2B(iS1,1S2,1
⊕ (C ,D,η))

��

Ω 3,2B(iS2,1S1,1
⊕ (C ,D,η))

��

Ω 3,2B(iS1,1S2,1(C ,D,η)) // Ω 3,2B(iS2,1S1,1(C ,D,η))

We first explain the map in the diagram. The two top vertical maps are the spec-
trum structure maps in the respective direct sum K-theory spectra; the middle vertical
maps are the canonical isomorphisms that interchange the two real simplicial direc-
tions; the bottom vertical maps are the forgetful maps from the respective direct sum
K-theory constructions to the corresponding K-theory construction; and the bottom
horizontal map is the canonical isomorphism that interchages the two real simpli-
cial directions. The top left-hand vertical map is a real weak equivalence by the real
group completion theorem, since it is a monoid object in the homotopy category of
pointed real spaces with respect to orthogonal sum, and since, by a result of Schlicht-
ing [21, Proposition 3], for every subgroup H ⊂ G, the pointed set of components
π0((Ω 1,1B(iS1,1(C ,D,η)))H) with the induced monoid structure is a group. Simi-
larly, by a theorem of Moi [16, Theorem 5.8], the top right-hand vertical map is a
real weak equivalence, since it is a monoid object in the homotopy category of real
pointed spaces, and since the pointed set of components π0(Ω 2,1B(iS2,1(C ,D,η)))
with the induced monoid structure is a group. Finally, it follows from Schlichting’s
real additivity theorem [21, Theorem 4] that the lower left-hand vertical map is a
real equivalence, and it follows similarly from the real additivity theorem for real al-
gebraic K-theory that the lower right-hand vertical map is a real weak equivalence.
Since all remaining maps in the diagram are isomorphisms, the theorem follows.

The following surprising result is due to Schlichting [21, Proposition 3]. We
present a more direct proof, which we learned from Schlichting.
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Proposition 9.2. If (C ,D,η ,0) is a pointed exact category with duality, the abelian
monoid structure on π0((Ω 1,1B(iS1,1(C ,D,η)))G) induced from orthogonal sum is
an abelian group structure.

Proof. We consider the cofibration sequence of pointed real spaces

S0,0∧G+
f

// S0,0 i // S1,1 h // S1,0∧G+,

where f collapses G onto the non-basepoint in S0,0, where i is the inclusion of the
subspace fixed by the G-action, and where h takes the class of iy to the class of
(y− y−1,1), if 0 < y < ∞, to the class of (y− y−1,−1), if −∞ < y < 0, and to the
basepoint, otherwise. It induces a sequence of pointed sets

· · · // π1(X)
h∗ // π0((Ω 1,1(X))G)

i∗ // π0(XG)
f ∗

// π0(X),

which is exact in the sense that, at every term in the sequence, the subset of elements
that are mapped to the basepoint by the map leaving the term is equal to the image
of the map entering the term; see [24, Theorem 7.1.3]. Moreover, orthogonal sum in-
duces an abelian monoid structure on each term in the sequence and the maps in the
sequence are monoid homomorphisms. It follows from [24, Theorem 1.6.8] that said
monoid structure π1(X) is equal to the underlying monoid structure underlying the
groups structure of the fundamental group. In particular, it is an abelian group struc-
ture. We claim that also the abelian monoid structure on π0(XG) is an abelian group
structure. Granting this for the moment, it follows the statement follows. Indeed, let x
be an element of π0((Ω 1,1(X))G). The claim implies that i∗(x) has an inverse y, and
since π0(X) is trivial, we can, by the exactness of the sequence, find an element x′ of
π0((Ω 1,1(X))G) with i∗(x′) = y. Now,

i∗(x+ x′) = i∗(x)+ i∗(x′) = i∗(x)+ y = 0,

and appealing again to the exactness of the sequence, we conclude that there exists
an element z of π1(X) with h∗(z) = x+ x′. But then x′+ h∗(−z) is an inverse of x,
since

x+ x′+h∗(−z) = h∗(z)+h∗(−z) = h∗(z+(−z)) = h∗(0) = 0.

It remains to prove the claim. To this end, we let Y [−,−] be the pointed bisimplicial
set obtained from NiS1,1(C ,D,η) by applying Segal’s subdivision in both simplicial
directions and taking G-fixed points. The realization of Y [−,−], we recall, is canon-
ically pointed homeomorphic to XG. We have the following coequalizer diagram of
pointed sets

π0(|Y [−,1]|)
d0 //

d1

// π0(|Y [−,0]|)
e // π0(|Y [−,−]|).

