
ON THE EXISTENCE OF p̄-CORE PARTITIONS OF NATURAL
NUMBERS.

IAN KIMING

Abstract. Extending previous work of J. B. Olsson, cf. [7], [8], and of K.

Erdmann and G. O. Michler, cf. [2], on the number of p-spin blocks of defect
zero (p prime) of a double covering group of the symmetric group Sn, we

prove that this number is positive for all n whenever p ≥ 7. More precisely,
it is shown that sp(n) > 0 if p ≥ 7, where sp(n) denotes the number of bar

partitions of n which are p̄-cores.

1. Introduction.

Everywhere in this article the following notation is used: p denotes an odd prime
number, n a natural number, and we put: t := (p− 1)/2.

If G is a finite group, there is some interest in the question whether G has a
p-block of defect zero, since the existence of such a block means the existence of
an irreducible, projective G-module in characteristic p. In general, it is a difficult
problem to decide whether G has a p-block of defect zero.

It was recently proved, cf. [3] (see also [4] for an alternative proof), that if p ≥ 5
then for every n the symmetric group Sn (and the alternating group An) has a
p-block of defect zero.

On the other hand, the representation theory of ‘double covering groups’ Ŝn

of Sn has also been studied intensively, cf. [5], [6], [7], [8]; by a ‘double covering
group’ of Sn we shall understand any of the groups Rn and Tn given by generators
a1, . . . , an−1, z and defining relations:

z2 = 1, a2
i = (aiai+1)3 = z, and [ai, aj ] = z for |i− j| ≥ 2,

for Rn, and:

z2 = a2
i = (aiai+1)3 = [ai, z] = 1, and [ai, aj ] = z for |i− j| ≥ 2,

for Tn. Thus, if n ≥ 4, n 6= 6, Rn and Tn are the 2 representation groups of Sn,
whereas for n = 6, Rn and Tn are both isomorphic to the unique representation
group of S6; cf. [9], pp. 355–357.

Denoting by Ŝn any of the groups Rn and Tn, it is natural to ask similarly
whether Ŝn has a spin character, i.e. a faithful, irreducible character, of p-defect
zero. This is known (A. O. Morris) to be the case if and only if n has a bar
partition which is a p̄-core, cf. [8], p. 190; see [7] or below for the definition of
‘p̄-core partition’. Hence, if we denote by sp(n) the number of p̄-core partitions of
n, the question of interest is to determine the pairs (p, n) for which sp(n) > 0.

The first study of the numbers sp(n) was by K. Erdmann and G. O. Michler, cf.
[2], who studied the situation for p = 5 and p = 7: They proved that s7(n) > 0 for
all n and gave an explicit criterion for s5(n) > 0 to hold.
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We show in the theorem below that sp(n) > 0 for all n if p ≥ 7.

The structure of the proof is this: For ‘small’ n the assertion is proved more or
less directly, and for ‘large’ n the problem is by use of a certain trick reduced to
the question of representing integers by the quadratic form:

2x2 + 2y2 + z2.

2.

We shall now recall from [7], pp. 233–237, some facts concerning p̄-core par-
titions. Recall that a bar partition of n is a partition λ = (a1, . . . , am) with
a1 > . . . > am > 0. Such a partition is represented on the ‘p-abacus’ which
has p runners numbered 0, 1, . . . , p− 1 going from north to south and has its rows
numbered by the non-negative integers: In the representation of λ on the p-abacus
there is a bead in the i’th runner and j’th row if and only if j ∈ Xi(λ) where:

Xi(λ) := {a ∈ N0| ∃k ∈ {1, . . . ,m} : ak = ap+ i}.

Then λ is a p̄-core if and only if there are no beads on the 0’th runner, and for each
i with 1 ≤ i ≤ p− 1 the i’th runner contains

`i := max(|Xi(λ)| − |Xp−i(λ)|, 0)

beads in the first `i rows.

Consequently, if λ is a p̄-core then:

(1) n =
p−1∑
i=1

(p · 1
2
`i(`i − 1) + i`i), where `i`p−i = 0 for i = 1, . . . , p− 1.

Conversely, a (p−1)-tuple (`1, . . . , `p−1) of non-negative integers with (1) gives rise
to a unique p̄-core partition of n. Thus, sp(n) is the number of such (p− 1)-tuples,
– a fact which was also noted in [2].

