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Abstract. Let p be an odd prime and let n ∈ N. The so-called ‘p̄-core

partitions’ of n arise naturally in the study of the modular representation
theory of covering groups of the symmetric group Sn, cf. [11, 12]. In fact, the

number of such partitions is closely related to the number of spin characters of

p-defect zero of such a covering group. It was recently proved that this number
is always positive if p ≥ 7: cf. [2] resp. [7] for the cases p = 7 and p ≥ 11

respectively. It is natural to ask for asymptotic formulae (for a fixed p) for the

number of p̄-core partitions of natural numbers n. We use modular forms to
derive such asymptotic formulae in the cases p ≡ 1 (4), p > 5.

1. Introduction.

In the following the symbol p always denotes an odd prime number and n a
natural number.

In the representation theory of the symmetric groups Sn there is some interest
in the question of determining the n ∈ N for which Sn has a p-block of defect zero,
since the existence of such a block means the existence of an irreducible, projective
module in characteristic p. The question turns out to be not quite trivial and
equivalent to the question of determining those n ∈ N which have a so-called ‘p-
core partition’ (for a definition, see [3] ). The work [3] turned the question into an
arithmetical one, and using this it was recently proved, cf. [13, 4], that if p ≥ 5
then every n ∈ N has a ‘p-core partition’ (see also [6] for an alternative proof). This
result is optimal in the sense that the statement is false for p = 3.

On the other hand, if one wishes to study projective representations of the sym-
metric group Sn, then by Schur’s theory [15], this is equivalent to the study of
ordinary representations of any ‘representation group’ Ŝn of Sn. Here, ‘representa-
tion group’ is to be understood in the sense of Schur, i.e. Ŝn is a central extension
of Sn with the property that any projective representation of Sn lifts to an ordinary
representation of Ŝn, and such that Ŝn has order equal to n! = |Sn| times the order
of the Schur multiplier of Sn, which is 1 for n = 1, 2, 3 and 2 for n ≥ 4. All possibil-
ities for Ŝn have been determined by Schur in [15] : For n ≥ 4, Ŝn is isomorphic to
one of the groups Rn or Tn given generators a1, . . . , an−1, z and defining relations:

z2 = 1, a2
i = (aiai+1)3 = z, and [ai, aj ] = z for |i− j| ≥ 2,

for Rn, and:

z2 = a2
i = (aiai+1)3 = [ai, z] = 1, and [ai, aj ] = z for |i− j| ≥ 2,

for Tn. For n ≥ 4, n 6= 6, Rn and Tn are non-isomorphic, whereas R6 is isomorphic
to T6, cf. [15], pp. 355–357.
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2 IAN KIMING

Thus we denote in the following for n ≥ 4 by Ŝn anyone of the groups Rn or Tn
above. If n ∈ {1, 2, 3}, the following theory is not very interesting, but for practical
reasons we shall redefine Ŝn in these cases to be also anyone of Rn or Tn.

So, Ŝn is a double covering group of Sn. The representation theory of these
double covers has been studied intensively, cf. [8, 10, 11, 12]. In the general modular
representation theory of finite groups the question of existence of a character of
p-defect zero is a fundamental and difficult problem. Thus, for Ŝn, one of the
natural problems is to determine those n ∈ N for which Ŝn has a spin character,
i.e. a faithful, irreducible character, of p-defect zero. This question turns out to
be equivalent to the determination of those n ∈ N which have a so-called ‘p̄-core
partition’, cf. [12, 11]; see below in section 1 for the definition of a p̄-core partition
of n. In fact, the number of p̄-core partitions of n is closely related to the number
of spin characters of p-defect zero of Ŝn; more precisely, the p̄-core partitions of n
can be used as labels for such spin characters: A p̄-core partition λ labels either 1
or 2 spin characters of p-defect zero depending on a certain sign attached to λ; cf.
[12].

In [7] we proved that every n ∈ N has a p̄-core partition if p ≥ 7; see also [2] for
the case p = 7. This is also an optimal result. It has some strong consequences for
the representation theory of Ŝn, for example the following (see [12]): If p ≥ 7, and
m,n ∈ N with pm ≤ n, then Ŝn has a spin block whose defect group is isomorphic
to a p-Sylow subgroup of Spm.