Again, orthogonal sum gives rise to an abelian monoid structure on each term and
the three maps are monoid homomorphisms. The left half of the diagram is canoni-
cally identified with the diagram of isomorphism classes of objects obtained from the
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diagram

Sym(iS1,1(C ,D,η)[3]) Sym(iS1,1(C ,D,η)[1])
Sym(d1d2) //

Sym(d0d3)
//

of groupoids and functors. So let (c,b) be an object of the right-hand groupoid. We
define an object (c′,b′) of the left-hand groupoid which by Sym(d1d2) is mapped
to the orthogonal sum of (c,b) and (c,−b) and which by Sym(d0d3) is mapped to
(0[0], id0[0]). The object (c′,b′), in turn, is defined to be the image by Sym(s1) of
the object (c′′,b′′) of the groupoid Sym(iS1,1(C ,D,η)[2]), where c′′ is the unique
diagram with

c′′01 c′′02 c′′12

c01 c01⊕ c01 c01,

// //

(id,id)
//

id+(− id)
//

and where b′′ : c′′→ D[2](c′′) is the unique natural transformation given by

c′′01 c′′02 c′′12

D(c′′12) D(c′′02) D(c′′01).

b01
��

b01⊕(−b01)

��

b01
��

// //

// //

Finally, using the simplicial identities d1d2s1 = d1 and d0d3s1 = s0d0d2, we find

Sym(d1d2)(c′,b′) = Sym(d1)(c′′,b′′) = (c,b)⊕ (c,−b),

Sym(d0d3)(c′′,b′′) = Sym(s0)(0[0], id0[0]) = (0[1], id0[1]),

which completes the proof.
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10 Real Topological Hochschild homology

We consider pairs (D s,T ), where D s is a category enriched in the symmetric monoidal
category of symmetric spectra and smash product, and where T : D s→ (D s)op is an
enriched functor such that the composite functor T ◦T is equal to the identity functor
of D s. We abbreviate the symmetric spectrum of maps in D s from P to Q by

D s(P,Q) = HomDs(P,Q).

That T preserves composition means that for all objects P, Q, and R, the following
diagram of symmetric spectra commutes.

D s(Q,R)∧D s(P,Q)

◦

��

T∧T // D s(R,Q)∧D s(Q,P)

γs

��

D s(Q,P)∧D s(R,Q)

◦
��

D s(P,R) T // D s(R,P)

Here, the map γs is the symmetry isomorphism which is part of the structure of sym-
metric monoidal category. This, in turn, means that for all objects P, Q, and R, and
all non-negative integers i and j, the following diagrams commute.

D s(Q,R) j ∧D s(P,Q)i
T∧T //

◦

��

D s(R,Q) j ∧D s(Q,P)i

γ
��

D s(Q,P)i∧D s(R,Q) j

◦
��

D s(R,P)i+ j

χi, j

��

D s(P,R) j+i
T // D s(R,P) j+i

Here, the map γ is the canonical homeomorphism that permutes the two smash fac-
tors, and χi, j ∈ Σi+ j is the permutation defined by

χi, j(s) =

{
j+ s (1 ⩽ s ⩽ i)
s− i (i+1 ⩽ s ⩽ i+ j).

We leave it to the reader to spell out the easier statement that T preserves the identity.
We proceed to define a dihedral pointed space THH(D s,T )[−] with underlying

cyclic pointed space THH(D s)[−] as defined in [5, Def. 1.3.6].
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Let I be the category where the objects are the positive integers and where the
morphisms from i to j is the set of all injective maps

α : {1,2, . . . , i}→ {1,2, . . . , j}.

In particular, there is a unique morphism from 0 to each j. The category I has a strict
monoidal structure given by the functor + : I× I→ I defined on objects by addition
and morphisms by concatenation. In more detail, if α : i→ i′ and β : j→ j′ are two
morphisms, then α +β : i+ j→ i′+ j′ is the morphism defined by

(α +β )(s) =

{
α(s) (1 ⩽ s ⩽ i)
β (s− i)+ i′ (i+1 ⩽ s ⩽ i+ j).

The category I is equivalent to the category of finite sets and injective maps.
We first define a dihedral category I[−] with

I[k] = I×·· ·× I (k+1 factors).

