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Abstract. We give a complete classification of 2-dimensional complex Galois

representations of dihedral type over a local field Qp, including their conductors

and determinants on inertia. This explicit classification complements earlier
works [2], [5] on these types of representations.

1. Introduction.

1.1. Notation. Throughout the paper the following notation will be used: p de-
notes a prime number. Except in section 1.2, k is a finite extension of Qp. Addi-
tionally:

Gk : the absolute Galois group of k
c(ρ) : for a continuous complex representation ρ of Gk,

the valuation of the Artin conductor of ρ
Uk : for a finite extension k/Qp the group of units of k
U

(s)
k : for a finite extension k/Qp

the group of units of k of level ≥ s
K = Qp(

√
d) : a quadratic extension of Qp

σ : the non-trivial automorphism of K/Qp

χ : a complex character of K× vanishing on Q×p
(·, ·) : the local symbol in Qp

We allow ourselves the implicit use of local class field theory. Thus for instance,
a character χ as above may also be viewed as a character on GK .

1.2. Lifting projective Galois representations. Suppose that k is an algebraic
number field with absolute Galois groupGk. In studying 2-dimensional (irreducible)
continuous complex representations of Gk the following question is of interest, cf.
[2], [7], [5]: Given a continuous projective representation

ρ0 : Gk −→ PGL2(C),

find for all lifts ρ : Gk → GL2(C) the determinant det ρ and the Artin conductor
of ρ. Now, as any lift has the shape ρ ⊗ φ with ρ any fixed lift and φ a character
of Gk, and as det(ρ⊗ φ) = det ρ · φ2, one might hope to accomplish this by finding
one particular lift ρ for which the following data can be determined:
(1) The determinant det ρ, and
(2) For any character φ of Gk, the Artin conductor of ρ ⊗ φ can be determined
solely from the knowledge of the Artin conductor of φ.

We might then informally refer to such a lift ρ as a ‘good lift’ of ρ0. It is not at all
clear whether good lifts exist generally, but at least in case k has class number 1 –
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and thus in particular if k = Q – one knows, cf. again [2], [7], [5], that the problem
of finding a good lift can be reduced to the following local problem: Consider the
completion kp of k at a (finite) prime p. Given a projective representation

ρ0,p : Gkp −→ PGL2(C)

find for some lift ρp the following:
(1) The restriction of the determinant det ρp to the inertia of Gkp , i.e. the restriction
det ρp|Ukp when viewing det ρ as a character on k×p , and
(2) For any character φp of Gkp , an algorithm computing the Artin conductor of
ρp ⊗ φp solely from the Artin conductor of φp.

We might then also refer to such a lift ρp as a ‘good lift’ of ρ0,p.

Building upon and completing previous investigations [9], [2], [10] of this local
problem, in [5] we constructed good lifts under conditions of some generality, and in
particular in all cases where kp is a p-adic field Qp. Perhaps somewhat surprisingly
the case of dihedral type projective representations, i.e. projective representations
whose (finite) image is isomorphic to a dihedral group, turns out to be especially
complicated to analyze. Let us then briefly recall the precise shape of the problem
in the (local) dihedral case.

1.3. Galois representations of dihedral type. For convenience, let us now shift
notation so that k is now a finite extension of some Qp. Suppose that

ρ0 : Gk −→ PGL2(C)

is a continuous representation of dihedral type. If L/k is the extension cut out
by ρ then L contains a quadratic subextension K/k such that L/K is cyclic (K is
unique if [L : k] > 4). By the structure theory for ramification groups in Gk we
see that L/K is necessarily ramified unless possibly when [L : k] = 4; in the latter
case however, there are 3 possible choices of K and we can choose K so that L/K
is ramified. We now recall the following facts for which the reader is referred to [7]
(or the introduction of [5]):

We have

(ρ0)|GK
∼
(
χ 0
0 1

)
,

with χ a ramified character of K× vanishing on k×. Conversely, if χ is such a
character there exists a projective representation ρ0 behaving in this way. Any lift
ρ of ρ0 has shape:

ρ = IndkK(ψ)
where IndkK means induction from GK to Gk, and where ψ is a character of K×

(viewed as a character of GK) such that

ψ
(σx
x

)
= χ(x), for x ∈ K×

where σ denotes the non-trivial automorphism of K/k. For such a lift ρ one has

det ρ = ω · (ψ|k×)

with ω the quadratic character of k× corresponding to K/k by local class field
theory, and the Artin conductor of ρ ⊗ φ for a character φ of k× viewed as a
character of Gk is:

D(K/k) ·NK/k(Pc(ψ·(φ◦NK/k)))
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with D(K/k) the discriminant, NK/k the norm map, P the prime ideal of K, and
c(ψ · (φ ◦NK/k)) the exponent of the conductor of ψ · (φ ◦NK/k) as a character of
K×.