Thus, p̄-core partitions seem to be fundamental combinatorial objects, and in
this article we study them for their own sake. We shall focus on a connection
to modular forms and use this in section 2 below to give for p > 5, p ≡ 1 (4)
asymptotic formulae for the number sp(n) of p̄-core partitions of n. The reason
for our restriction to the cases p ≡ 1 (4) is that we relate sp(n) to the Fourier
coefficients of a certain modular form of weight (p − 1)/4; for p ≡ 3 (4) we would
thus have to deal with modular forms of half-integral weight, and this would in fact
complicate the discussion considerably.

In order to find an asymptotic formula for the numbers sp(n) (p fixed) we proceed
as follows. Based on the reinterpretation in the next section of sp(n) as the number
of solutions to a certain quadratic diophantine equation, we construct in section 2
a modular form

fp(z) =
∞∑
m=0

b(m, fp) · e2πimz for Im(z) > 0 ,

on a certain congruence subgroup of SL2(Z), with the property that the numbers
sp(n) occur among the Fourier coefficients b(·, fp) of fp; for example, one will have

sp(n) = b(n+
1
48
· (p− 1)(p− 2), fp) if p ≡ 1 (16) .

An asymptotic formula for sp(n) is then obtained by using the following principle
first made explicit by Hecke (see [5]): First we split off an Eisenstein part ep of fp,
i.e. we determine a linear combination ep of standard Eisenstein series with the
property that fp−ep is a cusp form. The determination of ep requires the knowledge
of the constant terms in the Fourier expansions of fp and standard Eisenstein series
around various cusps. Our situation is complicated by the fact that the level of
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fp is not square free for all p, so that these constant terms can not in all cases be
computed by using Atkin-Lehner involutions. In the proof of the theorem below
we describe the principles used in computing the constant terms, but we shall
leave most of the explicit computations to the reader. The proof of the asymptotic
formulae for sp(n) is then finished by computing explicitly the Fourier coefficients
of the form ep and then employing known estimates on the Fourier coefficients of
cusp forms on congruence subgroups of SL2(Z).

2.

Now we recall from [11], pp. 233–237, the definition of a ‘p̄-core partition’ of n,
and derive from this an interpretation of the number sp(n) of such partitions as the
number of solutions to a certain diophantine equation.

A bar partition of n is a partition λ = (λ1, . . . , λm) of n with λ1 > . . . > λm > 0.
The parts λ1, . . . , λm of λ are represented as beads on the ‘p-abacus’, which is an
abacus with p runners going from north to south and numbered 0, 1, . . . , p−1. The
rows are numbered 0, 1, 2, . . . . The part λs is represented by a bead in the j’th row
of the i’th runner where i and j are determined by:

0 ≤ i ≤ p− 1 and λs = pj + i .

Thus, there is at most one bead in each position of the p-abacus. The bar partition
λ is then called a p̄-core if and only if the following conditions are satisfied:

(i) The 0’th runner contains no beads,

(ii) No bead can be pushed up its runner, i.e. for any i, if the i’th runner contains
`i beads then these are positioned in the first `i rows,

(iii) For each i ∈ {1, . . . , p− 1}, at least one of the i’th and the (p− i)’th runner
is empty.

From this we easily deduce that the number sp(n) is equal to the number of
(p− 1)-tuples (`1, . . . , `p−1) of non-negative integers with

n =
p−1∑
i=1

(p · 1
2
`i(`i − 1) + i`i) and `i`p−i = 0 for all i .

Putting t := (p−1)/2, this means that sp(n) is the number of t-tuples (y1, . . . , yt) ∈
Zt with

n =
t∑
i=1

(p · 1
2
yi(yi − 1) + iyi)

(consider yi ←→ `i − `p−i). Diagonalizing this last expression, we then finally
conclude that sp(n) is the number of integral solutions to: n = 1

8p

∑t
i=1 x

2
i −

(p−1)(p−2)
48

xi ≡ 2i− p (2p), ∀i ;

(use that
t∑
i=1

(2i− p)2 =
1
6
p(p− 1)(p− 2) ).



4 IAN KIMING

This is the interpretation of the numbers sp(n) that we shall now use to find an
asymptotic formula for them.

3.

We fix the following notation: p is a prime number > 5 and ≡ 1 (4), t := (p−1)/2
as above, and

k :=
p− 1

4
,

so that k is an integer ≥ 3.
The symbol χ denotes the Dirichlet character belonging to the field Q(

√
−1), so

that
χ(x) = (−1)

x−1
2 for odd x ∈ Z .