The dihedral structure maps are generated by the functors

du : I[k]→ I[k−1] (0 ⩽ u ⩽ k)

su : I[k]→ I[k+1] (0 ⩽ u ⩽ k)

tk : I[k]→ I[k]

wk : I[k]→ I[k]

defined as follows. The cyclic structure maps du, su, and tk are defined on objects by

du(i0, i1, . . . , ik) =

{
(i0, . . . , iu + iu+1, . . . , ik) (0 ⩽ u < k)
(ik + i0, i1, . . . , ik−1) (u = k)

su(i0, i1, . . . , ik) = (i0, . . . , iu,0, iu+1, . . . , ik) (0 ⩽ u ⩽ k)

tk(i0, i1, . . . , ik) = (ik, i0, i1, . . . , ik−1)

and similarly on morphisms. To define the functor wk, we let ω = ωi : i→ i be the
involution ω(s) = i− s and, given a morphism α : i→ i′, define

αω = ωi′ ◦α ◦ω−1
i : i→ i′.

The functor wk : I[k]→ I[k] is now defined on objects and morphisms by the following
formulas, respectively.

wk(i0, i1, . . . , ik) = (i0, ik, ik−1, . . . , i1)

wk(α0,α1, . . . ,αk) = (αω
0 ,αω

k ,αω
k−1, . . . ,α

ω
1 )

Lemma 10.1. The functors du, su, tk, and wk satisfy the cyclic relations and the
following additional dihedral relations.

duwk = wk−1dk−u suwk = wk+1sk−u

wktk = t−1
k wk wkwk = id
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Proof. Only the relations duwk = wk−1dk−u need proof. We consider the case u = 0;
the remaining cases are similar. The functors d0wk and wk−1dk take the morphism

(α0,α1, . . . ,αk) : (i0, i1, . . . , ik)→ (i′0, i
′
1, . . . , i

′
k)

to the following morphisms, respectively.

(αω
0 +αω

k ,αω
k−1, . . . ,α

ω
1 ) : (i0 + ik, ik−1, . . . , i1)→ (i′0 + i′k, i

′
k−1, . . . , i

′
1)

((αk +α0)
ω ,αω

k−1, . . . ,α
ω
1 ) : (ik + i0, ik−1, . . . , i1)→ (i′k + i′0, i

′
k−1, . . . , i

′
1)

The relation d0wk = wk−1dk now follows from the identity

(α +β )ω = β ω +αω

which is readily verified from the definitions.

Remark 10.2. Taking the nerve and geometric realization of the categories I[k], we
obtain the dihedral space [k] 7→ BI[k]. One wonders about the equivariant homotopy
type of the O(2)-space |[k] 7→ BI[k]| defined by its geometric realization.

Let T be the category of pointed spaces. We recall the functor

G(D s)[k] : I[k]→T

that to the object (i0, . . . , ik) associates the pointed mapping space

F(Si0 ∧Si1 ∧·· ·∧Sik ,
∨

D s(P0,Pk)i0 ∧Ds(P1,P0)i1 ∧·· ·∧D s(Pk,Pk−1)ik),

where the wedge sum ranges over all k+1-tuples (P0,P1, . . . ,Pk) of objects in D s. To
give the definition of the functor G(D s)[k] on morphisms, we first let ι : ir → i′r be
the standard inclusion ι : {1,2, . . . , ir}→ {1,2, . . . , i′r} and write i′r = ir + jr. Then the
map of pointed spaces G(D s)[k](i0, . . . , ι , . . . , ik) takes the map

f : Si0 ∧·· ·∧Sik →
∨

D s(P0,Pk)i0 ∧·· ·∧D s(Pk,Pk−1)ik

to the composition

Si0 ∧·· ·∧Si′r ∧·· ·∧Sik → Si0 ∧·· ·∧Sir ∧·· ·∧Sik ∧S jr

→
∨

D s(Pk,Pk−1)i0 ∧·· ·∧D s(Pr,Pr−1)ir ∧·· ·∧D s(Pk,Pk−1)ik ∧S jr

→
∨

D s(Pk,Pk−1)i0 ∧·· ·∧D s(Pr,Pr−1)ir ∧S jr · · ·∧D s(Pk,Pk−1)ik

→
∨

D s(Pk,Pk−1)i0 ∧·· ·∧D s(Pr,Pr−1)ir+ jr · · ·∧D s(Pk,Pk−1)ik

of the canonical homeomorphism, the map f ∧ idS jr , the canonical homeomorphism,
and the map induced by the structure map in the symmetric spectrum D s(Pr,Pr−1).
A general morphism α : ir → i′r may be written, non-uniquely, as the composition
α = σ ◦ ι : ir→ i′r of the standard inclusion and a bijection

σ ∈ Aut({1,2, . . . , i′r}) = Σi′r .
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Now, the left actions of the symmetric group Σi′r on Si′r and D s(Pr,Pr−1)i′r induce left
actions on the domain and target of the mapping space G(D s)[k](i0, . . . , i′r, . . . , ik). We
define G(D s)[k](i0, . . . ,σ , . . . , ik) to be the conjugation by σ on the mapping space.