Accordingly, the local problem mentioned in the previous subsection amount in
the dihedral case to the following: Given a (ramified) character χ of K× vanishing
on k×, find a character ψ of K× such that

(1) ψ
(
σx
x

)
= χ(x), for x ∈ K×,

(2) The restriction ψ|Uk is known, and

(3) For any character φ of k× the number c(ψ · (φ ◦NK/k)) can be computed solely
from the knowledge of the conductor of φ.

As we mentioned above a solution to this problem was given in some generality
in [5]. However, the solution given there was in terms of various data attached
to χ. One may wish for an additional level of explicitness for particular ground
fields k, more precisely for a classification of the possible χ’s, the determination
of the needed data attached to them, and the explication of the solution of [5] for
each possible χ. For applications (to global Galois representations over Q), this
is particularly desirable in the cases where k is a field Qp, and is precisely what
we carry out in the next section. This first involves a detailed analysis of units in
quadratic extensions of a field Qp where we can base ourselves on [3]. The result
is Proposition 1 below classifying the possible χ’s as above together with certain
crucial data. Secondly, we have to apply the results of [5] for each of these χ in
order to produce explicit good lifts in each case. The results are found in Theorem
1.

Finally, and again because of applications to global Galois representations over
Q, one can also ask for a reformulation of these results in such a way that they
can be readily applied to a practical situation where one really only starts with
a concrete polynomial whose splitting field is the field cut out by the projective
representation ρ0. One would then like to know how to apply the results of the
next section when given essentially only this polynomial. In principle, this problem
can be solved through use of explicit local reciprocity maps. In the final section
we shall however show – for the special cases of ρ0’s of type V4 or D4 – that one
can give an answer on the basis of the results of the next section and certain ad
hoc arguments from the theory of embedding problems. We have focused on the
V4 and D4 cases because these are the most difficult among these cases one would
encounter studying Galois representations over Q of one the complicated types A4,
A5, and S4 (in fact, all other cases can be handled immediately using only the
results of the next section, but we we will not show this in detail).

2. Good lifts.

Proposition 1. Consider a quadratic extension K = Qp(
√
d) of Qp.

(1) The structure of the abelian group K×/Q×p is ∼= A0 × A1 × A2 where the iso-
morphism class of the Ai as well as (topological) generators ai for the Ai are given
by the following table.
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p d A0
∼= A1

∼= A2
∼= a0 a1 a2

2 −3 Z/Z3 Z/Z2 Z2 ε
√
d −1 + 2

√
d

2 3 1 Z/Z2 Z2 1
√
d 1−

√
d

2 −1 1 Z/Z4 Z2 1 1−
√
d −1 + 2

√
d

2 ≡ 2 (4) 1 Z/Z2 Z2 1
√
d 1 +

√
d

6= 2 p - d 1 Z/Z(p+ 1) Zp 1 ζ 1 + p
√
d

6= 2, 3 p | d Z/Z2 1 Zp
√
d 1 1 +

√
d

3 3 Z/Z2 1 Z3

√
d 1 1 +

√
d

3 −3 Z/Z2 Z/Z3 Z3

√
d ε 1 + 3

√
d

where ε and ζ denote a primitive root of unity of order 3 and (p2− 1), respectively.

(2) Suppose that χ is a character of K×/Q×p , and write χ = χ′χ′′ where χ′ has
order prime to p, whereas the order of χ′′ is a power of p. Then,

c(χ) = max{c(χ′), c(χ′′)},

and c(χ′) = 1, except if p 6= 2, p | d, and χ′ is a character of A0 extended to
K×/Q×p , in which case c(χ′) = 0.