Further, if n ∈ N we denote by N = N(n) the integer

N := 4n+
(p− 1)(p− 2)

12
.

If K ∈ N and ε is a Dirichlet character mod K, we denote as usual by Mk(K, ε)
the space of holomorphic modular forms of weight k on Γ0(K) with nebentypus ε.
Also, Sk(K, ε) denotes the corresponding subspace of cusp forms. If f ∈Mk(K, ε),
we denote by

b(n, f)
the n’th Fourier coefficient of f at ∞.

For h ∈ Z we consider the following classical theta series:

θ3,0(z, h, 2p) :=
∑
x∈Z

x≡h(2p)

e2πiz· x24p ,

for z in the upper half plane, and define

fp(z) :=


∏t
i=1 θ3,0(z/2, 2i− p, 2p) if p ≡ 1 (16)∏t
i=1 θ3,0(z, 2i− p, 2p) if p ≡ 9 (16)∏t
i=1 θ3,0(2z, 2i− p, 2p) if p ≡ 5 (8) ,

for Im(z) > 0.

We shall also need the following Hecke-Eisenstein series:

Gk(z; a, b;M) :=
∑

(m,n)≡(a,b) (M)
(m,n)6=(0,0)

(mz + n)−k for Im(z) > 0 ,

where M ∈ N, a, b ∈ Z. We define:

Gk(z) := (2ζ(k))−1Gk(z; 0, 1; 1) for p ≡ 1 (8) ,

where ζ is Riemann’s zeta function, and further

Ek(z) := L(k, χ)−1Gk(z; 0, 1; 4) for p ≡ 5 (8) ,

Fk(z) := −2 · i−k · L(k, χ)−1Gk(4z; 1, 0; 4) for p ≡ 5 (8) ,
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where L(s, χ) is the L-series of χ. Finally, if ` ∈ N we denote by G
(`)
k , E(`)

k , F (`)
k

respectively the function Gk(`z), Ek(`z), Fk(`z) respectively.

Theorem 1. For n ∈ N let

N := 4n+
(p− 1)(p− 2)

12
.

I. Suppose that p ≡ 1 (16). Then fp ∈Mk(2p, 1) and

fp −
2k

(2k − 1)(pk − 1)

(
G

(2p)
k −G(p)

k −G
(2)
k +G

(1)
k

)
∈ Sk(2p, 1) .

For n ∈ N we have that N/4 ∈ N and

sp(n) = b(N/4, fp) ;

if N/4 = 2rpsm with (m, 2p) = 1, then

sp(n) = − 2k
Bk
· 2k

(2k − 1)(pk − 1)
·Nk−1

∑
d|m

d1−k +O(n
k−1
2 +ε)

for all ε > 0. Here Bk is the k’th Bernoulli number.

II. Suppose that p ≡ 9 (16). Then fp ∈Mk(4p, 1) and

fp −
2k

(2k − 1)(pk − 1)

(
G

(4p)
k − (21−k + 1)G(2p)

k + 21−kG
(p)
k

−G(4)
k + (21−k + 1)G(2)

k − 21−kG
(1)
k

)
∈ Sk(4p, 1) .

For n ∈ N we have that N/2 is an odd integer and

sp(n) = b(N/2, fp) ;

if N/2 = psm with (m, p) = 1, then

sp(n) =
2k
Bk
· 2

(2k − 1)(pk − 1)
·Nk−1

∑
d|m

d1−k +O(n
k−1
2 +ε)

for all ε > 0.

III. Suppose that p ≡ 5 (8). Then fp ∈Mk(8p, χ) and

fp −
1

pk − 1

(
E

(2p)
k − E(p)

k − E
(2)
k + E

(1)
k

+2k−1F
(2p)
k − F (p)

k − 2k−1F
(2)
k + F

(1)
k

)
∈ Sk(8p, χ) .

For n ∈ N we have that N is an odd integer and

sp(n) = b(N, fp) ;

if N = psm with (m, p) = 1, then

sp(n) = (−1)
k+1
2 · 2k

Bk,χ
· 2
pk − 1

·Nk−1
∑
d|m

χ(d)d1−k +O(n
k−1
2 +ε)

for all ε > 0. Here Bk,χ is the k’th Bernoulli number belonging to the character χ.
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Proof. We prove only part III. The proofs of parts I and II are similar but simpler.
So, suppose that p ≡ 5 (8).