We define the dihedral pointed space THH(D s,T )[−] as follows. The pointed
space of k-simplices is defined to be the homotopy colimit

THH(D s,T )[k] = hocolim
I[k]

G(D s)[k]

and the cyclic structure maps are defined as in [7, Sect. 3.2]. The additional dihedral
structure map, which depends on the functor T : D s→ (D s)op, is the map

wk : THH(D s,T )[k]→ THH(D s,T )[k]

defined to be the composition

hocolim
I[k]

G(D s)[k]→ hocolim
I[k]

G(D s)[k]◦wk→ hocolim
I[k]

G(D s)[k]

of the map of homotopy colimits induced by a natural transformation

wk : G(D s)[k]→ G(D s)[k]◦wk

defined by the following diagram and the canonical map.

Si0 ∧Si1 ∧·· ·∧Sik
f

//

ωi0∧ωi1∧···∧ωik

��

∨
D s(P0,Pk)i0 ∧D s(P1,P0)i1 ∧·· ·∧D s(Pk,Pk−1)ik∨

ωi0∧ωi1∧···∧ωik
��

Si0 ∧Si1 ∧·· ·∧Sik
∨

D s(P0,Pk)i0 ∧D s(P1,P0)i1 ∧·· ·∧D s(Pk,Pk−1)ik

∨
T∧T∧···∧T

��

Si0 ∧Si1 ∧·· ·∧Sik

��

∨
D s(Pk,P0)i0 ∧D s(P0,P1)i1 ∧·· ·∧D s(Pk−1,Pk)ik

��

Si0 ∧Sik ∧·· ·∧Si1
wk( f )

//
∨

D s(Pk,P0)i0 ∧D s(Pk−1,Pk)ik ∧·· ·∧D s(P0,P1)i1

Here, the lower left-hand vertical map is the canonical homeomorphism that permutes
the smash factors as indicated, and the lower right-hand vertical map is the map that
takes the summand (P0,P1, . . . ,Pk) to the summand (Pk,Pk−1, . . . ,P0) by the canonical
homeomorphism that permutes the smash factors. The top vertical maps are given by
the actions of ωi ∈ Σi on Si and D s(P,Q)i which are part of the symmetric spectrum
structures.

Proposition 10.3. The pointed maps du, su, tk, and wk satisfy the cyclic relations and
the following additional dihedral relations.

duwk = wk−1dk−u suwk = wk+1sk−u

wktk = t−1
k wk wkwk = id
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Proof. We verify the relation d0wk = wk−1dk; the reader may verify the remaining
relations in a similar manner. We have already proved in Lemma 10.1 that the functors
d0wk and wk−1dk from I[k] to I[k− 1] are equal. Hence, it suffices to also show that
the natural transformations

d0wk,wk−1dk : G(D s)[k]→ G(D s)[k−1]◦d0wk = G(D s)[k−1]◦wk−1dk

are equal. The natural transformation d0wk is defined by the following diagram.

Si0 ∧Si1 ∧·· ·∧Sik
f

//

ωi0∧ωi1∧···∧ωik

��

∨
D s(P0,Pk)i0 ∧D s(P1,P0)i1 ∧·· ·∧D s(Pk,Pk−1)ik∨

ωi0∧ωi1∧···∧ωik
��

Si0 ∧Si1 ∧·· ·∧Sik
∨

D s(P0,Pk)i0 ∧D s(P1,P0)i1 ∧·· ·∧D s(Pk,Pk−1)ik

∨
T∧T∧···∧T

��

Si0 ∧Si1 ∧·· ·∧Sik

��

∨
D s(Pk,P0)i0 ∧D s(P0,P1)i1 ∧·· ·∧D s(Pk−1,Pk)ik

��

Si0 ∧Sik ∧·· ·∧Si1
wk( f )