If χ has p-power order we may write χ = χ1χ2 with χi a character of p-power
order on Ai extended to K×/Q×p . Let the order of χi be psi , i = 1, 2. Then c(χ) is
given by the following table.

p d c(χ)

2 −3
2s1 , for s2 = 0
s2 + 2 , for s2 ≥ 1

2 3

0 , for s1 = 0, s2 ≤ 1
2 , for s1 = 1, s2 = 2
4 , for (s1 = 1, s2 ≤ 1) or (s1 = 0, s2 = 2)
2s2 , for s2 ≥ 3

2 −1
0 , for s1 ≤ 1, s2 = 0
2 , for s1 = 2, s2 = 0
2s2 + 2 , for s2 ≥ 1

2 ≡ 2 (4) 2s2

6= 2 p - d 0 , for s2 = 0
s2 + 1 , for s2 ≥ 1

6= 2, 3 p | d 2s2
3 3 2s2

3 −3
2s1 , for s2 = 0
2s2 + 2 , for s2 ≥ 1

Proof. The proof is based on results of Halter-Koch who in [3] gave an explicit set of
(topological) generators of the 1-unit group of a quadratic extension K = Qp(

√
d)

of Qp, including their orders mod ps for any s (p the maximal ideal of the ring
of integers in K). We have to complement this by discussing the full group K×,
and in particular the shape of elements of Q×p when written in terms of the chosen
generators. We shall give details of this discussion only in the cases p = 2 and
d = 3. The discussion in each of the other cases is similar but simpler.
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So, suppose that p = 2 and d = 3. As prime element of K we choose π := 1−
√
d.

According to [3], as a basis for U (1)
K as a Z2-module, one may choose:

−1, η11 :=
√
d, η13 := −1 + 2

√
d,

where we have used the notation of [3]. Thus, any element of K× has a unique
representation of the form:

(∗) ±πnηu11ηv13
with n ∈ Z and u, v ∈ Z2.

Let us consider the action of the non-trivial automorphism σ on such represen-
tations. First, we have

ση11 = −η11,
and

ση13 = −η2a
11η
−1
13 ,

with a 2-adic integer a; the last expression is found by noting that the norm of η13,
which is -11, has a representation of form −3a in Q2 (and that 3 = η2

11). As the
norm of π is −2 we have

σπ = ξπ,

if ξ is the unit ξ := −2 · π−2 of norm 1. For the expansion of the unit ξ:

ξ = (−1)αηβ
′

11η
β
13

we necessarily have
β′ = −aβ, and β a 2-adic unit;

here, the first claim follows from the fact that ξ has norm 1, whereas the second is
verified by actually computing the beginning of the 2-adic expansion of β ∈ Z2.

We can now compute that an element (∗) belongs to Q2 if and only if

αn+ u+ v ≡ 0 (2), −aβn+ 2av = 0, and βn− 2v = 0.

As β is a unit, the integer n must then be even and v = β ·n/2; thus, the conditions
are equivalent to:

n ≡ 0 (2), u+ v ≡ 0 (2), and v = β · n/2.
We see that elements of Q×2 have unique representations of form

±(π2η11η
β
13)m · η2b

11

with m ∈ Z, b ∈ Z2. That the structure of K×/Q×2 is as stated (with a1 = η11,
a2 = π) now follows readily.

Suppose then that χ is a continuous complex character of K×/Q×2 . The first
statements of (2) are trivial to check, so we have only to verify the entries of the
table in (2).

Assume then that χ is of 2-power order and write χ = χ1χ2 as in the last part
of the statement of (2).

Now, if we use the information in [3] on the orders of the units η11 and η13 mod
ps, s ≥ 0, we deduce:

c(χ) = 0⇔ χ(η11) = χ(η13) = 1,

and
c(χ) ≤ 2s+ 2⇔ χ(η13)2

s

= 1,
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for s ≥ 0. We used here that χ vanishes on Q×2 . As

χ(η13)−β = χ1(a1) · χ2(a2)2

with a 2-adic unit β, we deduce (using that χ(a1) is of order ≤ 2)

c(χ) = 0⇔ χ(a1) = χ(a2)2 = 1⇔ s1 = 0, s2 ≤ 1,

c(χ) ≤ 2⇔ χ(a1)χ(a2)2 = 1⇔ (s1 = 0, s2 ≤ 1) or (s1 = 1, s2 = 2),
c(χ) ≤ 4⇔ χ(a2)4 = 1⇔ s2 ≤ 2,

c(χ) ≤ 2s⇔ s2 ≤ s,
for s ≥ 2. Noting that c(χ) is necessarily an even number in the present case, the
formulas for c(χ) result immediately. �

Theorem 1. Suppose that ρ0 : GQp
→ PGL2(C) is a continuous representation of

dihedral type. Let K = Qp(
√
d) be a quadratic extension such that the fixed field of

Kerρ0 is ramified and cyclic over K. Then (ρ0)|GK
has shape

(ρ0)|GK
∼
(
χ 0
0 1

)
,

with χ a ramified character of K× vanishing on Q×p .
In each case define χi as the restriction of χ to the < ai >, i = 1, 2, of Proposition