(a) First we use the transformation formula for the theta series θ3,0: Suppose that
h ∈ Z, use the notation

ζm := e
2πi
m ,

and let

L =
(
α β
γ δ

)
∈ Γ0(4p) .

Then the transformation formula on p. 223 in [14] states that

θ3,0(z, h, 2p) |1/2 L = σγ,δ ·
(

2pγ
|δ|

)
· ζδ−1

8 ζαβh
2

4p · θ3,0(z, αh, 2p) ,

where σγ,δ is −1 if both γ and δ are negative and is 1 otherwise, and where we used
the usual notation

f(z) |s L := (γz + δ)−sf
(
αz + β

γz + δ

)
for holomorphic functions f on the upper half plane and s ∈ 1

2Z (with the stan-
dard branch of the holomorphic square root if s is half-integral). Now, from the
definitions of θ3,0(z, h, 2p) and fp we see that if I is a set of t integers such that
the numbers ±i, i ∈ I form a system of representatives of the invertible residues
modulo 2p, then the product ∏

i∈I
θ3,0(z, i, 2p)

is independent of I and equals fp(z/2). Since α is prime to 2p, we can then conclude:

(1) fp(z/2) |k L = (−1)k·
δ−1
2 · (−1)αβ·

(p−1)(p−2)
12 fp(z/2) ,

where we used that t is even, k = t/2 and that
∑t
i=1(2i− p)2 = p(p− 1)(p− 2)/6.

Since k is odd, (1) implies

fp(z/2) |k L = χ(δ)fp(z/2) ,

if

L =
(
α β
γ δ

)
∈ Γ(4p, 2) :=

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 (4p), b ≡ 0 (2)

}
.

Since (
2 0
0 1

)−1

Γ(4p, 2)
(

2 0
0 1

)
= Γ0(8p) ,

we then deduce fp ∈Mk(8p, χ).

(b) We have the following Fourier expansion of the Hecke-Eisenstein series
Gk(z; a, b;M), cf. [5]:

Gk(z; a, b;M) =

δ
( a
M

) ∑
`≡b (M)
` 6=0

`−k +
(−2πi)k

Mk(k − 1)!

∑
mn>0

n≡a (M)

mk−1sgn(m)e
2πi
M ·bme

2πi
M ·mnz,

where δ(x) is 1 or 0 according to whether x is an integer or not. Using the fact
that k is odd and that

L(k, χ) = (−1)
k+1
2 ·

(π
2

)k
· Bk,χ
k!

,
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one then finds the following Fourier expansion of the function Ek:

Ek(z) = 1 + L(k, χ)−1 · (−2πi)k

4k(k − 1)!

∞∑
n=1

∑
d|n

dk−1(id − i−d)

 e2πinz

= 1 +
k

Bk,χ
· (−1)

k+1
2 · (−1)k · ik · (2i) ·

∞∑
n=1

∑
d|n

χ(d)dk−1

 e2πinz

= 1− 2k
Bk,χ

∞∑
n=1

∑
d|n

χ(d)dk−1

 e2πinz .

Similarly, one finds:

Fk(z) = (−1)
k+1
2 · 2k

Bk,χ

∞∑
n=1

∑
d|n

χ(
n

d
)dk−1

 e2πinz .

So, we conclude, cf. for example [9], Theorem 4.7.1, p. 177, that Ek, Fk ∈
Mk(4, χ). It follows that

E
(`)
k , F

(`)
k ∈Mk(8p, χ) for ` = 1, 2, p, 2p .

We define the element Up ∈Mk(8p, χ):

Up :=
1

pk − 1

(
E

(2p)
k − E(p)

k − E
(2)
k + E

(1)
k + 2k−1F

(2p)
k − F (p)

k − 2k−1F
(2)
k + F

(1)
k

)
.

In order to show that fp − Up is a cusp form, it suffices to show that V (c, fp) =
V (c, Up) for c ∈ N, c | 8p, where for f ∈Mk(8p, χ) and c ∈ Z we define

V (c, f) := lim
z→i∞

(
f |k

(
1 0
c 1

))
(z) ;

this follows because the numbers c−1 for c ∈ N, c | 8p form a system of representa-
tives of the cusps with respect to Γ0(8p). In order to compute the numbers V (c, fp)
and V (c, Up) we first recall the following trick (cf. for example [14] , p. 248):

Suppose that f, g ∈Mk(K, ε), that c, ` ∈ N and that

g(z) = f(`z) .