From this we conclude that sp(n) is the number of t-tuples (y1, . . . , yt) ∈ Zt with:

(2) n =
t∑

i=1

(p · 1
2
yi(yi − 1) + iyi) ;

in fact the maps: (`1, . . . , `p−1) 7→ (y1, . . . , yt) given by:

yi = `i − `p−i for i = 1, . . . , t ,

and (y1, . . . , yt) 7→ (`1, . . . , `p−1) given by:

(`i, `p−i) = (yi, 0) if yi ≥ 0, and (`i, `p−i) = (0,−yi) if yi < 0 ,

are seen to give mutually inverse bijections between the set of (`1, . . . , `p−1) ∈ Np−1
0

with (1) , and the set of (y1, . . . , yt) ∈ Zt with (2).
Using

t∑
i=1

(2i− p)2 =
1
6
p(p− 1)(p− 2) ,
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and writing xi = (2i − p) + 2pyi , we then also conclude that sp(n) is the number
of t-tuples (x1, . . . , xt) ∈ Zt such that:

(3) n =
1
8p

t∑
i=1

x2
i −

(p− 1)(p− 2)
48

, where xi ≡ 2i− p (2p)

for i = 1, . . . , t.

Let us now briefly indicate a proof of one of the results in [2], namely that this
last equation is solvable for all n ∈ N, if p = 7:

Putting N := 7 · (8n+ 5), we have that s7(n) is the number of integral solutions
to:

(∗) N = x2 + y2 + z2 ,

with (x, y, z) ≡ (−5,−3,−1) (14). Now one notices that any solution to (∗) satisfies
either (x, y, z) ≡ (0, 0, 0) (7) or (x, y, z) ≡ (±5,±3,±1) (7) up to permutation of
x, y, z. In the latter case one has in fact (x, y, z) ≡ (±5,±3,±1) (14) up to permuta-
tion, since x, y, z must all be odd since N ≡ 3 (4). From this, one easily concludes
that s7(n) equals a3(N)/48 if n 6≡ 2 (7), and equals (a3(N) − a3(N/72))/48 if
n ≡ 2 (7), where for M ∈ N, a3(M) denotes the number of representations of M as
a sum of 3 squares. Now, from the classical formulas for the numbers a3(M), one
then easily derives even explicit formulas for s7(n). Suppose for example n 6≡ 2 (7),
and write N = p2a1

1 . . . p2av
v · r, where p1, . . . , pv are distinct odd primes and r is

square free and ≡ 3 (8); then if h denotes the class number of Q(
√
−r) and χ−r

the Dirichlet character belonging to this field, so that

χ−r(x) =
(
−r
x

)
for (x, r) = 1,

one has:

s7(n) =
1
2
h ·Πv

i=1

(
1 + (pi − χ−r(pi)) ·

pai
i − 1
pi − 1

)
.

Similar formulas are obtained for n ≡ 2 (7). In particular, one has s7(n) > 0 for
all n ∈ N.

The interpretation of sp(n) as the number of solutions to (3) above suggests a
connection to modular forms. In fact the numbers sp(n) for fixed p are related to
the Fourier coefficients of a certain product of classical theta series. One can use
this to obtain asymptotic formulas for sp(n) for fixed p and n → ∞, at least for
p ≡ 1 (4). We shall report on this elsewhere.

3.

Let us define the functions fi for i = 1, . . . , t(= p−1
2 ):

fi(y) = p · 1
2
y(y − 1) + iy.

Hence, in order to show that sp(n) > 0 we must show that the equation:

n =
t∑

i=1

fi(yi),

has a solution in integers y1, . . . , yt.
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Lemma 1. Suppose that p ≥ 11 and that n ∈ N with n ≤ p · 1
2 (p − 1)2 + (p − 1).

Then there exist yi ∈ Z, i = 1, . . . , t such that:

n =
t∑

i=1

fi(yi).

Proof. Put n0 := p(p− 1)2/2 + p− 1.
Notice first that if m, s ∈ N then there are yi ∈ {0, 1} for i = 1, . . . , s such that:

m =
s∑

i=1

iyi,

if and only if m ≤ 1
2s(s+ 1) (use induction on s). Since fi(0) = 0, fi(1) = i, we see

that is suffices to find s ∈ {0, . . . , t} and yi ∈ Z for s < i ≤ t such that:

n−
∑

s<i≤t

fi(yi) ≤
1
2
s(s+ 1).

So, suppose that s ∈ {0, . . . , t − 1}, put c0(n) := n, and define the integers
yt−i(n) and ci+1(n) for i = 0, . . . , t− s− 1 successively:

yt−i(n) :=
[(

(2i+ 1) +
√

(2i+ 1)2 + 8pci(n)
)
/2p
]
,

and ci+1(n) := ci(n) − ft−i(yt−i(n)), so that ci(n) ≥ 0 for i = 0, . . . , t − s. Then
we have

ct−s(n) = n−
∑

s<i≤t

fi(yi).