1. Define also c := c(χ) according to the recipe of the Proposition.
Suppose that δ is any continuous complex character of UQp satisfying the fol-

lowing requirements: δ is trivial on roots of unity of odd order, and in addition:

If p = 2:
p d δ(−1) δ(5)
2 −3 χ1(a1) χ2(a2)

2 3 −χ1(a1)
χ1(a1)χ2(a2)2 , if c ≥ 4

1 , otherwise

2 −1 −χ1(a1)2
χ2(a2) , if c ≥ 4

1 , otherwise
2 2,−6 χ1(a1) −1
2 −2, 6 −χ1(a1) −1

If p 6= 2: δ is trivial on the 1-units, and

p d δ(−1)

6= 2 p - d χ1(a1)
p+1
2

6= 2 p | d (−1)
p−1
2 · χ(a0)

Then there exists a lift ρ : GQp
→ GL2(C) of ρ0 with the following properties.

(1) The restriction (det ρ) | UQp is δ.

(2) If φ : GQp → C× is a character of conductor pγ , then the valuation of the Artin
conductor c(ρ⊗ φ) of ρ⊗ φ is given as follows:
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p d c(ρ⊗ φ)
2 −3 2 ·max{c, γ}

2 −1, 3
c+ 3 , for γ ≤ 2
max{c+ 3, 2γ + 2} , for γ ≥ 3

2 ±2,±6
c+ 5 , for γ ≤ 3
max{c+ 5, 2γ + 2} , for γ ≥ 4

6= 2 p - d 2 ·max{c, γ}

6= 2 p | d c+ 1 , for γ ≤ 1
max{c+ 1, 2γ + 2} , for γ ≥ 2

Proof. The proof is based on the Theorem 1 of [5]. As recalled in the introduction
1.3, any lift ρ of ρ0 has shape IndK/Qp

(ψ) where ψ is a character on K× satisfying

(]) ψ(
σx

x
) = χ(x), x ∈ K×.

For such a lift ρ the determinant det ρ, when viewed as a character of Q×p , is given
by:

(]]) det ρ = ω · (ψ|Q×p )

with ω the character Q×p → {±1} corresponding to the extension K/Qp via class
field theory.

Theorem 1 of [5] is an existence statement: What is proved — under conditions
more general than the above setting — is the existence of a character ψ as above (])
with the following special properties: If ρ := IndK/Qp

(ψ) then the Artin conductor
of any twist ρ ⊗ φ of ρ by a character φ of GQp

can be explicitly given. Also, the
restriction of ψ to the units UQp

of Qp is described so that also (det ρ)|UQp
can be

analyzed via (]]). We shall now apply and further explicate these results to the
various cases listed in Proposition 1.

So, in the situation under consideration we let ψ be a character on K× whose
existence is assured by Theorem 1 of [5]. Put ρ := IndK/Qp

(ψ). If then φ is a
character on GQp

of conductor pγ , then the number c(ρ ⊗ φ) is given as follows:
Define the non-negative integer t to be 0 if K/Qp is unramified, and otherwise let
t be the break in the ramification filtration of G := Gal(K/Qp):

G = G0 = . . . Gt 6= Gt+1 = 0.

In the latter case the discriminant of K/Qp is pt+1 as K/Qp is then totally ramified
and cyclic of prime order 2 (cf. [8], V, §3). According to Theorem 1 of [5] we have
then, denoting by NK/Qp

(·) the norm map, that

c(ρ⊗ φ) = 2 max{c, γ}, if K/Qp is unramified

and

c(ρ⊗ φ) = t+ 1 + max{c+ t, c(φ ◦NK/Qp
)}, if K/Qp is ramified

where in the latter case we have for the exponent c(φ ◦NK/Qp
) of the conductor of

the character φ ◦NK/Qp
:

c(φ ◦NK/Qp
) =

{
2γ − t+ 1, if γ ≥ t+ 2
≤ t+ 1, if γ ≤ t+ 1
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whence

c(ρ⊗ φ) =
{
c+ 2t+ 1, if γ ≤ t+ 1
max{c+ 2t+ 1, 2γ + 2}, if γ ≥ t+ 2.

Computing the number t in the various cases we arrive at the stated table for the
number c(ρ⊗ φ).

Let us then turn to a discussion of (det ρ)|UQp
. Let U ′Qp

be the group of units
generated by 5 if p = 2, and otherwise let it denote the full group of 1-units of Qp.
The statement of Theorem 1 of [5] specializes to the following: For any choice of
complex characters ψ2 on U ′Qp

and ψ1 on the group µ2∞(Qp) of roots of unity of
2-power order in Qp, satisfying certain requirements to be explained below, there
is a character ψ on K× satisfying all of the above, is trivial on roots of unity of odd
order, and satisfies in addition:

ψ|µ2∞(Qp) = ψ1, ψ|U ′Qp
= ψ2.