//

��

∨
D s(Pk,P0)i0 ∧D s(Pk−1,Pk)ik ∧·· ·∧D s(P0,P1)i1∨

◦i0,ik∧id

��

Si0+ik ∧·· ·∧Si1
d0wk( f )

//
∨

D s(Pk−1,P0)i0+ik ∧·· ·∧D s(P0,P1)i1

Here, the lower left-hand vertical map is the canonical homeomorphism, and the
lower right-hand vertical map is the map that takes the summand (Pk,Pk−1, . . . ,P0)
to the summand (Pk−1, . . . ,P0) by the map induced from the composition map

◦i0,ik : D s(Pk,P0)i0 ∧D s(Pk−1,Pk)ik →D s(Pk−1,P0)i0+ik .

which is part of the structure of a category enriched in symmetric spectra. We recall
that this is a Σi0×Σik -equivariant map, where Σi0×Σik acts on the target via the group
homomorphism

+ : Σi0 ×Σik → Σi0+ik

defined by

(σ + τ)(s) =

{
σ(s) (1 ⩽ s ⩽ i0)
τ(s− i0)+ i0 (i0 +1 ⩽ s ⩽ i0 + ik).

We wish to compare the diagram above to the following diagram that defines the
natural transformation wk−1dk. In this diagram, the top vertical maps and the lower
left-hand vertical map in this diagram are the canonical homeomorphisms that per-
mute the smash factors as indicated, and the lower right-hand vertical map takes the
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summand (P0, . . . ,Pk−1) to the summand (Pk−1, . . . ,P0) by the canonical map that
permutes the smash factors as indicated.

Si0 ∧Si1 ∧·· ·∧Sik
f

//

��

∨
D s(P0,Pk)i0 ∧D s(P1,P0)i1 ∧·· ·∧D s(Pk,Pk−1)ik

��

Sik ∧Si0 ∧·· ·∧Sik−1

��

∨
D s(Pk,Pk−1)ik ∧D s(P0,Pk)i0 ∧·· ·∧D s(Pk−1,Pk−2)ik−1∨

◦ik ,i0∧id

��

Sik+i0 ∧·· ·∧Sik−1
dk( f )

//

ωik+i0∧···∧ωik−1

��

∨
D s(P0,Pk−1)ik+i0 ∧·· ·∧D s(Pk−1,Pk−2)ik−1∨

ωik+i0∧···∧ωik−1
��

Sik+i0 ∧·· ·∧Sik−1
∨

D s(P0,Pk−1)ik+i0 ∧·· ·∧D s(Pk−1,Pk−2)ik−1

∨
T∧···∧T

��

Sik+i0 ∧·· ·∧Sik−1

��

∨
D s(P0,Pk−1)ik+i0 ∧·· ·∧D s(Pk−1,Pk−2)ik−1

��

Sik+i0 ∧·· ·∧Si1
wk−1dk( f )

//
∨

D s(P0,Pk−1)ik+i0 ∧·· ·∧D s(P0,P1)i1

The compositions of the left-hand vertical maps in the two diagrams are readily seen
to agree. Therefore, it suffices to show that the same holds for the compositions of
the right-hand vertical maps in the two diagrams. This, in turn, follows from the
commutativity of the outer square in the following diagram.

D s(Pk,Pk−1)ik ∧D s(P0,Pk)i0 D s(Pk,Pk−1)ik ∧D s(P0,Pk)i0

D s(P0,Pk−1)ik+i0 D s(P0,Pk−1)ik+i0

D s(P0,Pk)i0 ∧D s(Pk,Pk−1)ik

D s(P0,Pk−1)i0+ik D s(Pk−1,P0)i0+ik

D s(Pk,P0)i0 ∧D s(Pk−1,P0)ik

//

��

��

��

��

��

//

||zz
zz
zz
zz
zz
zz
zz
zz
zz
zz
z

||zz
zz
zz
zz
zz
zz
zz
zz
zz
zz
z

oo

ωik∧ωi0

◦ik ,i0

ωik+i0

ωik+ωi0

χik ,i0

◦ik ,i0
γ

T∧T

◦i0,ik

Here, the top trapezoidal diagram commutes since ◦ik,i0 is Σik ×Σi0-equivariant; the
lower right-hand triangular diagram commutes since T : D s→ (D s)op is an enriched

119



functor; finally, the lower left-hand triangular diagram commutes since the equality
χik,i0 = ωik+i0(ωik +ωi0) holds in Σik+i0 .
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