Hence the proof is finished if

(1) ct−s(n) ≤ 1
2
s(s+ 1) for all n ≤ n0.

Now, since yt−i(n) ∈ Z is largest possible such that ft−i(yt−i(n)) ≤ ci(n) we
have:

ci+1(n) ≤ pyt−i(n) + t− i ≤ 1
2

(
p+

√
(2i+ 1)2 + 8pci(n)

)
;

hence, if i ∈ {1, . . . , t− s} and Gi(x) is a polynomial, the condition

(8p)2t−s−i−1ci(n) ≤ Gi(p) for all n ≤ n0

is seen to be implied by

(8p)2t−s−i+1−1ci−1(n) ≤ Gi−1(p) for all n ≤ n0,

where

(2) Gi−1(x) := (2Gi(x)− x · (8x)2t−s−i−1)2 − (2i− 1)2 · (8x)2t−s−i+1−2,

provided that Hi(p) ≥ 0 where

(3) Hi(x) := 2Gi(x)− x · (8x)2t−s−i−1.

Hence, if we define G4(x) := 1
2 ((x−1)/2−4)((x−1)/2−3), H4(x) := 2G4(x)−x,

and Gi(x), Hi(x) for i = 3, 2, 1, 0 in accordance with (2) and (3), we have that (1)
holds for the case s = t− 4, if

(4) H1(p), . . . ,H4(p) ≥ 0 and ( (8p)15c0(n) ≤ G0(p) for all n ≤ n0 ).
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But as c0(n) = n ≤ p(p− 1)2/2 + p− 1, (4) holds if

(5) H1(p), . . . ,H4(p), G(p) ≥ 0,

where
G(x) := G0(x)− (8x)15(x(x− 1)2/2 + x− 1) .

Now, H1(x), . . . ,H4(x), G(x) are polynomials with rational coefficients which can
be computed by using (for example) MAPLE. For example, one finds:

G(x) := 2−18(x32 − 320x31 + 48496x30 − . . .+ 58716138).

Using MAPLE again, we can compute approximations to the real roots of these
polynomials and thus verify that (5) holds if p > 43, i.e. (1) holds for the case
s = t− 4 if p > 43.

In the remaining cases 11 ≤ p ≤ 43 one may verify the lemma by direct compu-
tation on a machine. We leave this to the reader indicating only that one finds in
each of these cases solutions with yi = 0 for 5 < i < t− 5. �

Theorem 1. Suppose that p ≥ 7 and that n ∈ N. Then there exists a p̄-core
partition of n.

Hence, a double covering group Ŝn of Sn has a spin character of p-defect zero.

Proof. The last statement follows from the first as explained in the introduction.
By [2], or by the remarks made above, we may assume that p ≥ 11.
We must show the existence of integers y1, . . . , yt such that:

n =
t∑

i=1

fi(yi).

Because of the lemma, we may and will assume:

n ≥ p · 1
2

(p− 1)2 + (p− 1).

Hence, if we write

n = pm+ r with m ∈ N0, |r| ≤ p− 1 and r ≡ 0 (2),

then m ≥ r2/2 so that the number N := 48m− 24r2 + 5 is a natural number.
Now, we know, confer [1], that the quadratic form 2x2 +2y2 +z2 represents every

natural number not of the form 4s(8l + 7). Thus there exist u, v, w ∈ Z such that:

(∗) N = 2u2 + 2v2 + w2 ;

in fact, the solvability of (∗) in integers follows easily from the fact that N is a sum
of 3 squares.

Since r is even, we have N ≡ 5 (16); a consideration of (∗) mod 16 then shows
that u and v are odd and w ≡ ±1,±7 (16). We may then assume

w ≡ −1 (8).

Considering (∗) mod 3 and exchanging u and v if necessary, we find

( u2 ≡ 1 (3), v2 ≡ w2 ≡ 0 (3) ) or ( u2 ≡ v2 ≡ w2 ≡ 1 (3) ).

Since u, v, w are all odd, we may then assume

u ≡ −1 (6) and v ≡ w (6).
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Then the number v+ 1− (w+ 1)/4 is divisible by 6, and we define the integers:

a :=
u+ 1

6
, b := −r

2
+

1
6

(
v + 1− w + 1

4

)
, c :=

r

2
+
w + 1

8
,

and

y1 := a+ b, y2 := a+ c, y3 := −a+ b+ c, y4 := −r − b, y5 := r − c,
and yi = 0 for i ≥ 6. Then we have:

t∑
i=1

fi(yi) =
5∑

i=1

(
p · 1

2
yi(yi − 1) + iyi

)
= p · 1

48
(2u2 + 2v2 + w2 + 24r2 − 5) + r

= pm+ r = n.

�
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