The requirements on the character ψ2 is first that it be trivial if p 6= 2, or if
p = 2 but t ≥ 2. In the remaining cases, i.e. p = 2 and d ∈ {−1,±3}, we may
choose for ψ2 any character satisfying the following:

Suppose that p = 2, d = −3: Let ε be the 3’rd root of unity (−1 +
√
d)/2. If

c = c(χ) ≤ 2, we have from Proposition 1 that χ2 is trivial. In that case we require
ψ2 to be trivial. Otherwise the requirement is:

ψ2(5)2
c−3

= χ(1 + ε · 2c−1)

which we claim is satisfied if we require

ψ2(5) = χ2(a2)

where a2 := −1 + 2
√
d as in Proposition 1. This follows once we note by easy

induction on j that
a−2j

2 · (1 + ε · 2j+2) ∈ U (j+3)
K

so that the requirement on ψ2 is

ψ2(5)2
c−3

= χ(1 + ε · 2c−1) = χ2(a2)2
c−3

.

Suppose then that p = 2 and d ∈ {−1, 3}: In both of these cases we choose
π := 1 −

√
d as prime element for K. Notice that c(χ) is now necessarily an even

number, as K/Q2 is now ramified. If c = c(χ) < 4 we require ψ2 to be trivial. So,
assume c ≥ 4. Then the requirement is

ψ2(5)2
c/2−2

= χ(1 + πc−1).

Now, let us consider the unit η := −1 + 2
√
d and note by induction on j that

η−2j

· (1 + π2j+3) ∈ U (2j+4)
K

which shows that our requirement is

ψ2(5)2
c/2−2

= χ(η)2
c/2−2

.
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As the number χ(η)2
c/2−2

= χ(1 + πc−1) is necessarily −1, our requirement is
satisfied whenever ψ2 is chosen so that

ψ2(5) = χ(η)β

with a 2-adic unit β.

If then d = −1 we have a2 = η, and we may choose for ψ2 any character with
ψ2(5) = χ(a2) = χ2(a2).

If on the other hand d = 3 we have a2 = π, and as noted in the proof of
Proposition 1 we have

π2 ≡ a−1
1 ηβ mod Q×2

for a certain 2-adic unit β. Hence, we may choose for ψ2 any character satisfying

ψ2(5) = χ1(a1)χ2(a2)2.

We can now immediately verify the stated values of δ(5) in the various cases.

Let us then turn to a discussion of the character ψ1. We will first notice that the
proof of Theorem 1 of [5] reveals that we can choose for ψ1 the restriction ψ̃1|Q×p
where ψ̃1 is any character on the group µ2∞(K) of roots of unity of 2-power order
in K satisfying

ψ̃1(y) = χ(x) whenever y =
σx

x
∈ (K×)σ−1 ∩ µ2∞(K).

Also, it is shown in that proof that we have

(K×)σ−1 ∩ µ2∞(K) =
{
<
√
−1 >, if K = Qp(

√
−1)

< −1 >, otherwise.

So, if K 6= Qp(
√
−1) we have ψ1 = ψ̃1 for which the requirement is

ψ̃1(−1) = χ(
√
d),

as −1 = σ
√
d√
d

.

If on the other hand K = Qp(
√
−1) we have µ2∞(Qp) = {±1}. We note that

√
−1 = σ(1−

√
−1)

1−
√
−1

and so we choose for ψ̃1 any character satisfying ψ̃1(
√
−1) =

χ(1−
√
−1). Then ψ1 is determined by the requirement

ψ1(−1) = ψ̃1(−1) = ψ̃2
1(
√
−1) = χ((1−

√
−1)2) = χ(−2

√
−1) = χ(

√
d).

It is now a trivial matter to verify the stated values for δ(−1); notice in case
p 6= 2, p - d that we have with ζ a primitive (p2 − 1)’st root of unity, that

√
d ≡ ζ

p+1
2 mod Q×p

(as these elements both satisfy the equation σx = −x).

This finishes the proof of the Theorem. �
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3. Further explication in special cases.