Choose x, y ∈ Z such that:

(2) xc− y` = −(c, `) ,

and put:

A =
(
`/(c, `) x
c/(c, `) y

)
,

so that A ∈ SL2(Z). Then:

(3) V (c, g) =
(

`

(c, `)

)−k
lim
z→i∞

(f |k A)(z) ,
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which we see as follows:

V (c, g) = lim
z→i∞

(
`−k/2f |k

(
` 0
0 1

))
|k
(

1 0
c 1

)
(z)

= `−k/2 lim
z→i∞

(
f |k A

(
(c, `) −x

0 `/(c, `)

))
(z)

= `−k/2 lim
z→i∞

`k/2 ·
(

`

(c, `)

)−k
(f |k A)

(
(c, `)2

`
z − x(c, `)

`

)
=

(
`

(c, `)

)−k
lim
z→i∞

(f |k A)(z) .

Recall also (cf. [5]) the following two facts:
If (

α β
γ δ

)
∈ SL2(Z)

then

Gk(z; a, b;M) |k
(
α β
γ δ

)
= Gk(z;αa+ γb, βa+ δb;M) ;

we have
lim
z→i∞

Gk(z; a, b;M) = δ
( a
M

) ∑
m≡b (M)
m 6=0

m−k ,

where as above δ(x) is 1 or 0 according to whether x is an integer or not.

Using these facts and (3) above, one then computes for c, ` ∈ N with ` | 2p,
c | 8p:

V (c, E(`)
k ) =

(
`

(c, `)

)−k
L(k, χ)−1δ

(
c

4(c, `)

)
·
∑

m≡y (4)
m6=0

m−k ,

if (x, y) ∈ Z2 is chosen such that (2) above holds. Then, if c/(c, `) is divisible by 4
we have that both y and `/(c, `) are odd, and so:

L(k, χ)−1
∑

m≡y (4)
m 6=0

m−k = χ(y) = χ

(
`

(c, `)

)
= 1 ,

where the last equality follows because `/(c, `) is a divisor of p (since ` | 2p and
`/(c, `) is odd), and because χ(p) = 1 since p ≡ 1 (4).

Hence,

(4) V (c, E(`)
k ) = δ

(
c

4(c, `)

)
·
(

`

(c, `)

)−k
.

Similarly, by choosing x, y according to (2) above with ` replaced by 4`, we find:

V (c, F (`)
k ) = −2 · (4i)−k

(
`

(c, 4`)

)−k
L(k, χ)−1δ

(
`

(c, 4`)

) ∑
m≡x (4)
m 6=0

m−k .
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If (c, 4`) divides ` then x and c/(c, 4`) are both odd, and so:

−L(k, χ)−1
∑

m≡x (4)
m6=0

m−k = −χ(x) = χ

(
c

(c, 4`)

)
= 1 ,

where the last equality follows because c/(c, 4`) is a divisor of p (since c | 8p and
c/(c, 4`) is odd).

Hence,

(5) V (c, F (`)
k ) = δ

(
`

(c, 4`)

)
· 2 · (4i)−k ·

(
`

(c, 4`)

)−k
.

Now we compute the numbers V (c, fp) for c ∈ N, c | 8p. Using as above the
notation

ζm := e
2πi
m

for m ∈ N, and

W (h, 2p, a, c) :=
∑

j mod 2pc
j≡h (2p)

ζaj
2

4pc

for integers h, a, c with c > 0 and (a, c) = 1, we have according to (A.14) on p. 220
in [14] that

θ3,0(z, h, 2p) |1/2 S = (ζ8
√

2pc)−1
∑

j mod 2p

ζ
−bj(2h+dj)
4p W (h+dj, 2p, a, c)θ3,0(z, j, 2p) ,

if

S =
(
a b
c d

)
∈ SL2(Z) with c > 0 .

Using this and the fact that

lim
z→i∞

θ3,0(z, h, 2p) =
{

0 , if h 6≡ 0 (2p)
1 , if h ≡ 0 (2p) ,

we find
lim
z→i∞

θ3,0(z, h, 2p) |1/2 S = (ζ8
√

2pc)−1W (h, 2p, a, c) ,

and so:

lim
z→i∞

t∏
j=1

θ3,0(z, 2j − p, 2p) |k S = (2pic)−k
t∏

j=1

W (2j − p, 2p, a, c) .