The results of the previous section give a general explicit classification of dihedral
type projective representations ρ0 : GQp

→ PGL2(C) together with information on
their lifts to linear representations which is sufficiently explicit for the purposes
described in the introduction 1. However, one may wish for an even more explicit
description: One that would allow the immediate construction of algorithms com-
puting the relevant lifting data more or less directly from a polynomial over Qp

whose splitting field is the field cut out by ρ0. Such an additional level of ex-
plicitness is in principle achievable through use of explicit reciprocity laws in local
class field theory: These would allow the explicit description of the character χ of
Proposition 1 and Theorem 1 directly from a polynomial as above.

In this final section we shall however give an alternative answer in 2 central
and especially problematic cases, namely those cases where the Galois group of the
extension cut out by ρ0 is isomorphic to either V4 or D4. Understanding these
cases is important in connection with the problem of lifting global representations
of S4-type over Q, — a problem that has been much studied in the literature. The
local cases — in particular the D4-case — are difficult for p = 2 mainly because
there are many different such representations.

Our additional explication of the lifting theory in these cases is based on the
results of the previous section. One essential new point is a reinterpretation of the
character ψ1 occurring in the proof of Theorem 1 which will lead to another way
of computing this character ‘directly’ from the extension L/Qp cut out by ρ0.

In this section we shall use the following additional notation: L/Qp is an exten-
sion with G := Gal(L/Qp) dihedral of order 4 or 8, i.e. G ∼= V4 or G ∼= D4. We
let K = Qp(

√
d) be a quadratic field contained in L such that L/K is cyclic and

ramified (such a K always exists as is easily seen).

Choosing an embedding G ↪→ PGL2(C) gives us a representation ρ0 as above. In
the D4-case there are 2 inequivalent choices of this embedding, but it is immaterial
for the discussion and the result below which one we choose. With this ρ0 we are
in the setting of Theorem 1 with a ramified character χ on K×such that

(ρ0)|GK
∼
(
χ 0
0 1

)
.

We can then also retain all other notation from Proposition 1 and Theorem 1.

Our goal in this section is to recompute the data given in Theorem 1 (using
among other things Theorem 1 itself) when L is given explicitly as a radical ex-
tension of Qp. I.e., we shall give for one particular lift ρ of ρ0 first the restriction
(det ρ)|UQp

=: δ, and secondly the valuation c(ρ⊗φ) of the Artin conductor of ρ⊗φ
for any character φ : GQp

→ C× of conductor pγ .

We shall need the following consequence of a theorem due to B. Perrin-Riou, cf.
Théorème 5 of [6]. The theorem applies generally to the case of a dihedral extension
of a p-adic field but we will of course only need it in the V4 and D4 cases.

Lemma 1. (cf. Théorème 5 of [6]). In the above situation we have χ(
√
d) = 1 if

and only if L can be embedded in a dihedral extension of degree 2 · [L : Qp] cyclic
over K.
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Proof. An immediate consequence of Théorème 5 of [6] is that the stated embedding
problem is solvable if and only if

√
d ∈ K is a norm from L. As the kernel of χ

consists precisely of the elements K× that are norms from L, the claim follows. �

3.1. V4 cases. Assume now that G ∼= V4.

The discussion of this case is basically trivial if p 6= 2: By Proposition 1, there
is only one such field L and K/Qp is the unramified quadratic extension. We have
c(χ) = 1, and Theorem 1 shows that c(ρ ⊗ φ) = 2 · max{1, γ}, and that we may
choose for δ any character on UQp

which is trivial on 1-units and on roots of unity
of odd order and satisfies:

δ(−1) =
{

1 , if p ≡ 3 (4)
−1 , if p ≡ 1 (4).

The last statement follows because the character χ is necessarily non-trivial on a1

whence χ(a1) = −1.

Let us the proceed with a discussion of the 7 cases with G ∼= V4 for p = 2.

Proposition 2. Retaining all of the above notation, we have for the 7 extensions
L/Q2 of V4-type lifts ρ of the attached ρ0 with the properties summarized in the
following table:

K L (det ρ)(−1) (det ρ)(5) c(ρ⊗ φ)

Q2(
√
−3) Q2(

√
−3,
√
−1) −1 1

4 , if γ ≤ 2
2γ , if γ ≥ 3

Q2(
√
−3) Q2(

√
−3,
√

2) −1 −1
6 , if γ ≤ 3
2γ , if γ ≥ 4

Q2(
√
−3) Q2(

√
−3,
√
−2) 1 −1

6 , if γ ≤ 3
2γ , if γ ≥ 4

Q2(
√

3) Q2(
√

3,
√
±2) 1 −1

7 , if γ ≤ 2
2γ + 2 , if γ ≥ 3

Q2(
√

2) Q2(
√

2,
√
−1) −1 −1

7 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

Q2(
√

6) Q2(
√

6,
√
−1) −1 −1

7 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

Proof. We give the details for the case K = Q2(
√
−3), L = Q2(

√
−3,
√

2). The
other cases are handled in a similar fashion. In this case, the valuation of the
conductor of L/K is 3. Proposition 1 then tells us that χ2 is non-trivial of order 2.
Theorem 1 then gives (det ρ)(5) = −1 and the stated value for c(ρ⊗ φ).

Concerning the value (det ρ)(−1) let us recall that this is ω(−1)ψ1(−1) where
ω is the quadratic character of Q×2 corresponding to K/Q2, and ψ1 is the charac-
ter occurring in the proof of Theorem 1. Let us also recall from that proof that
ψ1(−1) = χ(

√
d). Combining this with the above Lemma 1, as well as with the gen-

eral well-known result (cf. for instance [4] or Lemma 2 below) that a V4-extension
Q2(
√
d,
√
a) can be embedded in a D4-extension cyclic over Q2(

√
d) if and only if

(a,−d) = 1, we deduce in our present case:

(det ρ)(−1) = (−3,−1) · (2, 3) = −1.

�
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3.2. D4 cases. Assume now that G ∼= D4.

In this case also the discussion is essentially trivial if p 6= 2: Proposition 1 shows
that there exists a dihedral extension L/Qp of order 8 only if p ≡ 3 (4), and in
that case there is precisely one such; for an attached projective representation ρ0

Theorem 1 reveals that we have a lift ρ with the properties: det ρ vanishes on
1-units and roots of unity of odd order, and

det ρ(−1) = (−1)
p+1
4 .

The number c(ρ⊗ φ) equals 2 ·max{1, γ}.

Let us then turn to the more complicated case p = 2. Before stating the theorem
we shall first need some general facts about D4-extensions:

Lemma 2. Let k be a field of characteristic 6= 2. A biquadratic extension k(
√
d,
√
a)

can be embedded in a D4-extension cyclic over k(
√
d) if and only if (a,−d) = 1,

i.e. if and only if the equation

x2 − ay2 = ad

has a solution x, y ∈ k. If this is the case then the solutions L/k to this embedding
problem are precisely given by the fields

([) L = k

(√
d,

√
q(x+ y

√
a)
)

where q runs through k×.
If L as in ([) is a D4-extension then L can be embedded in a D8-extension cyclic

over k(
√
d) if and only if

(a, 2)(2qx,−d) = 1 in case x 6= 0,

and if and only if
(a, 2) = 1 in case x = 0.

Here, the symbol (·, ·) denotes the usual Brauer symbol over k.

Proof. The first part of the statement is well-known; it can be obtained as a trivial
reformulation of Theorem 5 of [4].

For the second part of the statement we need Theorem 6 of [4]. To apply that
theorem we need to reshape the square roots generating L a bit: If x 6= 0 we find
that

L = k

(√
u,
√
u− 1,

√
2q′(u+

√
u)
)

where

q′ :=
y2qa

2x
, u :=

x2

y2a
;

if on the other hand x = 0 then k(
√
d) = k(

√
−1), and we find

L = k

(√
u,
√
−1,

√
2q′
√
u

)
with

q′ :=
yq

2
, u := a.

Applying now Theorem 6 of [4] the second part of the statement immediately
follows. �
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Theorem 2. The following table lists the D4-extensions L/Q2 together with the
following information: The number d is such that the quadratic field K = Q2(

√
d)

is the (uniquely determined) quadratic sub-extension over which L is cyclic.

Each extension L gives rise to a projective representation ρ0 : GQ2 → PGL2(C)
by choosing an embedding Gal(L/Q2) ↪→ PGL2(C). Then there exists a lifting
of ρ0 to a linear representation ρ with the properties stated in the table for the
determinant δ := det ρ and for the exponents of the Artin conductors of a twist of
ρ by a character φ : GQ2 → C× of conductor 2γ .

The symbol i denotes a complex 4’th root of unity.

d L δ(−1) δ(5) c(ρ⊗ φ)

−3 Q2

(√
−3,

√
2 +
√
−2
)

1 i
8 , if γ ≤ 4
2γ , if γ ≥ 5

−3 Q2

(√
−3,

√
−(2 +

√
−2)

)
−1 i

8 , if γ ≤ 4
2γ , if γ ≥ 5

−2 Q2

(√
−2,

√
1 +
√
−1
)

−1 −1
9 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

−2 Q2

(√
−2,

√
3(1 +

√
−1)

)
1 −1

9 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

2 Q2

(√
2,
√

3 +
√

3
)