With this, we deduce from the definition of fp and from (3) above that:

V (c, fp) =
(

4pic
(c, 2)2

)−k
Πt
j=1W

(
2j − p, 2p, 2

(c, 2)
,

c

(c, 2)

)
for c ∈ N. From this, one easily computes the following explicit values:

V (1, fp) = (4pi)−k , V (2, fp) = −(2pi)−k , V (4, fp) = p−k ,

V (c, fp) = 0 for c = 8, p, 2p, 4p, 8p
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(here V (8p, fp) = 0 also follows directly from the definition of fp because fp ∈
Mk(8p, χ) ). Let us for example consider the computation of V (4, fp): We have

t∏
j=1

W (2j − p, 2p, 1, 2) =
t∏

j=1

∑
r mod 4p

r≡2j−p (2p)

ζr
2

8p =
t∏

j=1

(
ζ4j2+p2−4pj
8p + ζ4j2+p2+4pj

8p

)

=
t∏

j=1

2 · ζp8 · ζ
j2+pj
2p = 2tζpt8 · ζ

p(p−1)(p+1)
6

2p = 4k · ipk = (4i)k ,

where we used that p ≡ 1 (4); hence, V (4, fp) = p−k.

Using (4) and (5) above one then verifies that

V (c, Up) = V (c, fp) for c = 1, 2, 4, 8, p, 2p, 4p, 8p .

Hence, fp − Up ∈ Sk(8p, χ).

(c) The relation
sp(n) = b(N, fp) ,

where N = 4n + (p − 1)(p − 2)/12, follows directly from the definition of fp and
the fact discussed in section 1 above that sp(n) is the number of integral solutions
(x1, . . . , xt) to

n =
1
8p

t∑
i=1

x2
i −

(p− 1)(p− 2)
48

with xi ≡ 2i− p (2p) for i = 1, . . . t.
Now, from (b) above and from the Ramanujan-Petersson conjecture for elements

in Sk(8p, χ), which is proved by Deligne, cf. [1], Th. (8.2), p. 302, it follows that

b(r, fp) = b(r, Up) +O(r
k−1
2 +ε)

for all ε > 0. Hence we can finish the proof by showing that

(6) b(N,Up) = (−1)
k+1
2 · 2k

Bk,χ
· 2
pk − 1

·Nk−1
∑
d|m

χ(d)d1−k ,

if N = psm with (m, 2p) = 1. If we use the notations

ϕ(M) :=
∑
d|M

χ(d)dk−1 , ψ(M) :=
∑
d|M

χ(M/d)dk−1 ,

for M ∈ N and ϕ(x) = ψ(x) = 0 for x 6∈ N, we obtain from the definition of Up
together with the Fourier expansions of Ek and Fk :

b(N,Up) = 1
pk−1

(
− 2k
Bk,χ

(ϕ(N)− ϕ(N/p)) + (−1)
k+1
2 · 2k

Bk,χ
(ψ(N)− ψ(N/p))

)
= (−1)

k+1
2 · 2k

Bk,χ
· 1
pk−1

· ((−1)
k−1
2 χ(p)sps(k−1)ϕ(m) + ps(k−1)ψ(m))

= (−1)
k+1
2 · 2k

Bk,χ
· 1
pk−1

· ps(k−1) · (χ(k)ϕ(m) + ψ(m)),

where we used that k and N are odd, and that χ(p) = 1. Now, if we notice that

χ(M)ϕ(M) = ψ(M) for odd M ∈ N ,

and that

χ(m) = χ(psm) = χ(N) = χ

(
(p− 1)(p− 2)

12

)
= χ(k) ,
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because p− 2 ≡ 3 (4), the equality (6) then follows immediately. �

Remarks: The formulae for sp(n) in the above theorem are really asymptotic
formulae, i.e., in each of the cases I, II, III, the main term of the formula grows
faster with n as does the O-term: This is clear in cases I and II, and in case III it
follows if we note that for odd m, the number∑

d|m

χ(d)d1−k

is bounded below by ζ(k − 1)−1, as is easily seen.
We also see that we obtain asymptotic formulae even if we use weaker esti-

mates for the Fourier coefficients of cusp forms than the theorem of Deligne on the
Ramanujan-Petersson conjecture. For example, if one replaces the O-terms in the
theorem above with O(nk/2), then this weaker theorem is proved by the above and
with reference to Hecke’s result in [5]: This result, which can be proved by elemen-
tary means, states precisely that the Fourier coefficients of cusp forms of weight k
on any congruence subgroup Γ0(M) can be estimated by O(nk/2).
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