−1 −1
9 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

2 Q2

(√
2,
√
−(3 +

√
3)
)

1 −1
9 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

6 Q2

(√
6,
√

3 +
√
−1
)

−1 −1
9 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

6 Q2

(√
6,
√

2(3 +
√
−1)

)
1 −1

9 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

−6 Q2

(√
−6,

√
2 + 2

√
−2
)

1 −1
9 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

−6 Q2

(√
−6,

√
−(2 + 2

√
−2)

)
−1 −1

9 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

−1 Q2

(√
−1,

√√
2
)

−1 i
9 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

−1 Q2

(√
−1,

√
3
√

2
)

−1 i
9 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

−1 Q2

(√
−1,

√√
3
)

1 1
5 , if γ ≤ 2
2γ + 2 , if γ ≥ 3

−1 Q2

(√
−1,

√
2
√

3
)

1 −1
7 , if γ ≤ 2
2γ + 2 , if γ ≥ 3

−1 Q2

(√
−1,

√√
6
)

1 i
9 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

−1 Q2

(√
−1,

√
2
√

6
)

1 i
9 , if γ ≤ 3
2γ + 2 , if γ ≥ 4

3 Q2

(√
3,
√

2 +
√
−1
)

−1 −1
7 , if γ ≤ 2
2γ + 2 , if γ ≥ 3

3 Q2

(√
3,
√

2(2 +
√
−1)

)
1 1

5 , if γ ≤ 2
2γ + 2 , if γ ≥ 3
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Proof. It is well-known that there are exactly 18 D4-extensions of Q2, and also what
they actually look like: See for instance [1]. One finds this list by applying Lemma
2: We have to find the biquadratic extensions Q2(

√
d,
√
a) for which (a,−d) = 1;

for such an extension, the D4-extensions containing it which are cyclic over Q2(
√
d)

are then given by the fields L = Q2

(√
d,
√
q(x+ y

√
a)
)

where (x, y) is a solution

to the equation x2 − ay2 = ad, and q runs through Q×2 ; one sees immediately that
we get exactly 2 distinct fields L, by choosing q ∈ {1, u} where u is such that the
numbers

1, d, a, ad, u, ud, ua, uad

is a full system of representatives for the square classes in Q×2 .

Given now any such field L = Q2

(√
d,
√
q(x+ y

√
a)
)

, we compute the expo-

nent c of the conductor of the cyclic extension L/Q2(
√
d). Once an embedding

Gal(L/Q2) – and thus a projective representation ρ0 – has been chosen we have
c = c(χ) where χ is the character of GQ2(

√
d) such that (ρ0)|GQ2(

√
d)
∼
(
χ 0
0 1

)
. Inter-

preting χ as a character of K× with K := Q2(
√
d) we are then in the situation of

Theorem 1. Theorem 1 then gives us a ‘good’ lifting ρ but we have to determine
the quantities χ1(a1) and χ2(a2) of the theorem in order to get the desired data
for the lift ρ (in the case d = −1, knowledge of χ1(a1)2 and χ2(a2) will do). To
do this, we first claim – and this must be verified individually in each case – that
we can determine from Proposition 1 the order 2s2 of χ2 solely from knowledge
of c(χ) and the fact that χ has order 4. Secondly, the number χ1(a1) can be de-
termined thus: Except in case d = −1 we have χ1(a1) = χ(

√
d); if d = −1 we

have χ1(a1)2 = χ(
√
d). So, it is clear that all the desired data for the lift ρ can be

determined by Theorem 1 if we can compute χ(
√
d). However, combining Lemmas

1 and 2 we find:

χ(
√
d) =

{
(a, 2)(2qx,−d) , if x 6= 0
(a, 2) , if x = 0.

Let us give the details for d = −3. The arguments in the other cases run similarly.
For d = −3 we have the 2 fields

L = Q2

(√
−3,

√
q(2 +

√
−2)

)
with q = ±1. In both cases we find c = 4. Proposition 1 then reveals that s2 = 2,
i.e. that χ2 has order 4. So, by Theorem 1 the number δ(5) is a complex 4’th root
of unity. The theorem also immediately gives the number c(ρ⊗ φ). We find

δ(−1) = χ(
√
−3) = (−2, 2)(2q · 2, 3) = (q, 3) =

{
1 , for q = 1
−1 , for q = −1.

�

Remark 1. There are 2 inequivalent embeddings D4 ↪→ PGL2(C). One can easily
verify that switching between these in the setting of Theorem 2 has the only effect
of changing the sign of the complex 4’th root of unity i wherever it occurs in the
table.
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